Range dependence of the response of a spherical head model
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The head-related transfer functi@dRTF) varies with range as well as with azimuth and elevation.

To better understand its close-range behavior, a theoretical and experimental investigation of the
HRTF for an ideal rigid sphere was performed. An algorithm was developed for computing the
variation in sound pressure at the surface of the sphere as a function of direction and range to the
sound source. The impulse response was also measured experimentally. The results may be
summarized as follows. First, the experimental measurements were in close agreement with the
theoretical solution. Second, the variation of low-frequency interaural level difference with range is
significant for ranges smaller than about five times the sphere radius. Third, the impulse response
reveals the source of the ripples observed in the magnitude response, and provides direct evidence
that the interaural time difference is not a strong function of range. Fourth, the time delay is well
approximated by well-known ray-tracing formula due to Woodworth and Schlosberg. Finally,
except for this time delay, the HRTF for the ideal sphere appears to be minimum-phase, permitting
exact recovery of the impulse response from the magnitude response in the frequency domain.
© 1998 Acoustical Society of Amerid&80001-496808)00111-§

PACS numbers: 43.66.Qp, 43.66.Pn 43.20.RRID]

LIST OF SYMBOLS P, Legendre polynomial of degree
a  radius of the spherém) Q. mth-order modified spherical Hankel function
c ambient speed of soun@/s) r distance from the center of the sphere to the so(mge
f frequency(Hz) r. radius of a small sphere surrounding the source
h head-related impulse response S, magnitude of flow from an ideal point sourca®/s)
h, mth-order spherical Hankel function t  time(s
h;, the derivative ofh,, with respect to its argument At time between arrival at observation point and sphere
H  head-related transfer function relative to free field center(s)
H, head-related transfer function relative to source A7 normalizedAt
i J-1 6  angle of incidencdrad)
im mth-order spherical Bessel function 0y angle for tangent incidenagad)
k acoustic wave numbéfm) A wavelength(m)
n, mth-order spherical Neumann function p normalized frequency
ps; free-field pressure at the center of the sph&mEn?) p normalized distance to the source
ps pressure on the surface of the sphég/n?) po density of air(kg/m®)
p. pressure at a small sphere surrounding the source normalized time
(kg/m?) o radian frequencyrad/9
INTRODUCTION fore, the investigation reported in this paper included the

numerical evaluation of a theoretical model, the collection of
This paper is concerned with the range dependence Ggjated acoustical measurement data, and the comparison of
the response of an ideal rigid sphere to a point sound SOUrC@e theoretical solution to the experimental results.
The purpose of this study was to gain a better understanding A classical spherical model of the human head was cho-
of the behavior of _the head-related transfer funcﬁHRTF} sen for this investigation for the traditional reasons—its re-
at close range. It is hoped that these results will serve as a

guide to those engaged in the study of human HRTFs, inSPonse can be analyzed mathematically, and the theoretical

cluding their measurement and analysis, and to those effolution can be evaluated numerically. Even though this
gaged in creating spatial sound stimuli by convolving audigmodel is quite idealized, it exhibits features similar to those
signals with these HRTFs. Given the paucity of experimentaPPserved in the close-range behavior of the human HRTF.
measurements of HRTF variation at close range, it seemeldor example, sounds from a source that is very close to one’s
particularly important to have a foundation upon which toear are not only louder but also contain relatively more low-
base further acoustical studies of this spatial region. Therdrequency energy than do sounds from a distant source. The
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simplest model that explains these effects approximates thacidence corresponds #=0°. It is conventional to use the
human head by a rigid sphere of the same average radius atithe 27a/c that it takes for a wave to travel once around the
approximates the sound impinging on the sphere as if it wersphere to define the normalized frequency

generated by a point source. While this idealization is re- oma

stricted to relatively low frequencies and obviously becomes  , =ka=f—. (4
problematic very close to the surface of the head, a quanti- N

tative understanding of its behavior provides insight into theDefine the normalized distance to the soupcky

more complex behavior of the HRTF for an actual human

head. — r (5)

To compute the response at the surface of the sphere for P a
a sound source located at an arbitrary distance from the sugnq define the transfer functidt by
face of the sphere, a modification was made to an algorithm
for computing the classical solution for a source infinitely far H= Ps ©6)
from the sphere. The behavior of the solution was examined Pt
in both the frequency domaitthe HRTH and the time do- Then
main (the head-related impulse response, or HRIRhe

time-domain solution provides insight into some otherwise P
H H H(prlu’ve):__e MP’\I/, (7)
puzzling behavior of the HRTF. The adequacy and accuracy o
of the model were confirmed by comparing the numerical h
results with the results of a corresponding series of impuls¥V ere
response measurements made using an actual physical * hm(ep)
sphere. V(p.p6)= 2 (2m+1)Py(cosf) 7=, p>1.
m=0 m( )
8
|. THE THEORETICAL SOLUTION This “head-related transfer functionH relates the pressure

that would be present at the center of the sphere in free field

to the pressure that is actually developed at the surface of the
The frequency-domain solution for the diffraction of an sphere? The inverse Fourier transform of is the normal-

acoustic wave by a rigid sphere, which is presented in manized “head-related impulse respons&’[which should not

textbooks, was obtained by Lord Rayleigh at the end of thée confused with then th-order spherical Hankel function

