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Abstract. We propose a generic communication primitive designed for sensor
networks. Our primitive hides details of network communication while retginin
sufficient programmer control over the communication behavior cdplica-
tion; it is designed to ease the burden of writing application-specific aamym
cation protocols for efficient, long-lived, fault-tolerant, and scalaplgiaations.
While classical network communication methods expect high-reliability links,
our primitive works well in highly unreliable environments without needing to
detect and prune unreliable links. Our primitive resembles the chemu&ienrs
used by many biological systems to solve distributed problems (pleres.
We develop and analyze the performance of an implementation of thigtigeim
called Virtual Pheromone (VP). We demonstrate that VP can attain peafare
comparable to classical methods for applications such as sleep ogedaut-

ing, flooding, and cluster formation.

This is a minor revision of the paper included in the Proceedings of theridn-
ternational Conference on Distributed Computing in Sensor Sytems ttiatizs

an additional reference to related work in Section 2.3.

1 Introduction

Most wireless sensor network (WSN) and ad-hoc networkindiegtipns demaneffi-
ciency long life, fault-tolerance andscalability. We refer to these as ELFS applications.
The goal of this paper is to demonstrate that Virtual Phere®/P) is an effective tool
for building ELFS applications.

It is commonly accepted that cross-layer design is necgssavrder to achieve
the levels of efficiency desired in most WSN and energy-caimstd ad-hoc network
applications [1, 2]. Eschewing the classical network lageabstraction model (OSI)
enables advancements in energy efficiency. €hisrgyefficiency comes at the cost of
programmerefficiency, because integration and debugging of thesecapioins can be
very complex. It is desirable to have mechanisms that baltme utility of abstraction
against the flexibility of cross-layer design. The sensdwnek field has entered an
era of consolidation wherein point solutions are being gaimed to create low-level
abstractions that are useful across many applicationgORn2.0 and UCLA's Tenet
are examples [3,4]. In short, some energy efficiency mustduket for generality and
ease of programming if sensor networks are to become ubigglit



1.1 Motivation

Sensor networks bring computer and network technologydsesl entanglement with
the natural world than ever before. Assumptions made irsidascomputing no longer
hold: communications are unreliable, nodes are unreliabtketerministic mapping of
the system state may be unattainable, and energy is a fisitenee. The combination
of alossy and random environment means that the behavioserisor network cannot
be perfectly determined; rather, we must be satisfied wigtifip behavioral qualities
or bounds on expected performance.

Because ELFS are bound so tightly with the physical worlstahds to reason that
natural communication mechanisms may provide insight theodesign of artificial
communication mechanisms appropriate for that environniany species use pher-
omones (scent signals) to communicate information andhimgdehavior in complex
and challenging environments. For instance, ants suadbsifrage for food and build
nests in spite of continually changing physical parametgraths are blocked, hazards
are presented, food sources come and go.

Natural systems are dynamic in the relationship betweasra¢bdr agents) and the
environment in which they reside. In a data-collection lese sensor network, the
sources of dynamism are radio interaction and node faiNieen a node is asleep,
it cannot participate in multi-hop communication, and whmatkets are sent, they
may collide with other transmitters’ packets. In more compscenarios, e.g. mobile
or sensor-actuator networks, dynamism is increased alarg parameters. We argue
that pheromone-inspired communications can be usefukisithple case and are very
desirable in the complex case.

1.2 Contributions

Because communication cost is expected to dominate seasworrk energy costs, we
have designed a communication primitive that is designeabfmoach the efficiency
of applications that are specifically tailored to their ®asRur goal is to trade a mini-
mal amount of energy efficiency for increased programmectieffcy and code reuse.
Moreover, the nature of our communication primitive leaaefficient, scalable appli-
cation design, because every transmission is recognizedbasadcast. Efficiency is
chiefly provided by a single-layer abstraction: simulatéfision of virtual pheromone
signals. This abstraction benefits from the presence ofagigtable links, rather than
requiring that they are pruned out. Finally, by using a commadmitive for all (or
most) communication, a powerful optimization point is ¢egbsuch that enhancements
to the primitive can benefit a large set of applications.

