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Abstract. We propose a generic communication primitive designed for sensor
networks. Our primitive hides details of network communication while retaining
sufficient programmer control over the communication behavior of anapplica-
tion; it is designed to ease the burden of writing application-specific communi-
cation protocols for efficient, long-lived, fault-tolerant, and scalable applications.
While classical network communication methods expect high-reliability links,
our primitive works well in highly unreliable environments without needing to
detect and prune unreliable links. Our primitive resembles the chemical markers
used by many biological systems to solve distributed problems (pheromones).
We develop and analyze the performance of an implementation of this primitive
called Virtual Pheromone (VP). We demonstrate that VP can attain performance
comparable to classical methods for applications such as sleep scheduling, rout-
ing, flooding, and cluster formation.
This is a minor revision of the paper included in the Proceedings of the Second In-
ternational Conference on Distributed Computing in Sensor Sytems that includes
an additional reference to related work in Section 2.3.

1 Introduction

Most wireless sensor network (WSN) and ad-hoc networking applications demandeffi-
ciency, long life, fault-tolerance, andscalability. We refer to these as ELFS applications.
The goal of this paper is to demonstrate that Virtual Pheromone (VP) is an effective tool
for building ELFS applications.

It is commonly accepted that cross-layer design is necessary in order to achieve
the levels of efficiency desired in most WSN and energy-constrained ad-hoc network
applications [1, 2]. Eschewing the classical network layered abstraction model (OSI)
enables advancements in energy efficiency. Thisenergyefficiency comes at the cost of
programmerefficiency, because integration and debugging of these applications can be
very complex. It is desirable to have mechanisms that balance the utility of abstraction
against the flexibility of cross-layer design. The sensor network field has entered an
era of consolidation wherein point solutions are being generalized to create low-level
abstractions that are useful across many applications; TinyOS 2.0 and UCLA’s Tenet
are examples [3, 4]. In short, some energy efficiency must be traded for generality and
ease of programming if sensor networks are to become ubiquitous.



1.1 Motivation

Sensor networks bring computer and network technology in closer entanglement with
the natural world than ever before. Assumptions made in classical computing no longer
hold: communications are unreliable, nodes are unreliable, a deterministic mapping of
the system state may be unattainable, and energy is a finite resource. The combination
of a lossy and random environment means that the behavior of asensor network cannot
be perfectly determined; rather, we must be satisfied with specific behavioral qualities
or bounds on expected performance.

Because ELFS are bound so tightly with the physical world, itstands to reason that
natural communication mechanisms may provide insight intothe design of artificial
communication mechanisms appropriate for that environment. Many species use pher-
omones (scent signals) to communicate information and organize behavior in complex
and challenging environments. For instance, ants successfully forage for food and build
nests in spite of continually changing physical parameters—paths are blocked, hazards
are presented, food sources come and go.

Natural systems are dynamic in the relationship between actors (or agents) and the
environment in which they reside. In a data-collection wireless sensor network, the
sources of dynamism are radio interaction and node failure.When a node is asleep,
it cannot participate in multi-hop communication, and whenpackets are sent, they
may collide with other transmitters’ packets. In more complex scenarios, e.g. mobile
or sensor-actuator networks, dynamism is increased along more parameters. We argue
that pheromone-inspired communications can be useful in the simple case and are very
desirable in the complex case.

1.2 Contributions

Because communication cost is expected to dominate sensor network energy costs, we
have designed a communication primitive that is designed toapproach the efficiency
of applications that are specifically tailored to their tasks. Our goal is to trade a mini-
mal amount of energy efficiency for increased programmer efficiency and code reuse.
Moreover, the nature of our communication primitive leads to efficient, scalable appli-
cation design, because every transmission is recognized asa broadcast. Efficiency is
chiefly provided by a single-layer abstraction: simulated diffusion of virtual pheromone
signals. This abstraction benefits from the presence of unpredictable links, rather than
requiring that they are pruned out. Finally, by using a common primitive for all (or
most) communication, a powerful optimization point is created such that enhancements
to the primitive can benefit a large set of applications.

