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ABSTRACT Dynamic Reconfiguration, Heterogeneous Resources, Fully 
Polynomial Approximation Algorithm. Dynamic reconfiguration imposes significant penalties in 

terms of performance and energy. Scheduling the execution 
of tasks on a dynamically reconfigurable device is therefore 
of critical importance. Likewise, other application domains 
have cost models that are effectively the same as dynamic 
reconfiguration; examples include: data transmission across 
multiprocessor systems; dynamic code updating and 
reprogramming of motes in sensor networks; and module 
allocation, wherein the sharing of resources effectively 
eliminates inherent reconfiguration costs. 

1. INTRODUCTION 
Reconfigurable computing has the potential to dynamically 
adapt a hardware platform to meet the requirements of an 
application; however, the overhead associated with 
dynamic reconfiguration has inhibited the widespread use 
of this promising technology over the past two decades. In 
many cases, the delay of dynamic reconfiguration is 
comparable to the runtime of the application; even when 
dynamic reconfiguration is used, its latency—rather than 
the latency of the application—will dominate the overall 
runtime. Consequently, effective scheduling algorithms 
that can map tasks onto a set of reconfigurable resources—
including the scheduling of reconfiguration operations—
are required in order to make reconfigurable computing a 
reality.   

This paper contributes a fully polynomial time 
approximation algorithm for the problem of scheduling 
independent tasks onto a fixed number of heterogeneous 
reconfigurable resources, where each task has a different 
hardware and software latency on each device; the 
reconfiguration latencies can also vary between resources. 
Assuming that P != NP, an optimal algorithm for this 
problem would exhaustively enumerate all assignments of 
tasks onto resources; this search space is exponential in 
size. The algorithm presented in this paper is a fully 
polynomial ε-approximation. Using a trimming procedure, 
a provably polynomial sub-space of possible solutions is 
explored while ensuring that the solution found is within a 
factor of at most 1+ε from the optimal solution. This 
approach can also extended to task graph scheduling in 
which one task may be dependent on several others. 

Virtually all modern parallel systems employed today are 

s library 

composed of heterogeneous components, each of which 
has an associated reconfiguration cost. The most obvious 
component would be a dynamically programmable FPGA, 
or some other type of coarse-grained reconfigurable device. 
In a more general sense, the time and energy consumed 
through the transmission of code and/or data to remote 
processors across a network can also be modeled as a form 
of reconfiguration [30][31], even though the underlying 
hardware platform does not change. One particularly 
poignant example of this type of reconfiguration is 
dynamic module uploading in sensor networks.    

Another application is the allocation of variou

A general-purpose processor and an FPGA were used to 
experimentally validate the proposed technique using a pair 
of encryption algorithms. The latencies of the schedules 
obtained by the approximation scheme were at most 1.1x 
longer than the optimal solution, which was found using 
integer linear programming; this result is better than the 
theoretical worst-case guarantee of the approximation 
algorithm, which was 1.999x. The length of the schedules 
obtained using list scheduling, a well-known polynomial-
time heuristic, were at most 2.6x longer than optimal, 
demonstrating that the proposed approximation algorithm 
is useful both in theory and practice.  

modules to available resources given a fixed area 
constraint. Resource sharing among IP cores can reduce the 
area, as well as other costs, and can therefore maximize the 
number of library modules implemented in hardware. [24] 
Resource sharing, in this context, can be modeled as the 
absence of a reconfiguration cost. Sharing resources can 
reduce the amount of time spent reconfiguring a device at 
runtime, and can therefore reduce the overall application 
latency.  

Keywords 
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All of these problems can be reduced to a straightforward 
scheduling problem on a set of heterogeneous resources 
with heterogeneous reconfiguration costs.  