19th century(Strutt, 1904, 1945 If the flow for a complex h,, in Eq. (8)].

sinusoidal point source is of the for®,e '“! , then the

free-field pressure at a distancéom the source is given by B, Limiting cases

A. Expansion in spherical harmonics

PoS, i(kr—wt) The behavior of the transfer function as the normalized
—e , 1) - . .
4arr rangep becomes arbitrarily large can be obtained by using

wherek=w/c.! Because multiplication by-iw in the fre- the asymptotic formuldsee Morse and Ingard, 1968, Chap.

guency domain is equivalent to differentiation in the time7'2)
domain, this implies that if the flow is a unit step function, _ _ gl (X~ [(m+1)/2] m)
the free-field pressure is a Dirac impulse wave whose — Nm(X)=Jm(X)+iNm(X)— ————. ©
strength varies inversely with the distance to the source. ,
The presence of the sphere diffracts the sound wave an§iS léads to

pff(r,w,t)= —iw

modifies the pressure field. Most authors give only Ray- 1 2 (=)™ Y{2m+1)P,(cos 6)
leigh’s solution for the case where the source is infinitely H(oo,u,0)=— E N () ,
distant from the center of the sphere. Rabinowgtzal. K- m=0 ml 14

(1993 present the solution for the pressure on the surface of (10
the sphere due to a sinusoidal point source at any range Which is Rayleigh’s solution for an infinitely distant source.
greater than the sphere radias With minor notational The low-frequency behavior can be obtained from the first

changes, their solution can be written as two terms in this series, which leads to the well-known result
ipoCS, ‘ H(oo,p,0)~1—i 3 6. 11
ps(l’,a,w,ﬁ,t)= ZO > \l,e—lwt' (2) (OO M ) | ZMCOS ( )
ma Thus, at low frequencies, the magnitudetbfis essentially
whereV is the infinite series expansion unity, and the phase angle is approximatelys u coss,
* hy(kr) which corresponds to a group delay of2a cosélc (Kuhn,
VT=> (2m+1)P,,(coSH) ———, r>a. (3  1977.
m=0 h(ka)

Since both Eqs(8) and (10) converge more and more
Here 0 is the angle of incidence, the angle between the rayglowly asu increases, the high-frequency behavior is less
from the center of the sphere to the source and the ray to thebvious. Kuhn(1977) obtained the high-frequency solution
measurement point on the surface of the sphere, and normby employing an alternative “creeping wave” expansion.
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FIG. 1. Polar plots of the magnitude of the transfer function for an infinitely §_ 10
distant source. A bulge in the response starts to become distinct when the ar
normalized frequency is around 1, i.e., when the wavelength equals the T 45
circumference of the sphere. As the frequency increases, the response at the
front of the sphere approaches twice the free-field response. In addition, the 20
response on the shadowed side of the sphere becomes progressively smaller, [
except for the celebrated “bright spot” at the back of the sphere. 25 Y
0.1 100

1 10
Normalized frequency, | Znfa
For the special case of normal inciden&=0 degreek one ¢
can argue on physical grounds that when the wavelength isG. 2. Magnitude response for an infinitely distant source. Roughly speak-
small compared to the radius of the sphere, the solution mustg, the response is flat when the angle of incidence is around 100 degrees,
reduce to that of a plane wave normally incident on a rigidexhibits a 6-dB boost at high frequencies near the front of the sphere, and—

| f h h h £ b except for the bright spot at the very back—falls off with frequency around
plane surface, where the pressure at the surface €COMER pack of the sphere. Interference effects caused by waves propagating in

twice the free-field pressure. Thus, various directions around the sphere introduce ripples in the response that

are quite prominent on the shadowed side.
[H(o,,0)[=2. (12)

These special case results serve to define interesting limits @fuencies. The response is approximately 3 dB above the

the general solution. free-field value when the normalized frequency is unity,
which supports the statement that the pqintl separates
low from high frequencies. For the standard 8.75-cm head

Il. BEHAVIOR OF THE THEORETICAL SOLUTION . .