2 Overview

In the biological sense, a pheromone is a chemical marker. Itcan be deposited by an
organism and detected by that and/or other organisms, e.g. for the direction of a male
moth to a female [5]. A pheromone dissipates via an evaporative process; as a result
the strength of the pheromone decays with increasing distance from the source in the



spatial and temporal axes. Spatial decay maintains locality of communication; temporal
decay reduces system complexity by ensuring that old information is purged from the
system.

2.1 Interesting Properties

Why is a spatio-temporally decaying information process interesting in the context of
sensor networks? Let us examine the properties of this information process that are in
common with many sensor network applications.Spatially-limited sharing of infor-
mation: sensor networks can only scale if internode information sharing is limited by
some process.Encoding of distanceto source: hop counts, for instance, are commonly
used as a cost metric in routing algorithms.Encoding of time since deposition: the
relevance of information is crucial in allowing nodes to collaborate with each other;
there is a significant difference between a sensor reading from one minute ago and a
reading from one month ago.Superposition of like pheromones: akin to aggregation
by sum; allows reinforcement.Implicit gradient leading to source: gradients enable
efficientandscalablerouting algorithms because the routing information is stored in a
distributed fashion.

The net result of these properties is that all information exchange is via constrained
broadcast through a shared medium. This maps very well to thebehavior of a radio
communication system.

2.2 The VP Communication Primitive

VP also exhibits the five aforementioned properties, each ofwhich serves a purpose
in the design of an ELFS application. Efficiency is driven by low-cost transmission
of information; VP requires no ACK signals and uses an efficient flooding technique
(Section 3.1). Fault-tolerance requires a level of redundancy and robustness to errors;
VP’s inherent redundancy provides a tradeoff of reliability against cost, and because no
explicit point-to-point communication is used, information transfer is highly tolerant
of node failure (as long as the network remains unpartitioned). Application scalability
requires highly localized communication and efficient coordination amongst neighbor-
ing nodes; VP pheromones propagate proportional to the strength of the initial deposit,
which creates a user-selectable bound on distance. The encoding of distance and time
in the pheromone strength, combined with superposition of like pheromones, allows
neighboring nodes to coordinate without requiring expensive point-to-point protocols
that are sensitive to faults.

2.3 Related work

The topic of communication methods in wireless networks is broad; we reference repre-
sentative works from two important categories: localized communication/control prim-
itives and applications using pheromone-like concepts.

In directed diffusion [6], information sinks (consumers) publish interestswhich
are propagated through parts of the network; information sources (producers) publish



named data objects which are routed along the interest gradient. Geolocation is assumed
so that interests can be distributed locally. Directed diffusion is an application facilitat-
ing data transfer between sinks and sources and works best when a flow of information
will pass from a source to one or more sinks. In contrast, VP isa lower-level primitive
intended for many communication tasks (including diffusion-like routing; see Section
4.2).

RUGGED [7] is a routing protocol that utilizesdata gradients, or “fingerprints,”
rather than the interest gradients created by directed diffusion. Fingerprints are dissem-
inated by an environmental processes—not by the sensor network—and this creates a
possible efficiency benefit. Simulated annealing techniques are used to overcome local
minima or maxima in the sensor field, including regions in which the sensed level is
zero. Fingerprint routing is targeted specifically at data-collection applications in which
natural gradients exist in the phenomena to be measured.

In his master’s thesis [8], McLurkin develops a similar pheromone primitive for
sensor networks. His pheromone is closer to a true diffusionprocess, with nodes pe-
riodically sharing pheromone state and cooperatively decaying values (VP distributes
information once and decay occurs as a distributed process). Significantly, the design
and evaluation of VP is efficiency-driven, whereas McLurkin’s concentration was on
exploring inter-node cooperation and the structural primitives that can be constructed
with pheromones.

Payton et al. explore using “virtual pheromones” [9] for robotic control. The phero-
mones are sent via infrared or other line-of-sight communication method; gradient de-
scent necessarily indicates an unobstructed path that the robots may use. Characteriza-
tion of the infrared source and its spatial decay is used as a distance estimator. Parunak
et al. use a pheromone-inspired memory model [10] to assist in the coordination of
distributed decision-making systems. Brooks et al. use biologically-, chemically-, and
physically-inspired techniques (including one based on pheromones) in sensor network
adaptation techniques [11]. They find these techniques to bevery robust to errors while
attaining satisfactory power consumption.