1.1 Contribution 
This paper presents a full polynomial-time ε-approximation 
algorithm that solves this scheduling problem. An 
approximation algorithm is a heuristic whose solution 
quality is guaranteed to be at most a constant factor away 
from the optimal solution. A fully polynomial-time 
approximation algorithm is one whose solution quality and 
runtime can be varied according to a term denoted ε [2, 7]. 
The ε-approximation algorithm presented in this paper is 
based on an optimal scheduling algorithm that considers all 
possible assignments of tasks to resources. A subset of the 
possible assignments is considered; the specific choice of 
which assignments to consider yields the ε-approximation. 
Two sets of experiments confirm the efficacy of the ε-
approximation approximation algorithm. The first set of 
experiments, on a randomly generated set of input data, 
compares the ε-approximation algorithm to list scheduling, 
a well-known and well-understood heuristic that has been 
used in the past for a wide variety of scheduling problems, 
and to an optimal integer linear programming (ILP) 
formulation of the problem. The ε-approximation algorithm 
found the optimal solution in the vast majority of cases, 
while list scheduling found optimal solutions rarely. 
The second set of experiments focuses on parallel 
encryption using the Advanced Encryption Standard (AES, 
a.k.a. Rijndael) algorithm: blocks of data to be encrypted 
are scheduled on a system containing a general-purpose 
processor and an FPGA. Once again, the ε-approximation 
algorithm found optimal and near-optimal solutions in all 
cases, while list scheduling performed considerably worse. 
Altogether, these experiments validate the efficacy of the ε-
approximation algorithm while confirming that the 
solutions fall within the theoretically established bounds.  
Lastly, we briefly sketch a set of extensions to the ε-
approximation algorithm that allow it to be used in the 
context of task graph scheduling, where tasks may be 
dependent on one another and where there is a 
communication costs between dependent tasks that are 
scheduled on distinct resources.  

1.2 Paper Organization 
The paper is organized as follows. Section 2 begins with a 
motivating example. Section 3 formalizes the problem 
statement. Section 4 presents two optimal solutions to the 
problem: an ILP formulation, which we implemented, and 
a dynamic programming algorithm, from which the ε-
approximation algorithm is derived in Section 5. Section 6 
presents the experimental evaluation of the ε-
approximation algorithm and compares it to list scheduling 
and the ILP formulation. Section 7 describes a set of 

extensions that adapt the ε-approximation algorithm to task 
graph scheduling. Section 8 proceeds to summarize related 
work, and lastly, Section 9 concludes the paper. 

Table 1. Tasks to schedule. 

Task 
Type 

Execution Time 
on Processor 

Execution Time 
on FPGA Task 

1 1 5 2 

2 2 4 3 
 

 
2. MOTIVATING EXAMPLE 
This section presents a motivating example for the 
scheduling problem that illustrates the key point of the ε-
approximation algorithm, which is the primary contribution 
of this paper. We are given two resources: a processor and 
an FPGA with respective reconfiguration costs of 0 and 5. 
Table 1 lists two tasks to be scheduled, including their 
respective runtimes on the processor an FPGA. The tasks 
have distinct types, meaning that the FPGA must be 
reconfigured between the execution of one task and 
another. 

Scheduling is performed in a 2-dimensional space, where 
the x-axis represents the runtime of tasks on the processor 
and the y-axis represents the FPGA. Fig. 1(a) considers the 
potential assignment of the first task to both of the 
resources. The points (0+5, 0) and (0, 5+2) represent the 
time taken to schedule the task on the processor and the 
FPGA, inclusive of reconfiguration costs. Fig. 1(b) 
proceeds to schedule the second task following the first. 
This yields 4 data points: (0, 15), (4, 7), (5, 8), and (9, 0).  

The runtime of each data point (x, y) is max{x, y}. For 
example, point (4, 7) represents the parallel execution of 
Task 1 on the FPGA and Task 2 on the processor, requiring 
a total time of 7; point (5, 8) represents the parallel 
execution of Task 1 on the processor and Task 2 on the 
FPGA, requiring a total time of 8. Point (0, 15), in contrast, 

(a) 

FPGA FPGA

Eliminate 
this point 15 

5+3

7 7
0+4 

5+2 5+3

50+5 Processor 95 Processor
0+4

(b) 

Figure 1. (a) Assignment of Task 1; (b) Assignment of Task 2. 
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represents the serial execution of both tasks on the FPGA, 
and point (9, 0) represents the serial execution of both tasks 
on the processor; the total times are 15 and 9, respectively.  

The optimal solution for these two tasks is point (4, 7); 
however, this example also illustrates something further. 
Suppose that there were several additional tasks to be 
scheduled. In this case, the four points in Fig. 1(b) are 
partial solutions (it should be noted that none of these 
partial solutions is guaranteed to be part of the optimal 
solution).  Within these partial solutions, however, it is 
quite clear that point (4, 7) is superior to point (5, 8): if 
there were more tasks to schedule, then (5, 8) could not 
possibly be part of an optimal schedule, as such a schedule 
could be improved via substitution of point (4, 7) instead. 
Hence, the point (4,7) dominates (5,8), and this point can 
be eliminated without comprising the optimality of the 
algorithm. The ability to remove points from consideration 
is a key feature of the ε-approximation algorithm described 
in Section 5.   