. radius(Hartley and Fry, 19211 this corresponds to about 625
A. Frequency response—distant range Hz. As the angle of incidence increases, this high-frequency

In general, one must use numerical methods to evaluatéSe changes to a high-frequency rolloff, with the maximum
the transfer functioH (p, u, 8) for arbitrary values op, u attenuation occurring aroung= 150 degree_s. The str_ong in-
and 6. Bauck and Coopef1980 developed a simple but terference ripples in the response are visually striking. By_
effective algorithm for evaluating the solution for an infi- cOntrast, the response at the back of the sphere stays quite
nitely distant source. Formulas extending their algorithm toflat out to u~20 , which is another manifestation of the
the general case of arbitrary range are given in Appendix APright spot.
and a pseudocode implementation of the resulting algorithm
is given in Appendix B. This implementation was used t0B. Frequency response—range dependence

investigate the behavior of the transfer function computation-
ally. The responses at 0 and 150 degrees can be thought of as

Consider first the well-known results for an infinitely providing rough bounds on the frequency response. Figure 3
distant sourcdStrutt, 1904. Figure 1 shows a polar plot of shows that these bounds separate as the source approaches

|[H(e,u,0)| as a function of the angle of incidence for sev-

eral different frequencies. As E(L1) requires, the response 6=0°

. . . . . p=125
at low frequencies is not directionally dependent, with p=15
[H (o, u,8)|~1 until the normalized frequency nears unity. -8:3
Above that frequency, the response around the front of the _B:i,

sphere begins to increase noticeably, and the response
around most of the back decreases. However, the minimum
response does not occur at the very back. Instead, the very
back of the sphere exhibits the so-called “bright spot,”
which can be explained by arguing that all the waves propa-
gating around the sphere arrive at that point in phase. At very
high frequencies, the bright-spot lobe becomes extremely -50 ‘ :
narrow, and the back of the sphere is effectively in a sound 01 ! p= 2nfa 10

- c

shadow. .By contrast, the _pressure at the front of the sphere ﬁG. 3. Effect of range on the magnitude respon@ée responses shown
doubled, in agreement with E¢L2). are relative to the free-field pressure at the center of the sphere, so that the

Figure 2 shows this same information plotted on a dBgeneral inverse range effect is not includethese curves provide rough
scale against normalized frequency for 37 different values obound_s on the response at different gqgles of incidence, with the maximum
angle of incidence. All of the curves approach 0 dB at loweceuring at6=0 degrees and the minimum aroufieg-150 Fiegrees. Note

. . . . that as the source approaches the sphere, the response increases on the near

frequencies. The top curve in Fig. 2 shows the 6-dB increasgge and decreases on the far side. This results in the possibility of having

or doubling in magnitude for frontal incidence at high fre- large interaural level differences at low frequencies.
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FIG. 4. The interaural level differen¢d.D) versus azimuth, assuming that
the ears are located @t=*100 degrees(a) p=100, (b) p=2, (c) p=1.25.
The maximum low-frequency ILD is negligible for a distance source, but
becomes quite large as the source approaches the sphere.

ILD (dB
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FIG. 5. The ILD when the azimuth to the sound source is 100 degrees. Note
that very substantial low-frequency ILD’s occur as the source approaches
the sphere.

degrees becomes very large @approaches unity, even at
low frequencies. This development of a large ILD at low
frequencies would seem to be a major cue indicating that a
sound source is very close.

C. Impulse response

While the phase response contains useful information
about the temporal response, it is more illuminating to invert
the transfer functiorH(p,u«,6) and obtain the normalized
HRIR h(p,,6):

h(p,r,a)=fimp,u,e)e—‘?w du, 13

where 7 is the normalized time given By

= ct 14
™ 2ma (14

the sphere. The response on the near side increases and Hjgyre 6 shows the results of evaluating this integral numeri-
response on the far side decreases for all frequencies. Itis ngjly for the case of an infinitely distant source. Many fea-
surprising that the near-side response gets quite large as figes of the frequency response are reflected in the impulse
source approaches the sphere, but somewhat less intuitive f@sponse. For example, notice how the amplitude of the pulse
see that the response on the far side drops below the fregrops off and its width increases as the angle of incidence
field response, even at low frequencies.
Another general characteristic is that the difference be-
tween the responses at low and high frequencies diminishes
on the near side, but increases on the far side. For example,
when p=1.25, the extra high-frequency rise at the front of
the sphere, instead of being 6 dB, is only about 2 dB. This is
consistent with the informal experience of a relative increase
in the low-frequency content of close sound sources.

These two effects combined imply that the low-
frequency interaural level differenc@LD) becomes even

Angle of incidence

——— 0°

further exaggerated as the source approaches one ear. As 0 0.1 0203 04 05 06 0.7 ot
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T=

Blauert(1997 points out, human ears are not located across 2na
a diameter, but are set back about 10 degrees. Figwe 4
shows the ILD for an infinitely distant source, assuming th
the “ears” are located a¥==100 degrees. Note that the high frequencies. As the angle of incidence increases, the pulse is delayed
ILD is quite small for normalized frequencies below unity. and low-pass filtered by head shadow. Near the back, the effect of waves
By contrast, whemp=2, the low-frequency ILD exceeds 10
dB [see Fig. 4b)], and whenp=1.25 it exceeds 20 dBsee

Fig. 4(c)]. Figure 5 shows that the ILD at an azimuth of 100 sphere in phase.