2 Overview

In the biological sense, a pheromone is a chemical markeantbe deposited by an
organism and detected by that and/or other organisms,a.thd direction of a male

moth to a female [5]. A pheromone dissipates via an evapergiocess; as a result
the strength of the pheromone decays with increasing distilom the source in the



spatial and temporal axes. Spatial decay maintains lgaslitommunication; temporal
decay reduces system complexity by ensuring that old irdition is purged from the
system.

2.1 Interesting Properties

Why is a spatio-temporally decaying information processridting in the context of
sensor networks? Let us examine the properties of thisrrdton process that are in
common with many sensor network applicatioBpatially-limited sharing of infor-
mation: sensor networks can only scale if internode inféimnasharing is limited by
some proces&ncoding of distanceto source: hop counts, for instance, are commonly
used as a cost metric in routing algorithnisicoding of time since deposition: the
relevance of information is crucial in allowing nodes tolabbrate with each other;
there is a significant difference between a sensor readorg éme minute ago and a
reading from one month ag&uperposition of like pheromones: akin to aggregation
by sum; allows reinforcemenhtmplicit gradient leading to source: gradients enable
efficientandscalablerouting algorithms because the routing information isexidn a
distributed fashion.

The net result of these properties is that all informatiochexge is via constrained
broadcast through a shared medium. This maps very well tdoehavior of a radio
communication system.

2.2 The VP Communication Primitive

VP also exhibits the five aforementioned properties, eaclwtoth serves a purpose
in the design of an ELFS application. Efficiency is driven byicost transmission
of information; VP requires no ACK signals and uses an efficf®oding technique
(Section 3.1). Fault-tolerance requires a level of redangand robustness to errors;
VP’s inherent redundancy provides a tradeoff of reliap#igjainst cost, and because no
explicit point-to-point communication is used, infornaatitransfer is highly tolerant
of node failure (as long as the network remains unpartitipnpplication scalability
requires highly localized communication and efficient clioation amongst neighbor-
ing nodes; VP pheromones propagate proportional to thegttreof the initial deposit,
which creates a user-selectable bound on distance. Theliegoof distance and time
in the pheromone strength, combined with superpositiorikef pheromones, allows
neighboring nodes to coordinate without requiring expangioint-to-point protocols
that are sensitive to faults.

2.3 Related work

The topic of communication methods in wireless networksagt; we reference repre-
sentative works from two important categories: localizecthmunication/control prim-
itives and applications using pheromone-like concepts.

In directed diffusion [6], information sinks (consumerg)btish interestswhich
are propagated through parts of the network; informatiamees (producers) publish



named data objects which are routed along the interestegradeolocation is assumed
so that interests can be distributed locally. Directedudifin is an application facilitat-
ing data transfer between sinks and sources and works bestavthow of information
will pass from a source to one or more sinks. In contrast, Vdl@ver-level primitive
intended for many communication tasks (including diffuslike routing; see Section
4.2).

RUGGED [7] is a routing protocol that utilizedata gradients or “fingerprints,”
rather than the interest gradients created by directeddiiiffi. Fingerprints are dissem-
inated by an environmental processes—not by the sensor rietvamd this creates a
possible efficiency benefit. Simulated annealing techriigue used to overcome local
minima or maxima in the sensor field, including regions in abhihe sensed level is
zero. Fingerprint routing is targeted specifically at datéiection applications in which
natural gradients exist in the phenomena to be measured.

In his master’s thesis [8], McLurkin develops a similar gimabne primitive for
sensor networks. His pheromone is closer to a true diffupracess, with nodes pe-
riodically sharing pheromone state and cooperatively yiagavalues (VP distributes
information once and decay occurs as a distributed praoc8ag)ificantly, the design
and evaluation of VP is efficiency-driven, whereas McLuikiconcentration was on
exploring inter-node cooperation and the structural g that can be constructed
with pheromones.