3.  PROBLEM STATEMENT 
The problem addressed in this paper is to schedule N 
independent tasks onto a fixed set of M heterogeneous 
resources with heterogeneous reconfiguration costs; we 
assume that the scheduling is non-preemptive, meaning that 
the execution of a task is not interrupted once it has been 
scheduled. The goal is to minimize the makespan, i.e., the 
completion time of the final task. 
Independent tasks means that there is no precedence 
relation among tasks, i.e., given a sufficient number of 
resources, all of the tasks can be executed in parallel; the 
problem, therefore, only becomes challenging when M < 
N. This is a special case of general task graph scheduling 
where the task graph contains no edges. 
Each of the tasks can have different and unrelated 
execution times on each resource; each resource has an 
associated reconfiguration cost. We make two simplifying 
assumptions regarding reconfiguration costs: (1) 
reconfiguration is preemptive, i.e., no task may execute on 
a resource during reconfiguration; and (2) the 
reconfiguration cost is known a priori.  
By extending the notion of a resource to also be a portion 
of an FPGA that can be partially reconfigured, partial 
reconfiguration can also be addressed. The approach 
presented in this paper is robust enough to handle partial 
reconfigurations, for cases where the portions of the FPGA 
to be partially reconfigured are known. 
Clearly, this model abstracts away many low-level details. 
For example, consider a program executing on a processor. 
Here, we assume that the execution time is constant. In 
reality, there may be many different execution times, 
depending, for example, on which optimizations were 
enabled during compilation. The same is true for execution 

on an FPGA, as variations in high-level optimizations, 
technology mapping, floorplanning, placement, and routing 
can all affect the latency of the task.  
Each task has an associated type, whose implication is as 
follows. Suppose that tasks t1 and t2 are scheduled to 
execute consecutively on resource r. If their types are 
different, then r must be reconfigured following the 
execution of t1 in order to execute t2; if their types are the 
same, then the reconfiguration is unnecessary. Exploiting 
task types to eliminate unnecessary reconfigurations is key 
to achieving low-latency schedules under this model.  
An alternative model allows the reconfiguration costs to be 
associated with each task type rather than the resources. 
This, for example, can model partial reconfiguration for 
FPGAs. The advantage is that smaller tasks do not need to 
spend the time to reconfigure the whole device; however, 
there are still some restrictive assumptions: (1) This 
approach models reconfiguration time, but not area, i.e., 
two small tasks with short reconfiguration times cannot 
execute simultaneously on the same resource; (2) in 
practice, the reconfiguration time depends on both the task 
and the resource, e.g., the reconfiguration time of task t on 
an Altera Stratix-series FPGA is different from that of an 
Altera Cylone-series FPGA, and a Xilinx Virtex-series 
FPGA, etc. These details are abstracted away in our model. 

3.1 Problem Details and Decomposition 
The scheduling problem can be decomposed into two 
interacting subproblems: (1) the binding of tasks to 
resources; and (2) computing a schedule for each task on 
each resource. Due to the independence of tasks, the 
optimal solution to step (2) is to schedule all tasks of the 
same type that are bound to the same resource 
consecutively, as this minimizes the aggregate 
reconfiguration delay. This is implicit in scheduling 
heuristics presented in [21][22][28], and we formally prove 
its optimality in Theorem 1. 

Theorem 1. Assume that each task is bound to exactly one 
resource. Then the optimal schedule executes all tasks of 
the same type consecutively on each resource.  

Proof. Let S = (t1, t2, …, tn) be an ordering of tasks that are 
bound to a resource, R. Now, let us decompose S into five 
sub-orderings, S = S1S2S3S4S5, such that S1 = (t1, t2, … ta), 
S2 = (ta+1, ta+2, ..., tb), S3 = (tb+1, tb+2, ..., tc), S4 = (tc+1, tc+2, 
…, td), S5 = (td+1, td+2, …, tn), S2 and S4 are non-empty and 
only contain tasks of type i, S3 is non-empty, and ta, tb+1, tc, 
and td+1 all have types other than i. We prove by 
contradiction that S is sub-optimal.  