2.4 Qualitative Expectations

It is instructive to consider the expected behavior of VP, ascompared to the classi-
cal primitive of point-to-point transmission, before delving into technical analysis. We
expect VP to work well in dense networks since the signal can propagate many hops.
We expect VP to perform less well when used, naively, to implement classical proto-
cols that utilize handshaking, acknowledgements, or otherpoint-to-point information
exchanges. VP should be highly tolerant of node failure and spurious communication
because it benefits from the redundancy of broadcast and can utilize unreliable links.

Furthermore, due to the large time constants involved in pheromone decay, we ex-
pect VP to be most useful in latency-insensitive applications. While fields can propagate
quickly, the rate of accomplishing a specific action-reaction pair using pheromones is
not likely to exceed a classical communication approach. For instance, any application
that leverages the superposition principle of pheromone signaling will take some time
to reach a steady state response.



We begin by discussing the parameters of a pheromone communication primitive,
and the details our specific implementation, in Section 3. The metrics relevant to ELFS
are presented in Section 4 and then applied to four application scenarios and analyzed
in Section 4.2. Section 5 describes the future direction of this research, and Section 6
concludes the paper.

3 Design

We desire to implement a mechanism displaying the properties listed in Section 2.1: en-
coding of space and time, spatially limited flooding, superposition, and gradient gener-
ation. Energy efficiency constrains our implementation options. We analyze the design
problem as the following set of sub-problems:

Programmer API. How should a program deposit and detect pheromones? What in-
formation should be provided, and in what form? Our goal is tominimize the amount
of code required to handle communications, yet provide enough flexibility to make the
primitive useful.

We believe deposition should encode, at a minimum, the following fields: TYPE,
STRENGTH, and SOURCE. PAYLOAD (arbitrary data) should be an optional parameter.
Reading a pheromone should provide at least the first two fields: TYPE and STRENGTH.
SOURCE may be required for some applications. The arbitrary payload field could be
used as a way to encode complex data, such as a non-integer data type, or an uniquifier.

Spatial Dissipation Model.The desired behavior is to have the strength of the field
decay with increasing distance from the pheromone source. This encodes physical dis-
tance from the sender and limits the range over which data will propagate. Candidate
dependent variables for this decay include hop count, RSSI,or geolocation.

Temporal Dissipation Model.The desired behavior is to have the strength of the field
decay with increasing time since the deposition of the pheromone. Exponential decay
is ideal because it favors recent information while allowing old information to persist at
a low level. Half-life may be global, indepdenent for each pheromone, or chosen from
a small set (e.g.,{fast-decay, slow-decay}), depending on application needs.

Pheromone Encoding & Transmission Strategy.The transmission strategy of the pher-
omone information can have a large impact on the energy efficiency of the operation.
If maximum propagation speed is desired, a packet must be sent for each deposition. If
the constraint of propagation speed is relaxed, packet overhead may be amortized over
several pheromone depositions.

3.1 VP: A Design Implementation

VP encodes TYPE, STRENGTH, SOURCE, and PAYLOAD in a table and provides two
functions to store (and implicitely transmit) and retrievepheromone signals: DEPOSIT



and SMELL . Utility functions to support common uses of pheromones will reduce pro-
gram size and be useful across applications. To facilitate the applications in Section
4.2, we have implemented a function to forward a packet alonga pheromone gradient
(FWDGRADIENT), and a function to return a list of distinct sources for a pheromone
type (SMELL DISTINCT).

DEPOSIT(TYPE , STRENGTH , PAYLOAD ): Deposit a pheromone identified byTYPE

with strength equal toSTRENGTH; PAYLOAD is optional. The subsystem decides if
the information should be propagated to neighboring nodes according to the rules
in Section 3.1.

SMELL (TYPE): Return the net strength of the pheromone(s) matchingTYPE.
SMELL DISTINCT (TYPE): Return a list of each distinct pheromone detectable at this

node. This bypasses superposition and includes the payloadof each pheromone (if
present).

