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The head-related transfer function~HRTF! varies with range as well as with azimuth and elevation.
To better understand its close-range behavior, a theoretical and experimental investigation of the
HRTF for an ideal rigid sphere was performed. An algorithm was developed for computing the
variation in sound pressure at the surface of the sphere as a function of direction and range to the
sound source. The impulse response was also measured experimentally. The results may be
summarized as follows. First, the experimental measurements were in close agreement with the
theoretical solution. Second, the variation of low-frequency interaural level difference with range is
significant for ranges smaller than about five times the sphere radius. Third, the impulse response
reveals the source of the ripples observed in the magnitude response, and provides direct evidence
that the interaural time difference is not a strong function of range. Fourth, the time delay is well
approximated by well-known ray-tracing formula due to Woodworth and Schlosberg. Finally,
except for this time delay, the HRTF for the ideal sphere appears to be minimum-phase, permitting
exact recovery of the impulse response from the magnitude response in the frequency domain.
© 1998 Acoustical Society of America.@S0001-4966~98!00111-8#

PACS numbers: 43.66.Qp, 43.66.Pn 43.20.Fn@RHD#
r

ere

e
rc

di

as
in
e

di
ta

m
to

er

the
of
n of

ho-
re-
tical
his
se
TF.
ne’s
w-
The
LIST OF SYMBOLS

a radius of the sphere~m!
c ambient speed of sound~m/s!
f frequency~Hz!
h head-related impulse response
hm mth-order spherical Hankel function
hm8 the derivative ofhm with respect to its argument
H head-related transfer function relative to free field
H« head-related transfer function relative to source
i A21
j m mth-order spherical Bessel function
k acoustic wave number~/m!
nm mth-order spherical Neumann function
pf f free-field pressure at the center of the sphere~kg/m2)
ps pressure on the surface of the sphere~kg/m2)
p« pressure at a small sphere surrounding the sou

~kg/m2)

INTRODUCTION

This paper is concerned with the range dependenc
the response of an ideal rigid sphere to a point sound sou
The purpose of this study was to gain a better understan
of the behavior of the head-related transfer function~HRTF!
at close range. It is hoped that these results will serve
guide to those engaged in the study of human HRTFs,
cluding their measurement and analysis, and to those
gaged in creating spatial sound stimuli by convolving au
signals with these HRTFs. Given the paucity of experimen
measurements of HRTF variation at close range, it see
particularly important to have a foundation upon which
base further acoustical studies of this spatial region. Th
3048 J. Acoust. Soc. Am. 104 (5), November 1998 0001-4966/98/10
ce

Pm Legendre polynomial of degreem
Qm mth-order modified spherical Hankel function
r distance from the center of the sphere to the source~m!
r « radius of a small sphere surrounding the source
Sv magnitude of flow from an ideal point source~m3/s!
t time ~s!
Dt time between arrival at observation point and sph

center~s!
Dt normalizedDt
u angle of incidence~rad!
u0 angle for tangent incidence~rad!
l wavelength~m!
m normalized frequency
r normalized distance to the source
r0 density of air~kg/m3)
t normalized time
v radian frequency~rad/s!
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fore, the investigation reported in this paper included
numerical evaluation of a theoretical model, the collection
related acoustical measurement data, and the compariso
the theoretical solution to the experimental results.

A classical spherical model of the human head was c
sen for this investigation for the traditional reasons—its
sponse can be analyzed mathematically, and the theore
solution can be evaluated numerically. Even though t
model is quite idealized, it exhibits features similar to tho
observed in the close-range behavior of the human HR
For example, sounds from a source that is very close to o
ear are not only louder but also contain relatively more lo
frequency energy than do sounds from a distant source.
30484(5)/3048/11/$15.00 © 1998 Acoustical Society of America
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simplest model that explains these effects approximates
human head by a rigid sphere of the same average radius
approximates the sound impinging on the sphere as if it w
generated by a point source. While this idealization is
stricted to relatively low frequencies and obviously becom
problematic very close to the surface of the head, a qua
tative understanding of its behavior provides insight into
more complex behavior of the HRTF for an actual hum
head.

To compute the response at the surface of the spher
a sound source located at an arbitrary distance from the
face of the sphere, a modification was made to an algori
for computing the classical solution for a source infinitely
from the sphere. The behavior of the solution was exami
in both the frequency domain~the HRTF! and the time do-
main ~the head-related impulse response, or HRIR!. The
time-domain solution provides insight into some otherw
puzzling behavior of the HRTF. The adequacy and accur
of the model were confirmed by comparing the numeri
results with the results of a corresponding series of impu
response measurements made using an actual phy
sphere.