FIG. 6. The theoretical impulse response for an infinitely distant source. The
@lyvershoot for small angles of incidence corresponds to the 6-dB boost of

traveling around the other “side” of the sphere becomes more visible. This
is the source of the interference ripples in the magnitude response. The
“bright spot” emerges where the various waves arrive at the back of the

R. O. Duda and W. L. Martens: Range dependence for a head model 3051



increases, corresponding to the rolloff in response at high

frequencies. The oversho@begative dip in respongdhat
appears for incidence angles below 90 degrees correspon

to the fact that high frequencies are boosted at those angles.
As the angle of incidence approaches 180 degrees, the

bright spot becomes prominent in the HRIR. Moreover, the

visual appearance of the graph strongly suggests that the im-

pulse “ridge” continues on through the bright spot. One can

interpret the overall response as being composed of two
ridges, a lower ridge that is due to a wave propagating
around one “side” of the sphere, and an upper ridge that is

due to a wave propagating around the other “side,” with the

bright spot occurring where these two waves join and rein-

ds

-0.2

20 40 60 80 100 120 140 160 180
Angle of incidence, 8 (deg)

0

force one another. Of course, this is a very crude approxima-

tion. In particular, adding just these two ridges does not ac

FIG. 8. The delay in arrival time relative to free-field arrival at the center of

the sphere. The solid lines are from the Woodworth/Schlosberg ray-tracing

curately account for either the height of the bright spot or thgormula. The open circles are computed from the theoretical solution as the
nearby behavior. However, it explains why the response fofirst time that the impulse response exceeds 15% of its maximum value.

incidence angles between 150 and 170 degrees contains two

prominent pulses in the time domain, and it qualitatively

explains the corresponding pattern of ripples in the frecurves are close to the curves for=1 andp=~, and thus

guency domain at all incidence angles.
Figure 7 shows the HRIR fop=1.25. As one would

more or less bound the results at intermediate ranges. Since
A7 is the(normalized difference between the time of arrival

expect from Fig. 3, as the source is brought closer to they the surface of the sphere and the free-field time of arrival
sphere, the response becomes stronger on the near side ajqne center of the sphere, when the angle of incidenise
weaker and broader on the far side. There is also a differenc;ero A7 is negative and is independent of range. At larger

in the arrival times. In particular, the difference between ar-

rival at the near side and arrival at the far side is smaller a
long rangegFig. 6) than at close rangé-ig. 7).

D. Time delay and minimum-phase reconstruction

|tncidence anglesA7 becomes larger as the source ap-
proaches the sphere. In addition, the interaural time differ-
ence (ITD), which can be computed from\7(6-+100
degreesy} A7(6—100 degrees), also becomes larger as the
source approaches the sphere.

A different method for measuring the time delay was

also investigated. Ldt,,(p,7,6) be the minimum-phase re-

There are several ways to define the arrival time of aconstruction ofh(p,,6). It is well known that minimum-

pulse. While group delay is frequently employed, it is fre-

phase reconstruction removes any linear-phase terms associ-

quency dependent, being significantly greater at low frequengted with pure time delayOppenheim and Schafer, 1989

cies than at high frequenci€ékuhn, 1977, 198y With ex-

perimentally measured data, it is convenient simply to usg, time-align impulse responses. Whén,

At 15, the time at which the pulse first exceeds 15% of its
maximum amplitude; this same definition is used to comput
the normalized arrival time fan(p,7,6), A7=cAty427a.
The open circles in Fig. 8 show how this normalized
arrival time varies with the angle of incidence for two dif-
ferent normalized rangeg,=1.25 andp=100. These two

Angle of incidence

0 010203040506 07
T“ora

ct

Indeed, minimum-phase reconstructions are commonly used
o(p,7,0) was
computed for many different values pfand 4, it was found

?hat, except for time shift, the results were essentially iden-
tical to h(p,r,6). The time delay was then computed by

maximizing the cross-correlation betweén,(p,7,6) and
h(p,r,6). The results were very close to the 15% rise-time
results. An interesting byproduct of this investigation was the
observation that the HRIR for an ideal sphere appears to be
minimum phase for all ranges and incidence angles.