FWDGRADIENT (PACKET , TYPE , DIRECTION ): Forward a packet according to the
gradient of pheromoneTYPE; DIRECTION may beuphill, downhill, or level.

Storage and Retrieval of Pheromone State.The internal data structure is a 4×N
table (Table 1). To support superposition, each unique type/source pair may have its
own entry in the table, but when the pheromone is read all rowswith a common type
are summed together. Payload is suppressed when using SMELL but may be read using
SMELL DISTINCT.

Table 1. A simple data structure for storing pheromones. The strength level associ-
ated with typea from sourcei is denotedlai. For example, SMELL (a) = lai + la j and
SMELL (b) = lbk. Payload is labeled equivalently to strength.

type source strength payload

ta si lai pai

ta sj la j pa j

tb sk lbk pbk

Deposition and Propagation of Pheromones.When a pheromone is deposited with
strengths, the table is first checked for a hit on (TYPE,SOURCE). There are three possi-
ble cases:

1. If there is no hit, the data is stored and then scheduled fortransmission as a phero-
mone updatewith strength(s−1).

2. If the hit has a strength less thans, the “no hit” action (1) is taken.
3. If the hit has a strength≥ s, the deposition is ignored.

This algorithm sets up a cone-shaped fieldprior to to initiation of the decay process
(Section 3.1). The initial field has a slope of one pheromone unit per hop; as a result,
distance is derived from radio hops.



Broadcast Suppression Technique.Pheromone updates attempt to limit redundant
transmissions. A depositing node that wants to send an update moves through the phases
listed in Table 2. Whileobserving, the node snoops for and accumulates the count of
concurrent depositions by neighboring nodes. In thetransmittingphase, the snoop count
is compared to a threshold,η . If this threshold is not exceeded, the node transmits the
pheromone; in either case, it calculates the expected pheromone distribution time and
waits for the propagation to complete. This delay equals thepheromone strength at this
node,si , times the expected observation delay at each hop (including packet transmit
time); this algorithm forms a schedule for initiation of thedistributed decay process.
Thedecayingphase lasts until the pheromone reaches a minimum threshold, ε (Section
3.1).

Table 2. A pheromone deposition is a distributed process including three phases at
every nodei: observation (for suppression), transmission (or suppression) and a pause,
and then decay.ttx is the expected transmit time,si is pheromone strength at nodei, and
τ is a constant.

phase duration

observing tobs= [0,τ]
transmitting (or suppressing)(tobs+ ttx)si

decaying until pheromone is depleted

Time-Decay of Pheromones.All nodes concurrently run a decay process on their
pheromone tables. The decay process is a discretized approximation of continuous ex-
ponential decay, updated everyτ seconds:s(t + τ) = αs(t). The process terminates
when s(t) < ε, whereα is constant,τ is the update interval,ε is the termination
threshold, ands(0) is the initial strength at this node as defined in Section 3.1.

VP maintains an event list large enough to keep one “next decay time” for each
pheromone. For large scale systems with many pheromones, itwould be more appro-
priate to have one global timer that decays all pheromones; this may require a smaller
τ (Section 3.1).

Constants. We use the following constants in our implementation of VP: half-life = 10 s,
τ = 100 ms,ε = 0.1, ttx = 2 ms, andη = 2. ttx is derived from a 250 kbps radio and
40-byte packet (1.28 ms to transmit, plus processing time).η is chosen to optimize
efficiency (we tried values 1,2,3,4)—it must be tuned to the RFmodel (discussion in
Section 5).

Memory Requirements. We divide the pheromone information into two categories:
userandsystem(Table 3). Parameter precision may be adjusted to application require-
ments. Each pheromone requires 7–14 bytes of information (before compression) to
transmit; a packet payload of 32 bytes can contain at least 2-4 pheromones.