Payton et al. explore using “virtual pheromones” [9] forotib control. The phero-
mones are sent via infrared or other line-of-sight commation method; gradient de-
scent necessarily indicates an unobstructed path thatimesr may use. Characteriza-
tion of the infrared source and its spatial decay is used &stante estimator. Parunak
et al. use a pheromone-inspired memory model [10] to agsiteé coordination of
distributed decision-making systems. Brooks et al. uskgically-, chemically-, and
physically-inspired techniques (including one based @r@imones) in sensor network
adaptation techniques [11]. They find these techniques tetyerobust to errors while
attaining satisfactory power consumption.

2.4 Qualitative Expectations

It is instructive to consider the expected behavior of VPcasipared to the classi-
cal primitive of point-to-point transmission, before dely into technical analysis. We
expect VP to work well in dense networks since the signal capgmate many hops.
We expect VP to perform less well when used, naively, to imglet classical proto-
cols that utilize handshaking, acknowledgements, or gble@rt-to-point information
exchanges. VP should be highly tolerant of node failure gnaisus communication
because it benefits from the redundancy of broadcast andtitiae unreliable links.

Furthermore, due to the large time constants involved inghene decay, we ex-
pect VP to be most useful in latency-insensitive applicetidVhile fields can propagate
quickly, the rate of accomplishing a specific action-reacpair using pheromones is
not likely to exceed a classical communication approachiri&ance, any application
that leverages the superposition principle of pheromogeading will take some time
to reach a steady state response.



We begin by discussing the parameters of a pheromone coratiami primitive,
and the details our specific implementation, in Section & fietrics relevant to ELFS
are presented in Section 4 and then applied to four apgitatenarios and analyzed
in Section 4.2. Section 5 describes the future directiorhisf tesearch, and Section 6
concludes the paper.

3 Design

We desire to implement a mechanism displaying the propgditieed in Section 2.1: en-
coding of space and time, spatially limited flooding, supsition, and gradient gener-
ation. Energy efficiency constrains our implementatioriay®. We analyze the design
problem as the following set of sub-problems:

Programmer API. How should a program deposit and detect pheromones? What in-
formation should be provided, and in what form? Our goal imtnimize the amount

of code required to handle communications, yet provide ghdlexibility to make the
primitive useful.

We believe deposition should encode, at a minimum, theviatig fields: TYPE,
STRENGTH, and SOURCE PAYLOAD (arbitrary data) should be an optional parameter.
Reading a pheromone should provide at least the first twecstigddPE and SSRENGTH.
SOURCE may be required for some applications. The arbitrary payfteld could be
used as a way to encode complex data, such as a non-integéygtor an uniquifier.

Spatial Dissipation Model.The desired behavior is to have the strength of the field
decay with increasing distance from the pheromone soutts.éhcodes physical dis-
tance from the sender and limits the range over which datgovapagate. Candidate
dependent variables for this decay include hop count, R8$jeolocation.

Temporal Dissipation ModelThe desired behavior is to have the strength of the field
decay with increasing time since the deposition of the pineree. Exponential decay
is ideal because it favors recent information while allayvirtd information to persist at

a low level. Half-life may be global, indepdenent for eaclefmmone, or chosen from

a small set (e.g{fast-decay, slow-decay, depending on application needs.

Pheromone Encoding & Transmission Strate@fe transmission strategy of the pher-
omone information can have a large impact on the energy exifiyi of the operation.
If maximum propagation speed is desired, a packet must idavezach deposition. If
the constraint of propagation speed is relaxed, packeheaermay be amortized over
several pheromone depositions.

3.1 VP: A Design Implementation

VP encodes YPE, STRENGTH, SOURCE, and RAYLOAD in a table and provides two
functions to store (and implicitely transmit) and retrigpfeeromone signals: EPOSIT



and SvELL. Utility functions to support common uses of pheromonesneiduce pro-
gram size and be useful across applications. To facilita¢eapplications in Section
4.2, we have implemented a function to forward a packet albopgeromone gradient
(FWDGRADIENT), and a function to return a list of distinct sources for arph&ne
type (SVELLDISTINCT).

DEPOSIT(TYPE, STRENGTH, PAYLOAD ): Deposit a pheromone identified by PE
with strength equal tSTRENGTH PAYLOAD is optional. The subsystem decides if
the information should be propagated to neighboring nodesrding to the rules
in Section 3.1.

SMELL (TYPE): Return the net strength of the pheromone(s) matchirrg.