Assume to the contrary that S is an optimal ordering, i.e., 
that L(S), the latency of executing the tasks in order S, 
including reconfiguration latencies, is minimal among all 
orderings.  
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4.2 Dynamic Programming Algorithm Let Σk be the latency of executing all tasks in Sk, including 
reconfiguration latencies.  The optimal algorithm is formulated as a dynamic 

programming problem. An M-dimensional space is created 
where M is the number of resources (e.g., M = 2 in Fig. 1). 
Points are plotted onto the graph, according to their 
execution times, or costs.  For example the point (3, 4, 0) 
represents 3 units of time on the first resource, 4 units of 
time on the second resource, and 0 units of time on the 
third.  

For S2 and S4, all tasks have type i. Let ρi be the latency of 
reconfiguring R to support tasks of type i, and let L2 and L4 
be the respective latencies executing the tasks in S2 and S4, 
without the reconfiguration latencies. Therefore, Σ2 = ρi + 
L2 and Σ4 = ρi + L4.  

Then: 
Pseudocode for the optimal algorithm is shown in Fig. 3.  L(S)  = Σ1 + Σ2 + Σ3 + Σ4 + Σ5 L(S)  = Σ1 + Σ2 + Σ3 + Σ4 + Σ5 





=
otherwise

k  typeof is i task if 
0
 1

t ki,





=
otherwise

j  resource  toassigned is i task if 
0
 1

x ji,





=
otherwise

j  resource  toassigned isk   typeofa task  if 
0
 1

y kj,

Ni1   ,1x
M

1j
ji, ≤≤=∑

=

 Rk   1    M, j  1   N,  i  1   0,tx ki,ji,kj, ≤≤≤≤≤≤≥−

Mj1   ,Txpyr
R

1k

N

1i
ji,ji,kj,j ≤≤≤+∑ ∑

= =

Constants  = Σ1 + ρi + L2 + Σ3 + ρi + L4 + Σ5  = Σ1 + ρi + L2 + Σ3 + ρi + L4 + Σ5 

 = 2ρi + Σ1 + L2 + Σ3 + L4 + Σ5  = 2ρi + Σ1 + L2 + Σ3 + L4 + Σ5 N – number of tasks
 = 2ρi + X, where X = Σ1 + L2 +Σ3 + L4 + Σ5  = 2ρi + X, where X = Σ1 + L2 +Σ3 + L4 + Σ5 M – number of resources
Now, consider a different task ordering S’ =  S1S3S2S4S5. 
Since all tasks in S2 and S4 have type i, there is no need to 
reconfigure the device between S2 and S4. Therefore, the 
latency of executing the tasks in S2S4 is ρi + L2 + L4. 
Therefore, the total latency of S’, denoted L(S’) is: 

Now, consider a different task ordering S’ =  S1S3S2S4S5. 
Since all tasks in S2 and S4 have type i, there is no need to 
reconfigure the device between S2 and S4. Therefore, the 
latency of executing the tasks in S2S4 is ρi + L2 + L4. 
Therefore, the total latency of S’, denoted L(S’) is: 

R – number of task types

rj – reconfiguration cost of resource j 

pi,j – runtime of task i on resource j 

 L(S’)  = Σ1 + Σ3 + ρi + L2 + L4 + Σ5 L(S’)  = Σ1 + Σ3 + ρi + L2 + L4 + Σ5  
 = ρi + X < = ρi + X < 2ρi + X = L(S) 

If ρi > 0, then L(S’) < L(S), contradicting the assumption that S is 
optimal. It follows that all tasks of the same type must occur 
consecutively in an optimal ordering. ⁪ 

Variables 

T - Makespan
In conclusion, Theorem 1 proves that obtaining an optimal 
schedule is trivial once tasks have been bound to resources; 
therefore, the most important problem is to determine 
precisely the binding of tasks to resources. This task, 
nonetheless, is NP-complete. 

 
 

 
 

4. OPTIMAL ALGORITHMS 
This section presents two optimal algorithms that solve the 
scheduling problem that was characterized in the preceding 
section. Subsection 4.1 presents an ILP formulation, which 
is used for comparison against the ε-approximation 
algorithm in Section 6. Subsection 4.2 presents an optimal 
dynamic programming algorithm from which the ε-
approximation algorithm is derived. 