Table 3.memory requirements to store a pheromone (bytes). Thenext decay timeis not
transmitted.Systemvariables are used to propagate and decay the signal, and include
uservariables, which are exposed by the API. The total footprintof each pheromone is
between 7 and 14 bytes.

space parameter bytes

system source ID 2–4
· spatial metric 1–2
· next decay time 1–2
· user type 2–4
· · strength 1–2

4 Metrics & Evaluation of VP

Because VP is targeted at ELFS applications, we choose one metric for each ELFS
quality:

Efficiency: the communication cost, inpackets sent to accomplish a task. All else be-
ing equal, a task that requires less communication is more efficient.

Long-livedness: the lifetime of the network, inseconds-until-dysfunction. This is dif-
ferentiated from efficiency because application requirements, such as coverage, de-
pend on both node death distribution and the fault-tolerance of the algorithm. It is
reasonable to expect, however, that an efficient algorithm will also be long-lived.

Fault-tolerance: the lifetime, aslong-livednessis observed with these varying system
parameters:network density, random node failure probability, and partial network
occlusion.

Scalability: the long-livednessis observed when the network is scaled innode place-
ment density, in nodes per unit area.

4.1 Experimental Methodology

Showcasing all possible applications of our primitive is beyond the scope of this paper;
rather, we aim to discuss several applications and tasks that can be accomplished using
our primitive and to provide evidence of satisfactory performance.

Our experiments are performed using a custom simulator called AHLPS. We also
verify functionality with physical deployment on 25 Telos motes using a less complete
implementation of VP. Whereas implementation on motes proves the functionality of
the primitive, only simulation allows us to explore VP in theenvironment it was de-
signed for: large scale networks.

We previously developed the Agent High-Level Pythonic Simulator (AHLPS) to al-
low simulation of agent behavior in large sensor networks [12]. A pheromone primitive
was added to AHLPS to support the research in this paper. AHLPS uses the TOSSIM
empirical radio link model [13] to simulate link quality1 but does not simulate a PHY

1 While the TOSSIM model is based on empirical data ranging from 0 to 40 meters, we have
scaled this data so that 1 distance unit under AHLPS is equivalent to 40 meters under TOSSIM.



layer or complex MAC layer. As a result, radio contention is not modeled; this is ac-
ceptable in our simulations because the mean communicationrate is low (generally less
than a packet per second per node). AHLPS allows us to investigate, at a high level, the
behavior of an agent-based program. Further verification isthen performed in TOSSIM
and/or on physical nodes using our agent framework [14].

4.2 Case Studies

We will now use results on the behavior of representative tasks and applications to verify
that VP supports the requirements of ELFS: efficiency, long-livedness, fault-tolerance,
and scalability. Any algorithm implemented using VP is referred to as “Pheromone.”

One way to measure efficiency is to take the ratio of a cost (generally energy) and a
benefit (generally network lifetime). Unfortunately, results of this measure are specific
to each application. We desire to separate out anindicator of efficiency that will imply
efficiency performance for many applications. Because mostsensor networks commu-
nicate some shared information, we analyze the efficiency ofdistributing information
using three methods: flooding, epidemic routing, and VP.

Fault-tolerance is also very application-specific becauseof the specificity of the
term “fault.” We attempt to pick two common fault scenarios that many networks ex-
pect to incur: a long-period disruption to a large section ofthe network, and intermittent
dropouts of specific nodes. Because it is impossible to generalize all applications’ sus-
ceptibility to these specific faults, we choose a basic measure: the ability to route infor-
mation from one part of the network to another. This embodiestwo concepts: inter-node
collaboration, and network connectivity; most sensor network applications require both.

Efficiency, fault-tolerance, and scalability are requisites for long-livedness, and an-
alyzed separately. Our aim is to show that VP enables longevity extension in a way
applicable to many applications. We chose to examine cover-constrained sleep schedul-
ing because it can be used in many applications to extend lifetime. While not a proof of
generality, such an example provides evidence for our argument.

Scalability is extremely important in many sensor network designs. Unfortunately,
few truly scalable networks have been deployed in the field. We are developing a multi-
hop clustering algorithm that we believe will be crucial in the scalable operation of very
large networks, allowing collaboration and organization of large (but constrained) sub-
sets of nodes. Multi-hop clustering has been mostly a footnote in the literature, although
it does resemble the “Multiple Sink Network Design Problem”[15] posed by Oyman
and Ersoy. Our goal is to show that our multi-hop clustering task scales perfectly using
VP.