A well-known ray-tracing formula due to Woodworth
and Schlosber@l962 can be extended to get useful approxi-
mate equations for the time delay and the ITBlauert,
1997, p. 76. As Fig. 9 illustrates, there are two cases, one in

which a ray from the source goes directly to the observation

point, and one in which the wave must travel from a point of

tangency around the sphere to the observation point. If the

speed of propagation is assumed to déoth in air and
around the surface, a simple geometrical argument shows

that the normalized time differencer between the time that

FIG. 7. The theoretical impulse response for a source that is close to th
surface of the spher@=1.25. The response drops quite rapidly with azi-
muth, and the maximum time delay is longer than in Fig. 6.
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fhe wave reaches the observation point and the time that it
would reach the center of the sphere in free field is given by
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_Source Source same results using the phase delay. They pointed out that
humans are insensitive to time delays above #80and the

results shown here support their conjecture that changes in

the ITD probably do not provide significant information

r)d d about range.

Observation
6 R point

a

Ill. EXPERIMENTAL MEASUREMENTS

d The theoretical results presented above are based on as-

cos 8y =a/r =1/ Observation sumptions that cannot be met by any physically realizable
e Ir—e — point system(such as the assumption of an ideal point source
dp=drirat-2racod dyrdy =/r-a” 4 a0-8) Nonetheless, the validity of the basic theory is well estab-

FIG. 9. Geometry for the Woodworth/Schlosberg formula. The wave is“She.d' AlthouQ_h the. results of a number of expenmenta]
assumed to travel with a constant velocitywhether the distance is the Studies of the diffraction of sound by a sphere are reported in
straight line distance, from the source to the observation point, or the sum the literature, acoustical measurements showing the range
of distanced, from the source to a point of tangency and the distaice dependence of the ILD and ITD were not available. Further-
around the sphere to the observation point. . . .
more, modern techniques for measuring acoustic transfer
functions provide a significant improvement over prior tech-
CAt nigues, especially in terms of their sensitivity to noise. These

Ar= >ma considerations led to the following experimental study.

1 :
>-(p’=2p cosb+1-p), if O=6=6p, A. Procedure

= The response at the surface of a sphere was measured
%(9_ fo+ m_ p), if By=<b<m, using the same DS_P-based techniques currently being em-
ployed for measuring human HRTFs. The measurements
(15 were made with the Snapshot™ system manufactured by
Crystal River Engineering. For each response measurement,
this system generated two computer-generated sequences of
Op=sin"Y(1lp), p=1. (16)  pseudo-random noise signals called Golay codes. These sig-
nals were used to drive a 6.4-cm-diam Bose Acoustimass™
loudspeaker. Signals picked up by the pair of blocked-
meatus microphonefypically inserted in the subject’s ear
canal$ were digitized at 44.1 kHz. Snapshot’s oneshot func-
tion was used to recover the impulse responses without ad-
ditional compensation or normalization. A record length of
256 samples corresponded to about 5.8 ms and provides a

where

The solid-line curves in Fig. 8 show the predictions of this
simple model fopp =1, 1.25, ande. The agreement with the
15% rise time results is very good, with the maximum error
being 2.4% at#=170 degrees.

Finally, Fig. 10 shows bounds on the ITD computed
from Eqgs.(15) and(16) under the assumption that the ears
are Igcated at)=+100 r:degretfes. Thfe huppe:] bound C%rre'frequency resolution of 172 Hz.
sponds to a source at the surface of the spharel), an For this study, a single microphone was inserted in a

the lower bound corresponds to a source at infinity. Bringing, . 1104 throuah an 3.6-ka. 10 9-cm radi(@7-in. cir-
the source closer to the sphere increases the ITD, the maxi- 19 -0°Kg, 25 '
mum increase being 25.7%9.0908 normalized units, corre- cumferencg bowling ball. The ball was mounted on a 1.3-

. g 29. 7% ', cm-diam vertical threaded rod rotated by a motor in 5 degree
sponding to 146us for the 8.75-cm standard head radius

. X . . increments. The ball was positioned in the center ofxb5
Brungart and Rabinowit2199§ obtained essentially the x3-m?® anechoic chamber at the University of California at

Davis. The center of the ball wal m from the chamber

05 ' floor. Preliminary experiments revealed that the blocked-
meatus microphone did not exhibit the expected 6-dB rise at
0.4 p=1 high frequencies, presumably because its 9.5-mm diameter
I (which is a quarter of a wavelength at 9 kHazas too large

alwe 0.3 p=oo relative to the wavelength. A comparison of the directional
[f,c'f. I variation in the response of the blocked-meatus microphone
0.2 to that of an Etymotic Research ER-7C probe microphone

I led to the conclusion that the former exhibited substantial

01y reduction in its response at normal incidence. Thus, the
blocked-meatus microphone was replaced by an ER-7C

0 0 20 40 60 80 100 120 140 160 180 probe microphone. The ER-7C’s probe tube was 76 mm