SMELL DISTINCT (TYPE): Return a list of each distinct pheromone detectable at this
node. This bypasses superposition and includes the pagfasath pheromone (if
present).

FWDGRADIENT (PACKET, TYPE, DIRECTION ): Forward a packet according to the
gradient of pheromoneyPE; DIRECTION may beuphill, downbhill, or level

Storage and Retrieval of Pheromone State.The internal data structure is ax4N
table (Table 1). To support superposition, each unique/$gpiece pair may have its
own entry in the table, but when the pheromone is read all mgitfs a common type
are summed together. Payload is suppressed when usiegLShut may be read using
SMELLDISTINCT.

Table 1. A simple data structure for storing pheromones. The streteytel associ-
ated with typea from sourcei is denoted,;. For example, BELL(a) =l + 15 and
SMELL (b) =Ipk. Payload is labeled equivalently to strength.

type source strength payload

ta S lai Pai
ta Sj I aj Paj
th ok Pok

Deposition and Propagation of PheromonesWhen a pheromone is deposited with
strengths, the table is first checked for a hit omYPE,SOURCE. There are three possi-
ble cases:

1. If there is no hit, the data is stored and then schedulettdosmission as a phero-
mone updatevith strength(s— 1).

2. If the hit has a strength less thgrthe “no hit” action (1) is taken.

3. Ifthe hit has a strength s, the deposition is ignored.

This algorithm sets up a cone-shaped fiptibr to to initiation of the decay process
(Section 3.1). The initial field has a slope of one pheromarnieper hop; as a result,
distance is derived from radio hops.



Broadcast Suppression Technique.Pheromone updates attempt to limit redundant
transmissions. A depositing node that wants to send an epuates through the phases
listed in Table 2. Whileobserving the node snoops for and accumulates the count of
concurrent depositions by neighboring nodes. Intthesmittingphase, the snoop count

is compared to a threshold, If this threshold is not exceeded, the node transmits the
pheromone; in either case, it calculates the expected ptwere distribution time and
waits for the propagation to complete. This delay equalptieromone strength at this
node,s, times the expected observation delay at each hop (induglicket transmit
time); this algorithm forms a schedule for initiation of tHestributed decay process.
Thedecayingphase lasts until the pheromone reaches a minimum thregh(@ection
3.1).

Table 2. A pheromone deposition is a distributed process includimget phases at
every nodd: observation (for suppression), transmission (or sugwa} and a pause,
and then decayi is the expected transmit timg,is pheromone strength at nogdeand

T is a constant.

phase duration

observing tobs= [0, T]

transmitting (or suppressingops+ tix)S

decaying until pheromone is depleted

Time-Decay of Pheromones.All nodes concurrently run a decay process on their
pheromone tables. The decay process is a discretized ap@ation of continuous ex-
ponential decay, updated everysecondss(t + 1) = as(t). The process terminates
whens(t) < &, wherea is constant, is the update intervak is the termination
threshold, and(0) is the initial strength at this node as defined in Section 3.1.

VP maintains an event list large enough to keep one “nextydéoee” for each
pheromone. For large scale systems with many pheromonesultl be more appro-
priate to have one global timer that decays all pheromohésntay require a smaller
T (Section 3.1).

Constants. We use the following constants in our implementation of Vddf-life =10 s,

T =100ms,e = 0.1,tx = 2ms, andnp = 2. tx is derived from a 250 kbps radio and
40-byte packet (8 ms to transmit, plus processing tim@).is chosen to optimize
efficiency (we tried values 1,2,3,4)—it must be tuned to thenR¥elel (discussion in
Section 5).

Memory Requirements. We divide the pheromone information into two categories:
userandsysten(Table 3). Parameter precision may be adjusted to applitatiquire-
ments. Each pheromone requires 7-14 bytes of informatiefof® compression) to
transmit; a packet payload of 32 bytes can contain at ledgpti2eromones.