I. THE THEORETICAL SOLUTION

A. Expansion in spherical harmonics

The frequency-domain solution for the diffraction of a
acoustic wave by a rigid sphere, which is presented in m
textbooks, was obtained by Lord Rayleigh at the end of
19th century~Strutt, 1904, 1945!. If the flow for a complex
sinusoidal point source is of the formSve2 ivt , then the
free-field pressure at a distancer from the source is given by

pf f~r ,v,t !52 iv
r0Sv

4pr
ei ~kr2vt !, ~1!

wherek5v/c.1 Because multiplication by2 iv in the fre-
quency domain is equivalent to differentiation in the tim
domain, this implies that if the flow is a unit step functio
the free-field pressure is a Dirac impulse wave who
strength varies inversely with the distance to the source.

The presence of the sphere diffracts the sound wave
modifies the pressure field. Most authors give only R
leigh’s solution for the case where the source is infinit
distant from the center of the sphere. Rabinowitzet al.
~1993! present the solution for the pressure on the surfac
the sphere due to a sinusoidal point source at any ranr
greater than the sphere radiusa. With minor notational
changes, their solution can be written as

ps~r ,a,v,u,t !5
ir0cSv

4pa2 Ce2 ivt, ~2!

whereC is the infinite series expansion

C5 (
m50

`

~2m11!Pm~cosu!
hm~kr !

hm8 ~ka!
, r .a. ~3!

Hereu is the angle of incidence, the angle between the
from the center of the sphere to the source and the ray to
measurement point on the surface of the sphere, and no
3049 J. Acoust. Soc. Am., Vol. 104, No. 5, November 1998 R. O. D
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incidence corresponds tou50°. It is conventional to use the
time 2pa/c that it takes for a wave to travel once around t
sphere to define the normalized frequencym,

m5ka5 f
2pa

c
. ~4!

Define the normalized distance to the sourcer by

r5
r

a
, ~5!

and define the transfer functionH by

H5
ps

pf f
. ~6!

Then

H~r,m,u!52
r

m
e2 imrC, ~7!

where

C~r,m,u!5 (
m50

`

~2m11!Pm~cosu!
hm~mr!

hm8 ~m!
, r.1.

~8!

This ‘‘head-related transfer function’’H relates the pressur
that would be present at the center of the sphere in free fi
to the pressure that is actually developed at the surface o
sphere.2 The inverse Fourier transform ofH is the normal-
ized ‘‘head-related impulse response’’h @which should not
be confused with them th-order spherical Hankel function
hm in Eq. ~8!#.

B. Limiting cases

The behavior of the transfer function as the normaliz
ranger becomes arbitrarily large can be obtained by us
the asymptotic formula~see Morse and Ingard, 1968, Cha
7.2!

hm~x!5 j m~x!1 inm~x!→
ei ~x2 @~m11!/2# p!

x
. ~9!

This leads to

H~`,m,u!5
1

m2 (
m50

`
~2 i !m21~2m11!Pm~cosu!

hm8 ~m!
,

~10!

which is Rayleigh’s solution for an infinitely distant sourc
The low-frequency behavior can be obtained from the fi
two terms in this series, which leads to the well-known res

H~`,m,u!'12 i 3
2 m cosu. ~11!

Thus, at low frequencies, the magnitude ofH is essentially

unity, and the phase angle is approximately2 3
2 m cosu,

which corresponds to a group delay of2 3
2 a cosu/c ~Kuhn,

1977!.
Since both Eqs.~8! and ~10! converge more and mor

slowly as m increases, the high-frequency behavior is le
obvious. Kuhn~1977! obtained the high-frequency solutio
by employing an alternative ‘‘creeping wave’’ expansio
3049uda and W. L. Martens: Range dependence for a head model
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For the special case of normal incidence (u50 degrees!, one
can argue on physical grounds that when the wavelengt
small compared to the radius of the sphere, the solution m
reduce to that of a plane wave normally incident on a ri
plane surface, where the pressure at the surface beco
twice the free-field pressure. Thus,

uH~`,`,0!u52. ~12!

These special case results serve to define interesting limi
the general solution.

II. BEHAVIOR OF THE THEORETICAL SOLUTION

A. Frequency response—distant range

In general, one must use numerical methods to evalu
the transfer functionH(r,m,u) for arbitrary values ofr, m
and u. Bauck and Cooper~1980! developed a simple bu
effective algorithm for evaluating the solution for an in
nitely distant source. Formulas extending their algorithm
the general case of arbitrary range are given in Appendix
and a pseudocode implementation of the resulting algori
is given in Appendix B. This implementation was used
investigate the behavior of the transfer function computati
ally.