Integer Linear Program 

Minimize: T

Subject to the following constraints: 

 
 (1)

4.1 Integer Linear Program 
Fig. 2 shows the ILP formulation of the scheduling 
problem outlined in Section 3. The objective function is to 
minimize the makespan; since the goal is to minimize the 
makespan, it follows that the makespan is equal to the 
maximum finishing time among all resources. Constraint 
(1) ensures that each task is bound to exactly one resource; 
Constraint (2) ensures that the reconfiguration cost is 
calculated once for each task type that is bound to each 
resource, in accordance with Theorem 1. Constraint (3) 
ensures that the maximum finishing time of all of the tasks 
bound to each resource does not exceed the makespan.  

y (2)

 
(3) 

Figure 2. Integer linear program formulation of the 
reconfigurable scheduling problem for independent tasks 

with heterogeneous resources. 
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The algorithm proceeds as follows. First, the tasks are 
sorted according to their type, to allow for concise record 
keeping of reconfigurations. Next, the first M points are 
placed in the space. The reconfiguration cost, if applicable, 
is summed with the execution time to plot the points.  
Each remaining task creates M new points for each existing 
point in the graph. The cost of each new point is the sum of 
the cost of the old point and the cost of the current task on 
the current resource. The reconfiguration cost is added, 
only if it has not yet been incurred for the current task type. 

 
 
In the pseudocode, the position of the point in the space is 
represented by the array named Cost, which stores the cost 
incurred on each resource. 
During each iteration after the new points are added, the 
old points are discarded. After all the tasks have been 

graphed, the optimal solution is the one with the smallest 
makespan. The makespan of all the points on the graph is 
calculated as the maximum of the finish times on each of 
the resources. 
While plotting points, certain cases arise where a point will 
obviously not lead to an optimal solution, thus these points 
can be eliminated from consideration. This occurred, for 
example, with point (5, 8) in the example shown in Fig. 1. 
Fig. 4 shows pseudocode for the elimination procedure.  
 

Optimal Algorithm: Minimize Makespan RemoveEliminatablePoints(NewPointsList) 
1: Sort tasks to group together according to their type 

 
 
Now, consider the case where all points of one type are 
plotted, but before any points of the next type have been 
plotted. The points that are larger in all dimensions can be 
eliminated. These points will not be a part of the optimal 
solution because a better solution exists up to that point. 
Eliminating these points will not diminish the quality of the 
solution due to the optimal substructure of the problem. 
A larger cost between points of the same type is not enough 
to eliminate a point. Points with a larger cost are still 
potentially optimal, because they have already incurred the 
reconfiguration cost.  If a point is larger than another point 
that has not incurred the reconfiguration cost, it is too early 
to say if the point will be larger than the other point after 
all the tasks of the same resource have been plotted.  
Points, however, can be eliminated if they have equal or 
worse reconfiguration histories. The reconfiguration 
history of each point is maintained by the array reconfiged, 
which stores whether the point’s assignment, so far, has 
involved a reconfiguration of the resource, r, on the current 
task type.  
Until now, we have only considered the case where the 
reconfiguration cost is associated with the resource. The 
reconfiguration, in actuality, may be associated with the 
task; for example, to transmit data to a remote processor in 
a multiprocessor system, the reconfiguration cost is 
proportional to the size of the data. The only modification 

1: for each point n in NewPointsList 
2:  for every other point p in NewPointsList 
3:            if n.Cost[r] <= p.Cost[r] for all resources r 

and (n.reconfiged[r] >= p.reconfiged[r] for all 
resources r or currentTaskType <> 
nextTaskType) 

4:             remove n from newPointsList 
5:       endif 
6:  endfor 
7: endfor 
 

Figure 4. Pseudocode to remove provably sub-optimal 
points from consideration during scheduling. 