Azimuth (deg) long, with a 0.95 mm o.d. and 0.5 mm i.d. The body of the

FIG. 10. Bounds on the normalized interaural time difference computean’]_l(:mphOne was fu"y contained within the bOW“ng ball,

from the Woodworth/Schlosberg formula, assuming that the ears are locatéith the probe tip being flush with the bowling ball’'s sur-
at 6= =*100°. In general, the ITD is not very sensitive to range. face.
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FIG. 11. Experimental measurement of the magnitude response for a g
10.9-cm radius bowling ballp=20 (cf. Fig. 2. The squared magnitude of : 57
the transfer function was smoothed with an auditory filter haviggyat 10. 2ol
o
® g5
The loudspeaker, which was mounted on a microphone T ol
stand, was located at a distarrcBom the center of the ball,
with the principal axis of the loudspeaker directed at the 57
center of the ball. Measurements were maderfot3.5, 16, -20¢ Y
22, 33, 55, 109, and 218 cm, which correspondegl=+d..25, _25_1(')0 000 : 10'000 Hz)
1.5, 2, 3, 5, 10, and 20, respectively. In addition, free-field 0.1 1 10u_@ 100
measurements were made at each range to allow compensa- c
tion for the loudspeaker and microphone transfer functions. 15
_ 10}
m
B. Measured response 25,
(]
The experimental HRTF was free-field compensated by é’ 0r
dividing the FFT of the measured impulse response by the (¢) §_5 I
FFT of the free-field response. To reduce the noise and irrel- 1-10»
evant fine structure in the measurements, rms values were
obtained by smoothing the squared magnitude of the transfer 157
function. A simple constant-Q filter with a Gaussian kernel 200 b5
whose standard deviation was 10% of its center frequency 25
was employed. The resulting frequency response curves for a 0.1 _2nfa
distant sourced=20) are shown in Fig. 11. Although there c

are discrepancies, these results are in general agreement Wﬂi'& 12. Comparison between the theoretical and measured responses at
the theoretical curves shown in Fig. 2. The low-frequencyfour different angles of incidencéa) p=20, (b) p=5, (c) p=2. Forp<2, the
response approaches 0 dB at all incidence angles. At normagurce is no longer well approximated by a point source.
incidence(#=0 degreep the magnitude response increases
with frequency. The response is up about 3 dBwatl and degree curve. Physical sound sources are always spatially
6 dB at large values o. As the angle of incidence in- extended, and one expects the experimental results to depart
creases, the high-frequency response begins to drop off. Ffmom theory at close range.
0=150 degrees, the response is down about 13 di at There are two clear differences between the measured
=30, which agrees very well with the theory. and the theoretical results that appear in all of the ranges
To facilitate comparisons between the theoretical andneasured. The first is that there are discrepancies between
measured responses, Fig. 12 shows both results for four réhe ripple patterns above 2 kHz. This is probably due to
vealing incidence angles—O0, 90, 150, and 180 degrees. Hesmall angular errors, since the frequencies at which the in-
the theoretical curves are smoothed with the same auditorierference effects occur are quite sensitive to the angle of
filter used to smooth the experimental data. Figal® for  incidence. The second is a reduction in the measured high-
p=20, Fig. 12Zb) for p=5, and Fig. 1&) for p=2. The frequency response a&=180 degrees, which reduces the
results at other ranges are basically similar, and show a goagtrength of the bright spot. This is also probably due to small
correspondence between theory and measurements. Hoatignment errors, plus the presence of the supporting rod, the
ever, forp=1.25 andp=1.5 we observed a strong reflection exiting microphone cable, and other imperfections that dis-
between the ball and the speaker in the vicinity of normalturb the wave propagation from what would occur with a
incidence, which produced prominent notches in the O-perfect sphere. These discrepancies could undoubtedly be re-
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cal work by Lord RayleighiStrutt, 1904, 1945 Hartley and
Fry (1921 presented theoretical graphs showing the azimuth

Angle of incidence )
and range dependence of the ILD and the interaural phase

3;20 difference(IPD). They conjectured that the auditory system
; could determine both the azimuth and the range for the
= 180° source of a pure tone from the ILD and the IPD taken jointly.
90° Wightman and Fireston@ 930 tested this conjecture experi-
‘\‘//—Z\“ mentally, and reported that people were unable to judge the
5 d1 2 030405 0607 distance to pure tones from this |nforma_1t|on. S|m|la_r failures
S A A - N were later reported by Colemdh962. Without referring to