Efficiency. Flooding is the most basic form of dissemination. Epidemic algorithms,
such as Trickle [16], perform efficiency optimizations using suppression. We compare
the use of VP to disseminate a unit of information to a networkof 1000 nodes using
naive Flood and Trickle. Comparison is on the basis of packets sent, per node, per
unit of information, with the independent variable of network density (Figure 1). The
simulation is run for 20 seconds but statistics are collected at the earliest time for which
cover(fraction of nodes having received the information unit) is95% or higher.
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Fig. 1. Performance of Trickle, Flood, and Pheromone in information dissemination.
Both Trickle and Pheromone benefit from increased network density. Pheromone is
bounded above by both Trickle and Flood in terms of efficiency, while matching Flood’s
rapid speed.

Flood has a constant cost because all nodes participate in every flood event. Trickle
benefits from increasing network density because more nodescan be suppressed; how-
ever, there is an unavoidable baseline cost in order to run the algorithm’s periodic
probes. Increasing the maximum probing interval would decrease this cost but also
decrease the responsiveness of the system. Because each runis begun from scratch, we
also plot “Trickle–adjusted,” in which every node is given one “free” packet to perform
the initial round of probes.

There are two reasons that Pheromone performs better than Trickle in this test.
First, there is the aforementioned base cost. Second, Trickle’s probe-response protocol
means that, in the limit of extreme density, distributing a unit of information would
require at least three transmissions: broadcast a new version, broadcast a suppressing
data request, broadcast a data response. Pheromone would require only a minimum of
two transmissions: broadcast of pheromone, and one suppressing re-broadcast.

The flooding coverage chart indicates that none of the algorithms perform satis-
factorily below a density of 10. It is important to note that Trickle guarantees100%
cover in a connected network while Flood and Pheromone, withtheir probabalistic ap-
proach, attain 95-100% coverage. In addition, the lack of contention in the AHLPS
radio model gives advantage to Flood and Pheromone’s latency performance. Phero-
mone and Trickle serve different purposes, but it is clear that Pheromone is an efficient
dissemination mechanism.

Memory and computational resources are not modeled in AHLPS. We note that all
three algorithms are computationally simple, with Pheromone being the most complex
because our current implementation uses a floating point multiplication (Section 3.1).
The memory requirement for Pheromone is slightly greater due to the SOURCEparam-



eter. (STRENGTH in Pheromone is balanced by HOPCOUNT in Flood and VERSION in
Trickle.)

Long-Livedness.A well-referenced and effective sleep scheduling algorithm is PEAS [17].
We implemented PEAS under AHLPS as well as our own scheduler that uses VP. We
use a metric from the PEAS paper:time that 90% 3-cover is maintained. k-cover is
defined as the fraction of network area observed by at leastk nodes. We use the same
operating constants as Ye et al.: idle power 12 mW, sleep power30µW, transmit energy
600µJ per packet, and receive energy 120µJ per packet.

Pheromone has a single tunable parameter: THRESH. A single pheromone is sent
as a beacon by all awakened nodes; if the perceived level at a given node is greater
than THRESH, the node will go to sleep with probability proportional to the difference.
PEAS has two parameters,λ , the mean rate at which nodes will wake up and probe for
neighbors, andRp, the probing range. We setλ = 1Hz andRp = 1.0 (the maximum
radio range).

Sensing range is set to 2.0, or 2 times the maximum radio range. Since most good
links are at a distance≤ 0.2, the sensing range is significantly larger than the prob-
ing range. 3-cover failure for three or more seconds is considered a failure. We set
THRESH= 1.0 to match PEAS’ behavior (a node sleeps if any probe responses are
heard). The fundamental difference between Pheromone and PEAS is that the former is
probing (broadcast announcements) while the latter is polling (broadcast request, uni-
cast response).T i m e t o F a i l u r e f o r 3 
 C o v e r ( 9 0 % T h r e s h o l d )
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Fig. 2. (a) PEAS is highly effective at extending network lifetime.Pheromone is nearly
as effective for lower densities but loses ground as densityis scaled. (b) PEAS has a
radio overhead nearly 10 times greater than Pheromone.