Consider first the well-known results for an infinite
distant source~Strutt, 1904!. Figure 1 shows a polar plot o
uH(`,m,u)u as a function of the angle of incidence for se
eral different frequencies. As Eq.~11! requires, the respons
at low frequencies is not directionally dependent, w
uH(`,m,u)u'1 until the normalized frequency nears unit
Above that frequency, the response around the front of
sphere begins to increase noticeably, and the resp
around most of the back decreases. However, the minim
response does not occur at the very back. Instead, the
back of the sphere exhibits the so-called ‘‘bright spo
which can be explained by arguing that all the waves pro
gating around the sphere arrive at that point in phase. At v
high frequencies, the bright-spot lobe becomes extrem
narrow, and the back of the sphere is effectively in a sou
shadow. By contrast, the pressure at the front of the sphe
doubled, in agreement with Eq.~12!.

Figure 2 shows this same information plotted on a
scale against normalized frequency for 37 different value
angle of incidence. All of the curves approach 0 dB at lo
frequencies. The top curve in Fig. 2 shows the 6-dB incre
or doubling in magnitude for frontal incidence at high fr

FIG. 1. Polar plots of the magnitude of the transfer function for an infinit
distant source. A bulge in the response starts to become distinct whe
normalized frequency is around 1, i.e., when the wavelength equals
circumference of the sphere. As the frequency increases, the response
front of the sphere approaches twice the free-field response. In addition
response on the shadowed side of the sphere becomes progressively s
except for the celebrated ‘‘bright spot’’ at the back of the sphere.
3050 J. Acoust. Soc. Am., Vol. 104, No. 5, November 1998 R. O. D
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quencies. The response is approximately 3 dB above
free-field value when the normalized frequency is uni
which supports the statement that the pointm51 separates
low from high frequencies. For the standard 8.75-cm he
radius~Hartley and Fry, 1921!, this corresponds to about 62
Hz. As the angle of incidence increases, this high-freque
rise changes to a high-frequency rolloff, with the maximu
attenuation occurring aroundu5150 degrees. The strong in
terference ripples in the response are visually striking.
contrast, the response at the back of the sphere stays
flat out to m'20 , which is another manifestation of th
bright spot.

B. Frequency response—range dependence

The responses at 0 and 150 degrees can be thought
providing rough bounds on the frequency response. Figu
shows that these bounds separate as the source appro

the
he
the
he
ller,

FIG. 2. Magnitude response for an infinitely distant source. Roughly spe
ing, the response is flat when the angle of incidence is around 100 deg
exhibits a 6-dB boost at high frequencies near the front of the sphere, a
except for the bright spot at the very back–falls off with frequency arou
the back of the sphere. Interference effects caused by waves propagat
various directions around the sphere introduce ripples in the response
are quite prominent on the shadowed side.

FIG. 3. Effect of range on the magnitude response.~The responses shown
are relative to the free-field pressure at the center of the sphere, so tha
general inverse range effect is not included.! These curves provide rough
bounds on the response at different angles of incidence, with the maxim
occurring atu50 degrees and the minimum aroundu5150 degrees. Note
that as the source approaches the sphere, the response increases on t
side and decreases on the far side. This results in the possibility of ha
large interaural level differences at low frequencies.
3050uda and W. L. Martens: Range dependence for a head model
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the sphere. The response on the near side increases an
response on the far side decreases for all frequencies. It i
surprising that the near-side response gets quite large a
source approaches the sphere, but somewhat less intuiti
see that the response on the far side drops below the
field response, even at low frequencies.

Another general characteristic is that the difference
tween the responses at low and high frequencies diminis
on the near side, but increases on the far side. For exam
when r51.25, the extra high-frequency rise at the front
the sphere, instead of being 6 dB, is only about 2 dB. Thi
consistent with the informal experience of a relative incre
in the low-frequency content of close sound sources.

These two effects combined imply that the low
frequency interaural level difference~ILD ! becomes even
further exaggerated as the source approaches one ea
Blauert~1997! points out, human ears are not located acr
a diameter, but are set back about 10 degrees. Figure~a!
shows the ILD for an infinitely distant source, assuming t
the ‘‘ears’’ are located atu56100 degrees. Note that th
ILD is quite small for normalized frequencies below unit
By contrast, whenr52, the low-frequency ILD exceeds 1
dB @see Fig. 4~b!#, and whenr51.25 it exceeds 20 dB@see
Fig. 4~c!#. Figure 5 shows that the ILD at an azimuth of 10

FIG. 4. The interaural level difference~ILD ! versus azimuth, assuming tha
the ears are located atu56100 degrees;~a! r5100, ~b! r52, ~c! r51.25.
The maximum low-frequency ILD is negligible for a distance source,
becomes quite large as the source approaches the sphere.
3051 J. Acoust. Soc. Am., Vol. 104, No. 5, November 1998 R. O. D
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degrees becomes very large asr approaches unity, even a
low frequencies. This development of a large ILD at lo
frequencies would seem to be a major cue indicating tha
sound source is very close.