2ma this earlier work, Hirsci{1968 used a simple inverse-square

FIG. 13. Experimental measurement of the impulse response for a 10.9-capproximation to show that, in theory, the range to a source
rad_ius bowling ball,p=20 (cf. Fig. 6). '_I'he smal_ler waves following the could be determined from the ratio of the interaural time
main pulse are probably due to reflections within the ball. difference to a percentage interaural intensity difference.
Molino (1973 refined Hirsch's analysis, but again found that
duced by more careful experimental techniques. Howevel,yman subjects were unable to distinguish five different am-

extremely controlled conditions are not feasible for humanyjityde normalized sources at ranges of 3 to 38 ft when pure
HRTF measurements. Since human heads, necks and torsgges(1000 and 8000 Hzwere used.

introduce much greater perturbations, it is not surprising that |t is now understood that such dry, narrow-band stimuli
phenomena such as bright spots that depend critically ofjsally do not produce images of auditory events that are
geometry can be overlooked in human HRTF measurementfearq as external to the listener’s head, and so distance judg-
Figure 13 shows the HRIR obtained by inverse transynents will be particularly difficult for subjects to make. The
forming the free-field-compensated HRTF for20 and in-  isq e of externalization is critically important to psycho-
terpolating by a factor of 4 to smooth the curves. Again, the,nysical studies of the apparent distance of stimuli presented
rgsults are baswglly similar to the theoretical predictitis _via headphones. Not only are wideband signals needed for
Fig. 6. The amplitude of the pulse drops off and broadens iy, girectional judgments, but the inclusion of indirect
the same way, and a bright spot in fact appears where thg, ,nqreflections and/or reverberatipis also required for
two “ridges” cross. The visually most prominent difference o gy externalizatiotDurlachet al, 1992. Without psy-
between experiment and theory appears in the fairly larg@y,,qnysical studies of apparent distance employing adequate
number of low-amplitude waves that follow the primary re- o jji it is difficult to discuss further the importance of the

sponse. These are probably d.ue tp reflections c_:aused ¥nge dependence of the ILD and the IPD in human distance
waves propagating through the interior of the bowling ball. perception

Figure 14 shows the time delay computed from the ex- Earlier work has also been done on comparing acousti-

perimentally measured HRIR'’s using the 15% rise-time defi-Cal measurements and diffraction theory. Wietie47) pro-
.n't'FO.n fgr :Ee calgdeTZZ (open cwclet}; 3nd’?:2\(l)v( de)' '?; vided experimental verification of Rayleigh’s solution for an
N 9. S, ’e solid fines are computed using Yvooawortn ano|m‘initely distant source by measuring the pressure at the sur-
Schlosberg s approximate formula. O_nce_ again, this SImpl‘face of a smoothly finished 9.7-cm-radius wooden sphere in
formula provides a very good approximation. an anechoic chamber. He used a probe microphone and a
sinusoidal source located alidk m from the center of the
IV. DISCUSSION sphere. While Wiener’s results exhibit considerable variabil-
. . . . ity and do not include range dependence, they do confirm the
There 'S a long history of research on the diffraction 0fbasic features of the theoretical solution. For the case of an
sound by a rigid sphere that dates back at least to the Classlﬁfinitely distant source, Feddersenal. (1957 experimen-
tally confirmed the accuracy of Woodworth and Schlosberg’s
04 " " i " " " " formula for the ITD, and Kuhr{1977, 1987 used the phase

response to derive the ITD from Rayleigh’s solution.

0.3} o
Rabinowitzet al. (1993 presented the range-dependent the-
02l oretical solution. Brungart and Rabinowitd996 subse-
Z‘S guently used this result to determine both the ILD and the
°“°‘o.1 ITD as functions of range, and observed that while the ILD
5 varies strongly with range, the ITD is not very sensitive to
0 range.
; The results reported in this paper extend this earlier
0. » work by presenting an algorithm for computing both the
0.2 - ) , ) , ) , HRTF and the HRIR for any range and angle of incidence,
0 50 100 150 200 250 300 350 and by confirming these results experimentally. The time-
Angle of incidence, 6 (deg) domain results illuminate the somewhat puzzling character
FIG. 14. Comparison of arrival times as measured from the impulse reOf the bright spot, and the ripples that appear in the fre-
sponse and calculated by Woodworth and Schlosberg’s formula. guency response in the vicinity of the bright spot. Although
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it is an oversimplification to say that these phenomena are

due to two waves propagating around the two “sides” of the ~ Nm(X)= 5= [Mhy_1(X) = (M+ )Ny 1], (A6)
sphere, this interpretation provides a simple and useful first

approximation.