Table 3. memory requirements to store a pheromone (bytes) néRedecay timés not
transmitted Systenvariables are used to propagate and decay the signal, andénc
uservariables, which are exposed by the API. The total footgfregach pheromone is
between 7 and 14 bytes.

space  parameter bytes

system source ID 2-4
spatial metric  1-2

next decay time 1-2

user type 2-4
strength 1-2

4 Metrics & Evaluation of VP

Because VP is targeted at ELFS applications, we choose otrecifog each ELFS
quality:

Efficiency: the communication cost, ipackets sent to accomplish a taghl else be-
ing equal, a task that requires less communication is mdicsesft.

Long-livedness: the lifetime of the network, iseconds-until-dysfunctiofthis is dif-
ferentiated from efficiency because application requimrgsiesuch as coverage, de-
pend on both node death distribution and the fault-tolezaxidhe algorithm. It is
reasonable to expect, however, that an efficient algoritliialgso be long-lived.

Fault-tolerance: the lifetime, adong-livednesss observed with these varying system
parametersnetwork density, random node failure probability, and pelmhetwork
occlusion

Scalability: thelong-livednesss observed when the network is scalechmde place-
ment densityin nodes per unit area.

4.1 Experimental Methodology

Showcasing all possible applications of our primitive igdmed the scope of this paper;
rather, we aim to discuss several applications and tasksdinebe accomplished using
our primitive and to provide evidence of satisfactory parfance.

Our experiments are performed using a custom simulatoeda@HLPS. We also
verify functionality with physical deployment on 25 Telo®tas using a less complete
implementation of VP. Whereas implementation on motes prdive functionality of
the primitive, only simulation allows us to explore VP in thavironment it was de-
signed for: large scale networks.

We previously developed the Agent High-Level Pythonic Satar (AHLPS) to al-
low simulation of agent behavior in large sensor networ3.[A pheromone primitive
was added to AHLPS to support the research in this paper. AHiges the TOSSIM
empirical radio link model [13] to simulate link qualftyout does not simulate a PHY

1 While the TOSSIM model is based on empirical data ranging from 0 to 40rsjate have
scaled this data so that 1 distance unit under AHLPS is equivalent to 46smatier TOSSIM.



layer or complex MAC layer. As a result, radio contention & modeled; this is ac-
ceptable in our simulations because the mean communiaatiers low (generally less
than a packet per second per node). AHLPS allows us to igatstiat a high level, the
behavior of an agent-based program. Further verificatitineis performed in TOSSIM
and/or on physical nodes using our agent framework [14].

4.2 Case Studies

We will now use results on the behavior of representativikestand applications to verify
that VP supports the requirements of ELFS: efficiency, ltwgdness, fault-tolerance,
and scalability. Any algorithm implemented using VP is redd to as “Pheromone.”

One way to measure efficiency is to take the ratio of a costgigdlly energy) and a
benefit (generally network lifetime). Unfortunately, réswof this measure are specific
to each application. We desire to separate ouhditator of efficiency that will imply
efficiency performance for many applications. Because m@ssor networks commu-
nicate some shared information, we analyze the efficienaistfibuting information
using three methods: flooding, epidemic routing, and VP.

Fault-tolerance is also very application-specific becafsthe specificity of the
term “fault.” We attempt to pick two common fault scenaribattmany networks ex-
pect to incur: a long-period disruption to a large sectiothefnetwork, and intermittent
dropouts of specific nodes. Because it is impossible to gdimerall applications’ sus-
ceptibility to these specific faults, we choose a basic nmeasiue ability to route infor-
mation from one part of the network to another. This embotivesconcepts: inter-node
collaboration, and network connectivity; most sensor gtvapplications require both.

Efficiency, fault-tolerance, and scalability are regaisifor long-livedness, and an-
alyzed separately. Our aim is to show that VP enables lohgextension in a way
applicable to many applications. We chose to examine covestrained sleep schedul-
ing because it can be used in many applications to extenitrige While not a proof of
generality, such an example provides evidence for our aegiim

Scalability is extremely important in many sensor netwogkigns. Unfortunately,
few truly scalable networks have been deployed in the fieklavé developing a multi-
hop clustering algorithm that we believe will be crucialletscalable operation of very
large networks, allowing collaboration and organizatibfaoge (but constrained) sub-
sets of nodes. Multi-hop clustering has been mostly a fdetimahe literature, although
it does resemble the “Multiple Sink Network Design ProblgiB] posed by Oyman
and Ersaoy. Our goal is to show that our multi-hop clusteramktscales perfectly using
VP.