C. Impulse response

While the phase response contains useful informat
about the temporal response, it is more illuminating to inv
the transfer functionH(r,m,u) and obtain the normalized
HRIR h(r,t,u):

h~r,t,u!5E
2`

`

H~r,m,u!e2 i2pmt dm, ~13!

wheret is the normalized time given by3

t5
ct

2pa
. ~14!

Figure 6 shows the results of evaluating this integral num
cally for the case of an infinitely distant source. Many fe
tures of the frequency response are reflected in the imp
response. For example, notice how the amplitude of the p
drops off and its width increases as the angle of incide

FIG. 6. The theoretical impulse response for an infinitely distant source.
overshoot for small angles of incidence corresponds to the 6-dB boos
high frequencies. As the angle of incidence increases, the pulse is de
and low-pass filtered by head shadow. Near the back, the effect of w
traveling around the other ‘‘side’’ of the sphere becomes more visible. T
is the source of the interference ripples in the magnitude response.
‘‘bright spot’’ emerges where the various waves arrive at the back of
sphere in phase.

t

FIG. 5. The ILD when the azimuth to the sound source is 100 degrees.
that very substantial low-frequency ILD’s occur as the source approac
the sphere.
3051uda and W. L. Martens: Range dependence for a head model
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increases, corresponding to the rolloff in response at h
frequencies. The overshoot~negative dip in response! that
appears for incidence angles below 90 degrees corresp
to the fact that high frequencies are boosted at those an

As the angle of incidence approaches 180 degrees,
bright spot becomes prominent in the HRIR. Moreover,
visual appearance of the graph strongly suggests that the
pulse ‘‘ridge’’ continues on through the bright spot. One c
interpret the overall response as being composed of
ridges, a lower ridge that is due to a wave propagat
around one ‘‘side’’ of the sphere, and an upper ridge tha
due to a wave propagating around the other ‘‘side,’’ with t
bright spot occurring where these two waves join and re
force one another. Of course, this is a very crude approxi
tion. In particular, adding just these two ridges does not
curately account for either the height of the bright spot or
nearby behavior. However, it explains why the response
incidence angles between 150 and 170 degrees contains
prominent pulses in the time domain, and it qualitative
explains the corresponding pattern of ripples in the f
quency domain at all incidence angles.

Figure 7 shows the HRIR forr51.25. As one would
expect from Fig. 3, as the source is brought closer to
sphere, the response becomes stronger on the near sid
weaker and broader on the far side. There is also a differe
in the arrival times. In particular, the difference between
rival at the near side and arrival at the far side is smalle
long ranges~Fig. 6! than at close range~Fig. 7!.

D. Time delay and minimum-phase reconstruction

There are several ways to define the arrival time o
pulse. While group delay is frequently employed, it is fr
quency dependent, being significantly greater at low frequ
cies than at high frequencies~Kuhn, 1977, 1987!. With ex-
perimentally measured data, it is convenient simply to
Dt0.15, the time at which the pulse first exceeds 15% of
maximum amplitude; this same definition is used to comp
the normalized arrival time forh(r,t,u), Dt5cDt0.15/2pa.

The open circles in Fig. 8 show how this normaliz
arrival time varies with the angle of incidence for two d
ferent normalized ranges,r51.25 andr5100. These two

FIG. 7. The theoretical impulse response for a source that is close to
surface of the sphere~r51.25!. The response drops quite rapidly with az
muth, and the maximum time delay is longer than in Fig. 6.
3052 J. Acoust. Soc. Am., Vol. 104, No. 5, November 1998 R. O. D
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curves are close to the curves forr51 andr5`, and thus
more or less bound the results at intermediate ranges. S
Dt is the~normalized! difference between the time of arriva
at the surface of the sphere and the free-field time of arr
at the center of the sphere, when the angle of incidenceu is
zero,Dt is negative and is independent of range. At larg
incidence angles,Dt becomes larger as the source a
proaches the sphere. In addition, the interaural time dif
ence ~ITD!, which can be computed fromDt(u1100
degrees)2Dt(u2100 degrees), also becomes larger as
source approaches the sphere.

A different method for measuring the time delay w
also investigated. Lethmp(r,t,u) be the minimum-phase re
construction ofh(r,t,u). It is well known that minimum-
phase reconstruction removes any linear-phase terms as
ated with pure time delay~Oppenheim and Schafer, 1989!.
Indeed, minimum-phase reconstructions are commonly u
to time-align impulse responses. Whenhmp(r,t,u) was
computed for many different values ofr andu, it was found
that, except for time shift, the results were essentially id
tical to h(r,t,u). The time delay was then computed b
maximizing the cross-correlation betweenhmp(r,t,u) and
h(r,t,u). The results were very close to the 15% rise-tim
results. An interesting byproduct of this investigation was
observation that the HRIR for an ideal sphere appears to
minimum phase for all ranges and incidence angles.