Figure 2 shows that While PEAS is very effective (a), it requires a high overhead
in transmissions (b) because each broadcast probe is followed by multiple unicast re-
sponses. PEAS offers an additional benefit that Pheromone does not: the pursuit ofλ



probing rate. (Effectively, “λ ” is fixed in Pheromone.) Pheromone offers performance
comparable to PEAS at a much lower transmission overhead, indicating it would per-
form very well in applications with a higher transmit-to-idle cost ratio. Perhaps the
biggest benefit of Pheromone is that it is easily integrated into a cross-layer algorithm
design.

Fault-Tolerance. We wish to examine fault models sufficiently simple to avoid loss
of generality in the results. We examine two models:partial network occlusionand
random network dropouts. During an occlusion, a large portion of the network becomes
unreachable (e.g. due to a signal jammer) betweent = [50,150] s. During a dropout,
nodes may become unreachable for a brief period (e.g., fast fading); the dropout rate is
λ and the dropout interval is exponentially distributed withmean 1 s. Network size is
1000 nodes.

These fault models are applied to a partial implementation of DSR [18]. DSR is an
on-demand point-to-point routing algorithm designed for ad-hoc networks. Because the
DSR specification is complex, we implemented in AHLPS only the features involved
in robust delivery from a single source to a single sink. Whilethe DSR specification
allows for asymmetric data/ACK paths, it does not specify a mechanism, so our imple-
mentation uses only symmetric paths.

We compare DSR to gradient ascent routing on a pheromone field. Packets are trans-
mitted once per second and in the case of Pheromone, a pheromone is deposited at the
sink once every 10 seconds. There are no tunable parameters for Pheromone. A signifi-
cant difference is that Pheromone will follow multiple simultaneous paths when routing
on a gradient (all uphill paths are followed), whereas DSR will discover parallel paths
and then use just one at a time. Analysis of packet overhead (not presented here) indi-
cates that Pheromone has a lower packet overhead for the datapresented here.

Because AHLPS uses an empirical radio model, nodes have manyneighbors at the
fringe of connectivity and with correspondingly high loss rates. DSR does not per-
form well under this regime because it discovers, and attempts to use, faulty paths; it
must explore many of these before finding a quality path. To alleviate this problem, we
implemented an omniscient, zero-overhead, link-quality estimator (LQE) that permits
only high-quality links. High quality is defined as an expected round-trip loss rate of at
most 1%. Pheromone is permitted to run under both the empirical and LQE modes for
comparison, but performs better without LQE because of the increased redundancy.

We see in Figure 3 that DSR outperforms Pheromone with the LQEfeature (a) but
is inferior without it. Random dropouts (b) affect DSR more than Pheromone because
DSR must explore new routes more often asλ is increased. Performance without LQE
is important because in the real world LQE is not free, especially in mobile or time-
fading environments.

Scalability. Our aim in this section is to demonstrate that a scalable application can
be constructed from our primitive. We chose multi-hop clustering and implemented
two versions using only VP for communication:genericandadaptive. Generic is based
loosely on LEACH [19], in which a cluster head probability,pch, controls cluster head
formation. Adaptive effectively adaptspch distributedly at each node. Both algorithms
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Fig. 3. DSR versus Pheromone gradient routing (a) during an occlusion event and (b)
with varying dropout rate (λ ). λ = 0 corresponds to no dropouts. Density is 40.0 nodes
per unit area in both cases and LQE indicates an omniscient, zero-overhead, link-quality
estimator. Pheromone does not require LQE, an important efficiency benefit, and is far
more tolerant to random node dropouts. DSR, on the other hand, performs much better
when LQE is available.

use a pheromone deposit to form clusters—the cluster head deposits a pheromone and
nodes choose cluster membership based on observed pheromone strengths.

We consider the algorithm complete when themean cluster sizehas stabilized
within 98% of its final value. The scalability of both algorithms is apparent in Figure
4; density does not affect the time to completion. Both algorithms are scalable because
of pheromones’ suppression mechanism—in a network twice as dense, twice as many
nodes will be suppressed during pheromone deposition.