Efficiency. Flooding is the most basic form of dissemination. Epidentjpathms,
such as Trickle [16], perform efficiency optimizations @ssuppression. We compare
the use of VP to disseminate a unit of information to a netwafrk 000 nodes using
naive Flood and Trickle. Comparison is on the basis of packent, per node, per
unit of information, with the independent variable of netlwdensity (Figure 1). The
simulation is run for 20 seconds but statistics are coltbatehe earliest time for which
cover(fraction of nodes having received the information uni948% or higher.
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Fig. 1. Performance of Trickle, Flood, and Pheromone in infornmatisssemination.
Both Trickle and Pheromone benefit from increased networisitle Pheromone is
bounded above by both Trickle and Flood in terms of efficiemt¢yle matching Flood'’s
rapid speed.

Flood has a constant cost because all nodes participateiy #vod event. Trickle
benefits from increasing network density because more nmatebe suppressed; how-
ever, there is an unavoidable baseline cost in order to ramatgorithm’s periodic
probes. Increasing the maximum probing interval would €ase this cost but also
decrease the responsiveness of the system. Because e@&begnn from scratch, we
also plot “Trickle—adjusted,” in which every node is givemed'free” packet to perform
the initial round of probes.

There are two reasons that Pheromone performs better thekieTim this test.
First, there is the aforementioned base cost. Second,l@dgkobe-response protocol
means that, in the limit of extreme density, distributingrat wf information would
require at least three transmissions: broadcast a newowetsioadcast a suppressing
data request, broadcast a data response. Pheromone wquilek renly a minimum of
two transmissions: broadcast of pheromone, and one sigipgae-broadcast.

The flooding coverage chart indicates that none of the dlgos perform satis-
factorily below a density of 10. It is important to note thaickle guaranteesl00%
cover in a connected network while Flood and Pheromone, thight probabalistic ap-
proach, attain 95-100% coverage. In addition, the lack oftemtion in the AHLPS
radio model gives advantage to Flood and Pheromone’s hateeidormance. Phero-
mone and Trickle serve different purposes, but it is clear Bheromone is an efficient
dissemination mechanism.

Memory and computational resources are not modeled in AHMRSnote that all
three algorithms are computationally simple, with Phernenbeing the most complex
because our current implementation uses a floating pointiptichtion (Section 3.1).
The memory requirement for Pheromone is slightly greatertdiuhe S URCE param-



eter. (3SRENGTHin Pheromone is balanced byd#CouNT in Flood and \ERSIONIN
Trickle.)

Long-Livedness. A well-referenced and effective sleep scheduling algarithPEAS [17].
We implemented PEAS under AHLPS as well as our own schedud¢uses VP. We
use a metric from the PEAS pap¢ime that 90% 3-cover is maintaineldl-coveris
defined as the fraction of network area observed by at leastles. We use the same
operating constants as Ye et al.: idle power 12 mW, sleep p8ye¥V, transmit energy
600uJ per packet, and receive energy 120per packet.

Pheromone has a single tunable parameteirdaSH A single pheromone is sent
as a beacon by all awakened nodes; if the perceived level aea gode is greater
than THRESH, the node will go to sleep with probability proportional teetdifference.
PEAS has two parameters, the mean rate at which nodes will wake up and probe for
neighbors, andRp, the probing range. We sdt= 1Hz andR, = 1.0 (the maximum
radio range).

Sensing range is set to 2.0, or 2 times the maximum radio ra&8igee most good
links are at a distance 0.2, the sensing range is significantly larger than the prob-
ing range. 3-cover failure for three or more seconds is cemsd a failure. We set
THRESH= 1.0 to match PEAS’ behavior (a node sleeps if any probe resgosaise
heard). The fundamental difference between PheromoneBBA& % that the former is
probing (broadcast announcements) while the latter isngp{broadcast request, uni-
cast response).