A well-known ray-tracing formula due to Woodwort
and Schlosberg~1962! can be extended to get useful approx
mate equations for the time delay and the ITD~Blauert,
1997, p. 76!. As Fig. 9 illustrates, there are two cases, one
which a ray from the source goes directly to the observat
point, and one in which the wave must travel from a point
tangency around the sphere to the observation point. If
speed of propagation is assumed to bec both in air and
around the surface, a simple geometrical argument sh
that the normalized time differenceDt between the time tha
the wave reaches the observation point and the time th
would reach the center of the sphere in free field is given

he

FIG. 8. The delay in arrival time relative to free-field arrival at the center
the sphere. The solid lines are from the Woodworth/Schlosberg ray-tra
formula. The open circles are computed from the theoretical solution as
first time that the impulse response exceeds 15% of its maximum valu
3052uda and W. L. Martens: Range dependence for a head model
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Dt5
cDt

2pa

5H 1

2p
~Ar222r cosu112r!, if 0<u<u0 ,

1

2p
~u2u01Ar2212r!, if u0<u<p,

~15!

where

u05sin21~1/r!, r>1. ~16!

The solid-line curves in Fig. 8 show the predictions of th
simple model forr 51, 1.25, and̀ . The agreement with the
15% rise time results is very good, with the maximum er
being 2.4% atu5170 degrees.

Finally, Fig. 10 shows bounds on the ITD comput
from Eqs.~15! and ~16! under the assumption that the ea
are located atu56100 degrees. The upper bound corr
sponds to a source at the surface of the sphere (r51), and
the lower bound corresponds to a source at infinity. Bring
the source closer to the sphere increases the ITD, the m
mum increase being 25.7%~0.0908 normalized units, corre
sponding to 146ms for the 8.75-cm standard head radiu!.
Brungart and Rabinowitz~1996! obtained essentially the

FIG. 9. Geometry for the Woodworth/Schlosberg formula. The wave
assumed to travel with a constant velocityc, whether the distance is th
straight line distanced1 from the source to the observation point, or the su
of distanced1 from the source to a point of tangency and the distanced2

around the sphere to the observation point.

FIG. 10. Bounds on the normalized interaural time difference compu
from the Woodworth/Schlosberg formula, assuming that the ears are loc
at u56100°. In general, the ITD is not very sensitive to range.
3053 J. Acoust. Soc. Am., Vol. 104, No. 5, November 1998 R. O. D
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same results using the phase delay. They pointed out
humans are insensitive to time delays above 700ms, and the
results shown here support their conjecture that change
the ITD probably do not provide significant informatio
about range.

III. EXPERIMENTAL MEASUREMENTS

The theoretical results presented above are based o
sumptions that cannot be met by any physically realiza
system~such as the assumption of an ideal point sourc!.
Nonetheless, the validity of the basic theory is well esta
lished. Although the results of a number of experimen
studies of the diffraction of sound by a sphere are reporte
the literature, acoustical measurements showing the ra
dependence of the ILD and ITD were not available. Furth
more, modern techniques for measuring acoustic tran
functions provide a significant improvement over prior tec
niques, especially in terms of their sensitivity to noise. The
considerations led to the following experimental study.

A. Procedure

The response at the surface of a sphere was meas
using the same DSP-based techniques currently being
ployed for measuring human HRTFs. The measureme
were made with the Snapshot™ system manufactured
Crystal River Engineering. For each response measurem
this system generated two computer-generated sequenc
pseudo-random noise signals called Golay codes. These
nals were used to drive a 6.4-cm-diam Bose Acoustimas
loudspeaker. Signals picked up by the pair of blocke
meatus microphones~typically inserted in the subject’s ea
canals! were digitized at 44.1 kHz. Snapshot’s oneshot fun
tion was used to recover the impulse responses without
ditional compensation or normalization. A record length
256 samples corresponded to about 5.8 ms and provid
frequency resolution of 172 Hz.

For this study, a single microphone was inserted in
hole drilled through an 3.6-kg, 10.9-cm radius~27-in. cir-
cumference! bowling ball. The ball was mounted on a 1.3
cm-diam vertical threaded rod rotated by a motor in 5 deg
increments. The ball was positioned in the center of a 535
33-m3 anechoic chamber at the University of California
Davis. The center of the ball was 1 m from the chambe
floor. Preliminary experiments revealed that the blocke
meatus microphone did not exhibit the expected 6-dB rise
high frequencies, presumably because its 9.5-mm diam
~which is a quarter of a wavelength at 9 kHz! was too large
relative to the wavelength. A comparison of the direction
variation in the response of the blocked-meatus microph
to that of an Etymotic Research ER-7C probe micropho
led to the conclusion that the former exhibited substan
reduction in its response at normal incidence. Thus,
blocked-meatus microphone was replaced by an ER
probe microphone. The ER-7C’s probe tube was 76 m
long, with a 0.95 mm o.d. and 0.5 mm i.d. The body of t
microphone was fully contained within the bowling ba
with the probe tip being flush with the bowling ball’s su
face.

