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ABSTRACT

Experimentally measured head-related transfer functions re-
veal that the interaural time delay varies from person to
person. Furthermore, it is not constant around a cone of
confusion, but can vary by as much as 18% of the maxi-
mum interaural delay. The major sources for this variation
are shown to be the shape of the head and the displacement
of the ears from the center of the head. A simple ellipsoidal
head model is presented that can accurately account for this
ITD variation and can be adapted to individual listeners.

1. INTRODUCTION

Models of head-related transfer functions (HRTF’s) are be-
coming widely used in spatial audio systems [1, 2]. We
are currently developing structural HRTF models, whose
parameters are directly related to the size and shape of
the listener’s torso, head and outer ears [3]. This enables
the customization of a generic model to an individualized
HRTF through simple anthropometric measurements.

The Interaural Time Difference (ITD) provides the ma-
jor cue for azimuth localization, and is a core part of any
HRTF model. If the head is approximated by a sphere of
radiusD, the ITD for an infinitely distant source can be
computed by a simple formula due to Woodworth [4]:

,7'  
D

F
�t � VLQ t� � (1)

wheret is the azimuth angle andF is the speed of sound.
Derived from a simple ray-tracing argument, this formula
is restricted to angular frequencies greater thanD F, and
corresponds to the difference in first arrival times. How-
ever, it is remarkably close to the exact theoretical solution,
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even for a source that is quite near the sphere [5]. Further-
more, customization requires the measurement of only one
quantity, the average head radius.

It follows from (1) that a surface of constant ITD is a
cone of revolution about the interaural axis. Woodworth
called this surface the “cone of confusion.” For an ideal
spherical head, neither the ITD nor the ILD (Interaural
Level Difference) changes as a point is moved around a
cone of confusion. Since the ITD and the ILD are primary
cues for source localization, this provides a simple expla-
nation of the fact that many localization errors (including
front/back errors and up/down errors) result in mislocation
on the cone of confusion.

However, a sphere provides only a first approximation
to a real human head. We will present experimental results
that show that in reality the ITD varies around a cone of
confusion, so that the ITD is a function of elevation as well
as azimuth.1 This elevation dependence arises because, al-
though the distance from the source to the ipsilateral ear
(the ear that is visible from the source) is constant, the
length of the shortest path from the source to the contralat-
eral ear (the ear that is not visible from the source) changes
with elevation. These changes are due both to the non-
spherical shape of the head and to the fact that the ears are
not positioned across a diameter, but are displaced behind
and below the center of the head. We will show how a
simple ellipsoidal model with offset ears yields the proper
variation of ITD with both azimuth and elevation.

2. HRTF DATA

The ITD is directly revealed in experimentally measured
impulse response data. Fig. 1 shows an image representa-

1We employ an interaural-polar coordinate system in which the az-
imuth angle is measured from the source to the vertical median plane, and
the elevation angle is measured up from the horizontal plane to the pro-
jection of the source into the median plane. With this coordinate system,
a cone of confusion is a cone of constant azimuth.
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Figure 1: Elevation dependence of an experimentally mea-
sured head-related impulse response for (a) the ipsilateral
ear and (b) the contralateral ear. In both cases, the azimuth
is b��p. Notice the variation in the arrival time for the
contralateral ear, and the bright spot around��p elevation.

tion of the elevation dependence of the ipsilateral and con-
tralateral impulse responses for a subject (CA) measured at
an azimuth ofb��p. Each column in these images corre-
sponds to an impulse response at a fixed elevation, where
bright areas are positive and dark areas are negative. The
bright “ridge” across the top of each image identifies the
arrival of the pulse.

Because the distance from the source to the ipsilateral
ear does not change with elevation, this ridge is basically
horizontal in the upper image. The downward displacement
of the initial ridge in the lower image is the ITD. Clearly,
the ITD is not constant, but varies by about 120xs, which
is almost 18% of the maximum ITD and corresponds to a
shift of approximately��p in azimuth. When the subject
for these measurements listens to the results of convolving

a sound source with these impulse responses, the sound im-
age appears to move smoothly in a vertical plane parallel to
the median plane as the elevation is slowly changed from
b��p to ���p. However, if the responses of the contralat-
eral ear are time aligned and then delayed by a constant
ITD, the sound image is not confined to a vertical plane,
but appears to be significantly displaced to the right and left
as the source moves around the cone. In short, for accurate
placement of the virtual source, Woodworth’s formula is
inadequate, and the formula used to compute the ITD must
be a function of elevation as well as azimuth.

A closer examination of the contralateral image reveals
a “bright spot” near��p elevation. This can be explained
using an elementary multipath interpretation. Atb��p az-
imuth, the shortest path from the source to the contralateral
ear is around the front of the head if the source is in front,
and around the back of the head if the source is in back.
Normally, one of these two paths dominates. However,
near��p elevation, these paths have the same length, and
the signals arrive in phase to produce the bright spot. In-
deed, with just a little imagination, one can discern the
separate components around the front and around the back
in the contralateral image (Fig. 1b).

3. THE ELLIPSOIDAL HEAD MODEL

Although this shortest-path argument is an oversimplifica-
tion and cannot explain all the behavior of what is clearly
a complex wave propagation phenomenon, it is similar to
Woodworth’s original argument, and it leads to a surpris-
ingly accurate model for computing the ITD. In particular,
the variation in the ITD with elevation is easily explained
by observing that if the shape of the head is not spheri-
cal, and/or if the ears are not located across a diameter,
then the length of the shortest path from the source to the
contralateral ear will vary with elevation.