Time to Failure for 3-Cover (90% Threshold) Packet Transmissions

== PEAS RS || eieeeemi
= Pheromone —— Pheromone |, _ _.-===""
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Fig. 2. (a) PEAS is highly effective at extending network lifetinkheromone is nearly
as effective for lower densities but loses ground as defsisgaled. (b) PEAS has a
radio overhead nearly 10 times greater than Pheromone.

Figure 2 shows that While PEAS is very effective (a), it regsia high overhead
in transmissions (b) because each broadcast probe is fadldy multiple unicast re-
sponses. PEAS offers an additional benefit that Pheromoes mlat: the pursuit ol



probing rate. (Effectively, X" is fixed in Pheromone.) Pheromone offers performance
comparable to PEAS at a much lower transmission overhedutaiting it would per-
form very well in applications with a higher transmit-tdedcost ratio. Perhaps the
biggest benefit of Pheromone is that it is easily integratéal & cross-layer algorithm
design.

Fault-Tolerance. We wish to examine fault models sufficiently simple to avaidd
of generality in the results. We examine two modglartial network occlusiorand
random network dropout®uring an occlusion, a large portion of the network becomes
unreachable (e.g. due to a signal jammer) betweeri50,150 s. During a dropout,
nodes may become unreachable for a brief period (e.g.,ddstd); the dropout rate is
A and the dropout interval is exponentially distributed witlkan 1s. Network size is
1000 nodes.

These fault models are applied to a partial implementatfddSR [18]. DSR is an
on-demand point-to-point routing algorithm designed finhac networks. Because the
DSR specification is complex, we implemented in AHLPS only fbatures involved
in robust delivery from a single source to a single sink. WHile DSR specification
allows for asymmetric data/ACK paths, it does not specifyezianism, so our imple-
mentation uses only symmetric paths.

We compare DSR to gradient ascent routing on a pheromoneRiat#ets are trans-
mitted once per second and in the case of Pheromone, a pheeasmdeposited at the
sink once every 10 seconds. There are no tunable parameté&kdromone. A signifi-
cant difference is that Pheromone will follow multiple sittaneous paths when routing
on a gradient (all uphill paths are followed), whereas DSRdigcover parallel paths
and then use just one at a time. Analysis of packet overhe#¢pfesented here) indi-
cates that Pheromone has a lower packet overhead for thpréatnted here.

Because AHLPS uses an empirical radio model, nodes have ngglybors at the
fringe of connectivity and with correspondingly high losges. DSR does not per-
form well under this regime because it discovers, and attenopuse, faulty paths; it
must explore many of these before finding a quality path. Tevigte this problem, we
implemented an omniscient, zero-overhead, link-quaktynegator (LQE) that permits
only high-quality links. High quality is defined as an expattound-trip loss rate of at
most 1%. Pheromone is permitted to run under both the erapaitd LQE modes for
comparison, but performs better without LQE because ofrtbeeased redundancy.

We see in Figure 3 that DSR outperforms Pheromone with the te@ftire (a) but
is inferior without it. Random dropouts (b) affect DSR madnan Pheromone because
DSR must explore new routes more oftemais increased. Performance without LQE
is important because in the real world LQE is not free, egigcin mobile or time-
fading environments.

Scalability. Our aim in this section is to demonstrate that a scalableiGgijun can
be constructed from our primitive. We chose multi-hop @usiy and implemented
two versions using only VP for communicatiagenericandadaptive Generic is based
loosely on LEACH [19], in which a cluster head probabilip, controls cluster head
formation. Adaptive effectively adapts, distributedly at each node. Both algorithms
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Fig. 3. DSR versus Pheromone gradient routing (a) during an oaiusient and (b)
with varying dropout rateX). A = 0 corresponds to no dropouts. Density is 40.0 nodes
per unit area in both cases and LQE indicates an omnisciena;averhead, link-quality
estimator. Pheromone does not require LQE, an importawierifiy benefit, and is far
more tolerant to random node dropouts. DSR, on the other, pgmibrms much better
when LQE is available.

use a pheromone deposit to form clusters—the cluster hearbitiep pheromone and
nodes choose cluster membership based on observed phersimemgths.