s

d
ed
3053uda and W. L. Martens: Range dependence for a head model
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The loudspeaker, which was mounted on a microph
stand, was located at a distancer from the center of the ball
with the principal axis of the loudspeaker directed at
center of the ball. Measurements were made forr513.5, 16,
22, 33, 55, 109, and 218 cm, which corresponded tor51.25,
1.5, 2, 3, 5, 10, and 20, respectively. In addition, free-fi
measurements were made at each range to allow compe
tion for the loudspeaker and microphone transfer functio

B. Measured response

The experimental HRTF was free-field compensated
dividing the FFT of the measured impulse response by
FFT of the free-field response. To reduce the noise and ir
evant fine structure in the measurements, rms values w
obtained by smoothing the squared magnitude of the tran
function. A simple constant-Q filter with a Gaussian kern
whose standard deviation was 10% of its center freque
was employed. The resulting frequency response curves
distant source (r520) are shown in Fig. 11. Although ther
are discrepancies, these results are in general agreemen
the theoretical curves shown in Fig. 2. The low-frequen
response approaches 0 dB at all incidence angles. At no
incidence~u50 degrees!, the magnitude response increas
with frequency. The response is up about 3 dB atm51 and
6 dB at large values ofm. As the angle of incidence in
creases, the high-frequency response begins to drop off.
u5150 degrees, the response is down about 13 dB am
530, which agrees very well with the theory.

To facilitate comparisons between the theoretical a
measured responses, Fig. 12 shows both results for fou
vealing incidence angles—0, 90, 150, and 180 degrees. H
the theoretical curves are smoothed with the same aud
filter used to smooth the experimental data. Fig. 12~a! is for
r520, Fig. 12~b! for r55, and Fig. 12~c! for r52. The
results at other ranges are basically similar, and show a g
correspondence between theory and measurements. H
ever, forr51.25 andr51.5 we observed a strong reflectio
between the ball and the speaker in the vicinity of norm
incidence, which produced prominent notches in the

FIG. 11. Experimental measurement of the magnitude response f
10.9-cm radius bowling ball,r520 ~cf. Fig. 2!. The squared magnitude o
the transfer function was smoothed with an auditory filter having aQ of 10.
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degree curve. Physical sound sources are always spa
extended, and one expects the experimental results to de
from theory at close range.

There are two clear differences between the measu
and the theoretical results that appear in all of the ran
measured. The first is that there are discrepancies betw
the ripple patterns above 2 kHz. This is probably due
small angular errors, since the frequencies at which the
terference effects occur are quite sensitive to the angle
incidence. The second is a reduction in the measured h
frequency response atu5180 degrees, which reduces th
strength of the bright spot. This is also probably due to sm
alignment errors, plus the presence of the supporting rod,
exiting microphone cable, and other imperfections that d
turb the wave propagation from what would occur with
perfect sphere. These discrepancies could undoubtedly b

a

FIG. 12. Comparison between the theoretical and measured respons
four different angles of incidence.~a! r520, ~b! r55, ~c! r52. Forr,2, the
source is no longer well approximated by a point source.
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re
duced by more careful experimental techniques. Howe
extremely controlled conditions are not feasible for hum
HRTF measurements. Since human heads, necks and t
introduce much greater perturbations, it is not surprising t
phenomena such as bright spots that depend critically
geometry can be overlooked in human HRTF measureme

Figure 13 shows the HRIR obtained by inverse tra
forming the free-field-compensated HRTF forr520 and in-
terpolating by a factor of 4 to smooth the curves. Again,
results are basically similar to the theoretical predictions~cf.
Fig. 6!. The amplitude of the pulse drops off and broadens
the same way, and a bright spot in fact appears where
two ‘‘ridges’’ cross. The visually most prominent differenc
between experiment and theory appears in the fairly la
number of low-amplitude waves that follow the primary r
sponse. These are probably due to reflections cause
waves propagating through the interior of the bowling ba

Figure 14 shows the time delay computed from the
perimentally measured HRIR’s using the 15% rise-time d
nition for the casesr52 ~open circles! andr520 ~ 3’s!. As
in Fig. 8, the solid lines are computed using Woodworth a
Schlosberg’s approximate formula. Once again, this sim
formula provides a very good approximation.

IV. DISCUSSION

There is a long history of research on the diffraction
sound by a rigid sphere that dates back at least to the cl

FIG. 13. Experimental measurement of the impulse response for a 10.
radius bowling ball,r520 ~cf. Fig. 6!. The smaller waves following the
main pulse are probably due to reflections within the ball.