An ellipsoid is an obvious choice for a head model
that exhibits elevation as well as azimuth dependence.2 To
express the model analytically, letxV  >V�� V�� V�@

7 be a
vector from the origin to the sound source, and letxH  
>H�� H�� H�@

7 be a similar vector to the contralateral ear.3

Define the ellipsoid by the equation

�x[b x[��
7$�x[b x[��  � � (2)

where x[  >[�� [�� [�@
7 is a vector to a point on the

ellipsoid, x[� is the center of the ellipsoid, and$ is a
� d � positive definite, symmetric matrix. Typically,$  

2To the best of our knowledge, the only analytic, non-spherical head
models that have been investigated are prolate spheroids, and this prior
work did not address the ITD [6, 7].

3We assume that all vectors are column vectors, and we denote the
transpose ofx[ by x[

7 .



Figure 2: The ellipsoidal head model. Sound travels from
the sourcexV a distanceG� to a tangent pointxW and around
the ellipsoid a distanceG� to the ear atxH.

Figure 3: Head dimensions and ear location.

GLDJ>� D�
�
� � D�

�
� � D�

�
@� whereDN is the length of the prin-

cipal axis along theNWK coordinate direction. Because the
ears are on the interaural axis,H�  H�  �� If HE is
the displacement of the ear toward the back of the head
and HG is the displacement down,x[�  >�� HE� HG@

7 , and
H�  hD�

S
�b �HE D��� b �HG D���. Thus, as Fig. 3 il-

lustrates, the five parametersD�� D�� D�� HE and HG define
the head model.

There is no closed form, analytic expression for the
shortest distance fromxV to xH. Dynamic programming can
be used to compute the solution, but this is computationally
intensive. The following heuristic procedure is relatively
fast and yields a close approximation:

1. Find the plane3W defined by the cone of rays from
xV that are tangent to the ellipsoid. The intersection
of 3W with the ellipsoid defines the tangent ellipse.

2. Find the pointxHS where the line fromxV to xH pierces
3W.

3. FindxW by assuming that it is the point on the tangent
ellipse that is closest toxHS.

4. Find the plane3V passing throughxV, xW and xH.

5. ComputeG� as the straight-line distance fromxV to xW,
and G� as the arc length fromxW to xH of the ellipse
that results from intersecting the ellipsoid with3V.

It turns out that the equation for3W is xQ7 �x[b x[��  ��
wherexQ  $�xVbx[��, and thatxHS  xHbw�xVbxH�, wherew  
>�b xQ7 �xHb x[��@xQ

7 �xVb xH�. FindingxW requires minimizing
MMx[bxHSMM

� subject to the constraints�x[bx[��7$�x[bx[��  �
andxQ7 �x[bx[��  �. Although an analytical solution exists,
it is sufficiently complicated that we solved this problem
by numerical computation. OncexW is found, the remaining
steps are straightforward.

4. EXPERIMENTAL RESULTS

To apply this procedure, we need to have numerical val-
ues for the five parameters. One approach is to imagine
enclosing the head in a rectangular box, to use the dimen-
sions of the box forD�� D� andD�, and to measureHE and
HG from the center of the box. While this produces results
that are qualitatively better than the spherical-model for-
mula (1), we discovered that the resulting calculated ITD
values tended to underestimate the measured ITD. Signif-
icantly better results were obtained when the head dimen-
sions were increased by 5 to 10%.

An LMS procedure was used to optimize the model
parameter values. The ITD computed by this method is
shown in Fig. 4 as the curved white line superimposed on
the image for the contralateral ear. Since the azimuth is
constant, the spherical model yields the straight black line.
The dotted points in Fig. 4 show the empirical ITD, defined
as the difference in first arrival times for the two ears,
where the first arrival time is the time at which the impulse
response first exceeds 15% of the maximum absolute value
of the response. Clearly, the ellipsoidal model, which has
an average absolute error of 10xs, fits the data better than
the spherical model, which has an average absolute error
of 30 xs.4

This is typical of the results obtained at different az-
imuth angles and with different subjects. Fig. 5 shows the
results obtained for the same subject at 25 azimuths and 50
elevations. In this case, the average absolute ITD error is
15xs for the ellipsoidal model versus 22xs for the spheri-
cal model, which is a relatively small difference. However,

4The time between samples at the standard 44.1-kHz sampling rate
is 22.7xs. While a 1.3-sample error might seem small, it introduces a
clearly audible shift in location.
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Figure 4: ITD values forb��p azimuth. The dotted curve
shows the 15%-rise-time ITD. The curved line is computed
from the ellipsoidal model, and the straight line is computed
from the spherical model.

because the ITD for the spherical model does not depend
on elevation, the spherical model introduces a systematic
error that is revealed by the horizontal streaks in the data.
Clearly, the ellipsoidal model removes this systematic error,
and provides generally superior results at large azimuths.

5. CONCLUSIONS

A simple ellipsoidal model of the head that includes down-
ward and backward displacements of the ears can provide
accurate values for the ITD for an HRTF model. By con-
trast with a spherical head model, the resulting ITD’s vary
around a cone of confusion, and provide the proper time
delays needed for precise localization. The correction is
most important at larger azimuths, where the elevation de-
pendence of the ITD is strongest.

The ellipsoidal head model requires five parameter val-
ues, all of which are related to anthropometric measure-
ments of the listener’s head. Although experiments with
more subjects will be needed to determine the exact nature
of this relationship, our results demonstrate the feasibil-
ity of using geometrical models in an important part of a
customizable HRTF model.
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