Adaptive and Generic both stabilize at aboutt = 40 s and have similar mean trans-
mission rates. Adaptive has a higherpeaktransmission rate, which may be a disadvan-
tage in some applications. Given the similar performance ofthe two algorithms, we feel
that Adaptive is superior because tuning ofpch is not required. The Adaptive algorithm
is presented in code listings 1.

5 Future Work

In future work it would be beneficial to examine the constantsused in pheromone dis-
tribution and decay. Optimalη , the suppression constant, is likely to depend on the
specific MAC and PHY. Higherη means a greater packet overhead and potential for
collisions. Settingη too low will result in a lack of redundancy. In our experiments,
one global pheromone decay half-life was sufficient. We would like to explore the ben-
efit of allowing different half-life settings. Finally, local repair of the pheromone field
(e.g. when a node is added or wakes up from sleep), as in that proposed by Han et
al. [20], would drastically improve response time at a smalloverhead cost.



Algorithm 1 The behavior of a cluster member. All nodes initially take this behavior
and can change to cluster head (Algorithm 2) if no cluster head pheromones are present.

1: scents⇐ SmellDistinct(′clusteringpheromone′)
2: if scents is emptythen
3: WAIT for snoop interval
4: behavior⇐ ClusterHead
5: else
6: if two strongest scents are of equal strengththen
7: my membership⇐ EdgeMember
8: else
9: my membership⇐ CellMember

10: end if
11: end if

Algorithm 2 The behavior of a cluster head. Note that behavior can changeto cluster
member (Algorithm 1) if this cluster head loses an instant-runoff based on random
pheromone IDs (Line 5). The runoff avoids mutual simultaneous annihilation of cluster
heads.
1: my strength⇐ 10{10 hops}
2: my ID ⇐ random integer
3: scents⇐ SmellDistinct(′clusteringpheromone′)
4: if detect one or more cluster heads in scentsthen
5: if my scent random ID< strongest scent’s random IDthen
6: behavior = ClusterMember
7: end if
8: else
9: Deposit(type=’clustering-pheromone’, strength=mystrength, payload=myID)

10: end if
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Fig. 4. (a) Clustering performance of two pheromone algorithms as anetwork of 4000
nodes is scaled in density. Time to complete cluster formation is independent of density.
(b) A snapshot of cluster formation att = 19.0 s using the Adaptive algorithm; lightness
indicates pheromone strength (green dots added to emphasize cell edges).

The VP API is designed around superposition but applications which utilize PAY-
LOAD need to read unique pheromones. Currently we uniquify the fields using PAY-
LOAD, but this can also be done by encoding a unique number into TYPE. The algo-
rithms in our case studies could be further simplified by offering common operations,
e.g.: “give me then strongest pheromones matching this type”, or “give me the payload
of the strongest pheromone of this type.” The design and selection of these operations
is the topic of future work.

6 Conclusion

We have shown that VP addresses the needs of ELFS applications: efficiency, long-
life, fault-tolerance, and scalability. We compare our Pheromone algorithms to existing,
well-known point solutions for the following problems: dissemination, sleep schedul-
ing, and routing. In addition, a novel scalable clustering application is examined. In
every case, algorithms using VP attain comparable performance because they leverage
the abundance of lossy links in the RF environment rather than trying to avoid them.
Simultaneously, VP algorithms are simple to program and rely on a spartan API, which
creates a powerful common optimization point.

The key contribution of VP is that it builds a simple conceptual interface to the radio
that is consistent across a broad range of system parameters(e.g. density, node dropout
rate). Applications built using VP can be fault-tolerant without having to re-implement
custom error control mechanisms or having to rely on link quality estimators.

Our experience using VP is that applications must think about every communication
as a broadcast, and this encourages the programmer to utilize that fact. The programs we
developed are small (10–30 lines of Python code) and thus easier to understand. The use



of parameter “tuning” can make optimization difficult; in our opinion it is imperative to
designadaptivealgorithms such as the clustering presented in Section 4.2.
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