FIG. 14. Comparison of arrival times as measured from the impulse
sponse and calculated by Woodworth and Schlosberg’s formula.
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cal work by Lord Rayleigh~Strutt, 1904, 1945!. Hartley and
Fry ~1921! presented theoretical graphs showing the azim
and range dependence of the ILD and the interaural ph
difference~IPD!. They conjectured that the auditory syste
could determine both the azimuth and the range for
source of a pure tone from the ILD and the IPD taken joint
Wightman and Firestone~1930! tested this conjecture exper
mentally, and reported that people were unable to judge
distance to pure tones from this information. Similar failur
were later reported by Coleman~1962!. Without referring to
this earlier work, Hirsch~1968! used a simple inverse-squa
approximation to show that, in theory, the range to a sou
could be determined from the ratio of the interaural tim
difference to a percentage interaural intensity differen
Molino ~1973! refined Hirsch’s analysis, but again found th
human subjects were unable to distinguish five different a
plitude normalized sources at ranges of 3 to 38 ft when p
tones~1000 and 8000 Hz! were used.

It is now understood that such dry, narrow-band stim
usually do not produce images of auditory events that
heard as external to the listener’s head, and so distance j
ments will be particularly difficult for subjects to make. Th
issue of externalization is critically important to psych
physical studies of the apparent distance of stimuli presen
via headphones. Not only are wideband signals needed
good directional judgments, but the inclusion of indire
sound~reflections and/or reverberation! is also required for
the best externalization~Durlachet al., 1992!. Without psy-
chophysical studies of apparent distance employing adeq
stimuli, it is difficult to discuss further the importance of th
range dependence of the ILD and the IPD in human dista
perception.

Earlier work has also been done on comparing acou
cal measurements and diffraction theory. Wiener~1947! pro-
vided experimental verification of Rayleigh’s solution for a
infinitely distant source by measuring the pressure at the
face of a smoothly finished 9.7-cm-radius wooden sphere
an anechoic chamber. He used a probe microphone a
sinusoidal source located about 2 m from the center of the
sphere. While Wiener’s results exhibit considerable varia
ity and do not include range dependence, they do confirm
basic features of the theoretical solution. For the case o
infinitely distant source, Feddersenet al. ~1957! experimen-
tally confirmed the accuracy of Woodworth and Schlosber
formula for the ITD, and Kuhn~1977, 1987! used the phase
response to derive the ITD from Rayleigh’s solutio
Rabinowitzet al. ~1993! presented the range-dependent th
oretical solution. Brungart and Rabinowitz~1996! subse-
quently used this result to determine both the ILD and
ITD as functions of range, and observed that while the IL
varies strongly with range, the ITD is not very sensitive
range.

The results reported in this paper extend this ear
work by presenting an algorithm for computing both t
HRTF and the HRIR for any range and angle of inciden
and by confirming these results experimentally. The tim
domain results illuminate the somewhat puzzling charac
of the bright spot, and the ripples that appear in the f
quency response in the vicinity of the bright spot. Althou

m

-
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it is an oversimplification to say that these phenomena
due to two waves propagating around the two ‘‘sides’’ of t
sphere, this interpretation provides a simple and useful
approximation.

V. CONCLUSIONS

To summarize, both the theoretical and experimen
data confirm that the variation of low-frequency ILD wit
range is significant for ranges smaller than about five tim
the sphere radius. The impulse response provides direct
dence that the ITD is not a strong function of range. The ti
delay is well approximated by the well-known ray-tracin
formula due to Woodworth and Schlosberg. Finally, exc
for this time delay, the HRTF for the ideal sphere appear
be minimum phase, permitting exact recovery of the impu
response from the magnitude response in the frequency
main.
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APPENDIX A: RECURSION RELATIONS

The basis for the algorithm by Bauch and Cooper~1980!
is the following recursion relation for spherical Hankel fun
tions ~Morse and Ingard, 1968, Chap 7.2!:

hm~x!5
2m21

x
hm21~x!2hm22~x!, m52,3,. . . ,

~A1!

where

h0~x!5
eix

ix
and h1~x!52 i F 1

ix
2

1

~ ix !2Geix. ~A2!

The computation ofhm(x) can be significantly simplified by
defining an auxiliary functionQm(z) through the equation

hm~x!5QmS 1

ix D ~2 i !meix. ~A3!

It is not hard to show thatQm(z) satisfies the recursion equa
tion

Qm~z!52~2m21!zQm21~z!1Qm22~z!, m52,3,...,

~A4!
where

Q0~z!5z and Q1~z!5z2z2. ~A5!