We consider the algorithm complete when timean cluster sizéas stabilized
within 98% of its final value. The scalability of both algdmihs is apparent in Figure
4; density does not affect the time to completion. Both athors are scalable because
of pheromones’ suppression mechanism—in a network twiceease] twice as many
nodes will be suppressed during pheromone deposition.

Adaptive and Generic both stabilize at abbut 40 s and have similar mean trans-
mission rates. Adaptive has a higlpsraktransmission rate, which may be a disadvan-
tage in some applications. Given the similar performandaefwo algorithms, we feel
that Adaptive is superior because tuningpgf is not required. The Adaptive algorithm
is presented in code listings 1.

5 Future Work

In future work it would be beneficial to examine the constarstsd in pheromone dis-
tribution and decay. Optimaj, the suppression constant, is likely to depend on the
specific MAC and PHY. Highen means a greater packet overhead and potential for
collisions. Setting] too low will result in a lack of redundancy. In our experimgnt
one global pheromone decay half-life was sufficient. We wdilk to explore the ben-
efit of allowing different half-life settings. Finally, lat repair of the pheromone field
(e.g. when a node is added or wakes up from sleep), as in tbpbged by Han et

al. [20], would drastically improve response time at a sroadirhead cost.



Algorithm 1 The behavior of a cluster member. All nodes initially takis thehavior
and can change to cluster head (Algorithm 2) if no clustedlpdgeromones are present.

1: scents< SmellDistinct’clusteringpheromong
2: if scents is emptthen
3:  WAIT for snoop interval
behavior< ClusterHead
else
if two strongest scents are of equal strerthtin
my_membership= EdgeMember
else
my_membership= CellMember
10:  endif
11: end if

© N gk

Algorithm 2 The behavior of a cluster head. Note that behavior can chendester
member (Algorithm 1) if this cluster head loses an instamoff based on random
pheromone IDs (Line 5). The runoff avoids mutual simultarssannihilation of cluster
heads.
: my_strength<= 10 {10 hops
: my_ID < random integer
: scents&< SmellDistinct’clusteringpheromong
. if detect one or more cluster heads in scémés

if my scent random IB< strongest scent’s random fben

behavior = ClusterMember

end if
else

Deposit(type="clustering-pheromone’, strength=styength, payload=mjD)
: end if
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Pheromone Algorithm Run-Time Scaling with Density
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Fig. 4. (a) Clustering performance of two pheromone algorithms astaork of 4000
nodes is scaled in density. Time to complete cluster fownas independent of density.
(b) A snapshot of cluster formationtat 19.0 s using the Adaptive algorithm; lightness
indicates pheromone strength (green dots added to emphagizdges).

The VP API is designed around superposition but applicatishich utilize RY-
LOAD need to read unique pheromones. Currently we uniquify thesfiesing Ry-
LOAD, but this can also be done by encoding a unique number imeTThe algo-
rithms in our case studies could be further simplified by rirffgg common operations,
e.g.: “give me then strongest pheromones matching this type”, or “give me ttyéopal
of the strongest pheromone of this type.” The design anadsefeof these operations
is the topic of future work.

6 Conclusion

We have shown that VP addresses the needs of ELFS applisaétiitiency, long-
life, fault-tolerance, and scalability. We compare ourf®hgone algorithms to existing,
well-known point solutions for the following problems: d&mination, sleep schedul-
ing, and routing. In addition, a novel scalable clusteripglgation is examined. In
every case, algorithms using VP attain comparable perfocenbecause they leverage
the abundance of lossy links in the RF environment rather thang to avoid them.
Simultaneously, VP algorithms are simple to program andaela spartan API, which
creates a powerful common optimization point.

The key contribution of VP is that it builds a simple concegpinterface to the radio
that is consistent across a broad range of system paran(egrgensity, node dropout
rate). Applications built using VP can be fault-tolerantivaiut having to re-implement
custom error control mechanisms or having to rely on linkiiggastimators.

Our experience using VP is that applications must think abeery communication
as a broadcast, and this encourages the programmer te thidizfact. The programs we
developed are small (10-30 lines of Python code) and thisréasinderstand. The use



of parameter “tuning” can make optimization difficult; inrapinion it is imperative to
designadaptivealgorithms such as the clustering presented in Section 4.2.
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