one can employ Eq$Al) and(A3) to obtain
V. CONCLUSIONS

To summarize, both the theoretical and experimental

data confirm that the variation of low-frequency ILD with h! (x)=|Q 1(i> _ m_+lQ (i) (—i)m=Deix
range is significant for ranges smaller than about five times " ™ Hix ix ~Mix ’
the sphere radius. The impulse response provides direct evi- (A7)

dence that the ITD is not a strong function of range. The time
delay is well approximated by the well-known ray-tracing

formula due to Woodworth and Schlosberg. Finally, excepf’i’ her$hthe (t:r?sa;:.l (f[f"m bef ,i[EdUdehd t.)y rjﬁinii@lffl(z) i

for this time delay, the HRTF for the ideal sphere appears to % | usl,) € erl\f[aollvg_o " ef sP etrlca | anke lunlc ion

be minimum phase, permitting exact recovery of the impulsecan_‘?lso € computed directly from @ polynomials. In
ddition, the Legendre polynomials can also be computed

response from the magnitude response in the frequency d&:
P gnitu P I quency recursively through

main.
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APPENDIX A: RECURSION RELATIONS

The basis for the algorithm by Bauch and Coo(d&80 o
is the following recursion relation for spherical Hankel func- H(p,u,0)= ,ﬁe*iﬂ Z (2m+1)P,,(cos)
tions (Morse and Ingard, 1968, Chap ¥..2 ! m=0
2m—1 Qm(1/ipp)
hp(X) = Thm,l(x)—hm,z(x), m=23,..., X r1 1 0 p>1,
(A1) va(m) Q(z)
where (A10)
i 1 .
ho(x)= X and hy(x)=—i X (ix? e, (A2) .
where the complex polynomiaB,, and Q,, are computed

The computation oh,(x) can be significantly simplified by recursively through EqgA4), (A5), (A8), and(A9). An al-
defining an auxiliary functior@,(z) through the equation ~ gorithm based on these relations that can be converted di-

rectly into a MATLAB® or a Mathematica™ program is
(—i)mex, (A3)  given in Appendix B.

1
hm(x) = Qm( &

It is not hard to show tha®,,(z) satisfies the recursion equa-

tion
Qm(2)=—(2m—1)zQn-1(2)+Qm-2(2), M=23,....  APPENDIX B: THE HRTF ALGORITHM
(A4)
where The following pseudo-code defines an algorithm for
Qy(2)=2 and Qy(2)=2— 2 (A5) evaluating Eq(A10). It assumes that variables and expres-

sions can have complex values. The first two terms in the
Thus, Q(2) is a simple polynomial ire that can easily be series are explicitly computed, and the use of recursion starts
computed recursively. Furthermore, by using the recursiomvith m=3. Iteration stops when the fractional change falls
relation (see Morse and Ingard, 1968, Chap)7.2 below a user-supplied threshold for two successive terms.
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function H = sphere(a, r, theta, f, ¢, threshold)
X = cos(theta);
mu = pi*f*a)/c;
rho =r/ a;
i = sqrt(-1);
zr =1/ (i * mu * rho);
za = 1/ (i * mu);

Qr2 = zr;

Qrl= zr* (1 - zr);

Qa2 = za;

Qal = za * (1 - za);

P2 =1,

Pl = x;

sum = 0;

term = zr / (za * (za - 1));

sum = sum + term;

term = (3*x*zr*(zr-1))/(za*(2*zaA2-2*za+ 1));

sum = sum + term;
oldratio = 1; newratio = abs(term)/abs(Sum);
m = 2;

while (oldratio > threshold) or (newratio > threshold),

Qr=-2*m-1)*zr*Qrl + Qr2;
Qa=-(2*m-1)*za*Qal + Qaz;
P=(@2*m-1)*x*P1-(m-1)*P2)/m,

tem=(2*m+1)*P*Qr)/((m + 1) *za * Qa - Qal);

sum = sum + term;
m=m+ 1;

Qr2 = Qrl; Qrl= Qr; Qa2 = Qal; Qal = Qa; P2 =

P1;, P1 = P;

oldratio = newratio; newratio = abs(term)/abs(Sum);

end while ;
H = (rho * exp(- i * mu) * Sum) / (i * mu);
end function ;

See Morse and Ingard 968, Chap Y. Because we use "~V instead of

Blauert, J.(1997. Spatial Hearing (revised edition (MIT, Cambridge,

't~k to represent a traveling wave, our formulas agree with those in MA). Original edition published aRaumliches Heen (Hirzel, Stutgart,

Morse and Ingard1968 and in Bauck and Coopdl980, but are the
complex conjugates of the formulas in Kutth977) and in Rabinowitz
et al. (1993.

2The classical HRTF relates the pressure at the source to the pressure at thiPry

head. While the pressure at an ideal point source is infinite, the prgssure
at a small sphere of radius, surrounding the source is approximately
[(—iwpeS,)/(47r,)]e“. The transfer functiom, from this small sphere
to the diffracting sphere is given by

Ho=Ps PP T ey e gt
Pz Pt Pe r r

In the time domain, the phase fac#r(’® corresponds to the propagation
delay ofr/c. Thus, except for the uninteresting constant scale fagtor
one can usél to find the classical HRTH_ merely by adding the effects
of propagation delay and dividing by the range.
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