Thus,Qm(z) is a simple polynomial inz that can easily be
computed recursively. Furthermore, by using the recurs
relation ~see Morse and Ingard, 1968, Chap 7.2!
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hm8 ~x!5
1

2m11
@mhm21~x!2~m11!hm11~x!#, ~A6!

one can employ Eqs.~A1! and ~A3! to obtain

hm8 ~x!5FQm21S 1

ix D2
m11

ix
QmS 1

ix D G~2 i !~m21!eix,

~A7!

where the casem51 can be included by definingQ21(z)
5z. Thus, the derivative of the spherical Hankel functi
can also be computed directly from theQ polynomials. In
addition, the Legendre polynomials can also be compu
recursively through

Pm~x!5
2m21

m
xPm21~x!2

m21

m
Pm22~x!, ~A8!

where

P0~x!51 and P1~x!5x. ~A9!

Finally, by combining Eqs.~7!, ~8!, ~A3!, and~A7!, we ob-
tain

H~r,m,u!5
r

im
e2 im (

m50

`

~2m11!Pm~cosu!

3
Qm~1/imr!

m11

im
QmS 1

im D2Qm21S 1

im D , r.1,

~A10!

where the complex polynomialsPm and Qm are computed
recursively through Eqs.~A4!, ~A5!, ~A8!, and~A9!. An al-
gorithm based on these relations that can be converted
rectly into a MATLAB® or a Mathematica™ program i
given in Appendix B.

APPENDIX B: THE HRTF ALGORITHM

The following pseudo-code defines an algorithm f
evaluating Eq.~A10!. It assumes that variables and expre
sions can have complex values. The first two terms in
series are explicitly computed, and the use of recursion st
with m53. Iteration stops when the fractional change fa
below a user-supplied threshold for two successive term
3056uda and W. L. Martens: Range dependence for a head model



function H 5 sphere(a, r, theta, f, c, threshold)
x 5 cos(theta);
mu 5 (2 * pi * f * a) / c;
rho 5 r / a;
i 5 sqrt(-1);
zr 5 1 / (i * mu * rho);
za 5 1 / (i * mu);
Qr2 5 zr;
Qr15 zr * (1 - zr);
Qa2 5 za;
Qa1 5 za * (1 - za);
P2 5 1;
P1 5 x;
sum 5 0;
term 5 zr / (za * (za - 1));
sum 5 sum 1 term;
term 5 (3 * x * zr * (zr - 1) ) / (za * (2 * zaˆ2 - 2 * za 1 1) );
sum 5 sum 1 term;
oldratio 5 1; newratio 5 abs(term)/abs(Sum);
m 5 2;
while (oldratio . threshold) or (newratio . threshold),

Qr 5 - (2 * m - 1) * zr * Qr1 1 Qr2;
Qa 5 - (2 * m - 1) * za * Qa1 1 Qa2;
P 5 ( (2 * m - 1) * x * P1 - (m - 1) * P2) / m;
term 5 ( (2 * m 1 1) * P * Qr) / ( (m 1 1) * za * Qa - Qa1);
sum 5 sum 1 term;
m 5 m 1 1;
Qr2 5 Qr1; Qr15 Qr; Qa2 5 Qa1; Qa1 5 Qa; P2 5 P1; P1 5 P;
oldratio 5 newratio; newratio 5 abs(term)/abs(Sum);

end while ;
H 5 (rho * exp(- i * mu) * Sum) / (i * mu);

end function ;
i

at
re
ly

n

tio
se

of

-

a-

.,

n-

i-

to

ec-
1See Morse and Ingard~1968, Chap 7!. Because we useei (kr2vt) instead of
ei (vt2kr) to represent a traveling wave, our formulas agree with those
Morse and Ingard~1968! and in Bauck and Cooper~1980!, but are the
complex conjugates of the formulas in Kuhn~1977! and in Rabinowitz
et al. ~1993!.

2The classical HRTF relates the pressure at the source to the pressure
head. While the pressure at an ideal point source is infinite, the pressup«

at a small sphere of radiusr « surrounding the source is approximate
@(2 ivr0Sv)/(4pr «)#eivt. The transfer functionH« from this small sphere
to the diffracting sphere is given by

H«5
ps

p«
5

ps

pf f

pf f

p«
5H

r«

r
eikr5H

r«

r
eiv~r/c!.

In the time domain, the phase factoreiv(r /c) corresponds to the propagatio
delay of r /c. Thus, except for the uninteresting constant scale factorr « ,
one can useH to find the classical HRTFH« merely by adding the effects
of propagation delay and dividing by the range.

3It should be noted that the time scaling of the impulse response func
also leads to amplitude scaling. Thus, the unnormalized impulse respon

given by ĥ(r ,t,u)5(c/2pa)h(r /a,ct/2pa,u). This amplitude scaling
guarantees that the area under the impulse response is the dc value
transfer function.
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