2: for each task t 
3:   ►Keep track of what set has been assigned 
4:  if currentTaskType <> t.type 
5:     currentTaskType = t.type 
6:           for each old point o OldPointsList 
7:                 for each resource r 
8:           o.reconfiged[r] = 0 
9:          end for 
10:          end for 
11:  endif 
12:  ►Add M new points to the graph for each old point 
13:     for each old point o in list of old points 
14:     for each resource r 
15:               Create a new point n 
16:      ►Initialize new point to old point 
17:      for each resource r1 
18:           n.Cost[r1] = o.Cost[r1] 
19:           n.reconfiged[r1] = o.reconfiged[r1] 
20:      endfor    
21:      ►Add new costs to the point 
22:      n.Cost[r] = n.Cost[r] + t.Cost[r] 
23:      if n.reconfiged[r] == 0 
24:        n.Cost[r] += resource[r].ReconfigCost
25:           n.Cost[r] = 1 
26:      endif 
27:      add n to list of NewPointsList 
28:     endfor 
29:  endfor 
30:     RemoveEliminatablePoints(NewPointsList) 
31:     OldPointsList = NewPointsList 
32: endfor 
33: return assignment with the minimum makespan 

Figure 3. Optimal dynamic programming algorithm for 
the reconfigurable scheduling problem for independent 

tasks with heterogeneous resources. 
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to the algorithm is to store the reconfiguration cost for each 
task type rather than each resource.  
Theorem 2: Assume we are given

  ao
a makespanmakespan

makespan
≤≤

+ )1(δ
, (4) 

 two points, p and q, 

lem 

gorithm in Figs. 

an exhaustive search of 

mming algorithm has an exponential 

5. APPROXIMATION ALGORITHM 
, is NP-

mming algorithm described in 

hat if two points in the M-

red to a new 

lem 

gorithm in Figs. 

an exhaustive search of 

mming algorithm has an exponential 

5. APPROXIMATION ALGORITHM 
, is NP-

mming algorithm described in 

hat if two points in the M-

red to a new 

where a is the point in the new space and δ the factor by 
which  points are trimmed. It should be noted that δ is not 
the same as ε; δ and ε will be related to one another after 
some further discussion.  

representing the intermediate solutions of the dynamic 
programming algorithm. If p has a greater cost on all 
resources and has completed the same or less 
reconfigurations, then point p is dominated by the point q 
and hence will never be a part of the optimal solution. 
Proof: Assume the contrary, that there is a prob

representing the intermediate solutions of the dynamic 
programming algorithm. If p has a greater cost on all 
resources and has completed the same or less 
reconfigurations, then point p is dominated by the point q 
and hence will never be a part of the optimal solution. 
Proof: Assume the contrary, that there is a prob

Three considerations are necessary when approximating 
points. First, when approximating between the assignment 
of tasks of the same type, the point in the new space must 
have a larger or equal approximation history; this is based 
on the same reasoning applied to the elimination of points, 
e.g., Fig. 1. Second, the makespan of the point that is 
eliminated must be approximately equal to the point that 
replaces it. Third, the cost along all axes must be 
approximately the same or greater for the point to be 
approximated.  

instance where point p is part of the optimal solution. As 
point p and point q represent the same set of scheduled 
tasks, if point p was replaced with point q, the completion 
time on all the resources would decrease, and hence the 
makespan would decrease. Thus, the optimal solution could 
be improved, which is a contradiction. Hence point p will 
never be a part of the optimal solution.   ⁪ 
Theorem 3: The dynamic programming al

instance where point p is part of the optimal solution. As 
point p and point q represent the same set of scheduled 
tasks, if point p was replaced with point q, the completion 
time on all the resources would decrease, and hence the 
makespan would decrease. Thus, the optimal solution could 
be improved, which is a contradiction. Hence point p will 
never be a part of the optimal solution.   ⁪ 
Theorem 3: The dynamic programming al

The psuedocode for the approximation algorithm is the 
same as for the optimal algorithm, but with one additional 
modification. After removing all points that can be 
eliminated, the remaining points are approximated, using 
the procedure in Fig. 5. A call to this approximation 
procedure is placed between lines 30 and 31 in Fig. 3.  

3 and 4 minimizes the makespan. 
Proof: The algorithm carries out 
3 and 4 minimizes the makespan. 
Proof: The algorithm carries out 
all possible task assignments. It only eliminates points from 
its consideration, when, provably, they will not lead to the 
optimal solution.   ⁪ 
The dynamic progra

all possible task assignments. It only eliminates points from 
its consideration, when, provably, they will not lead to the 
optimal solution.   ⁪ 
The dynamic progra  worst-case time and space complexity of O(MN), where M 
is the number of resources and N is the number of tasks. 
Though the algorithm’s space and time complexity make is 
prohibitory, it provides a solid foundation for the 
polynomial-time ε-approximation algorithm introduced in 
the next section.  

worst-case time and space complexity of O(MN), where M 
is the number of resources and N is the number of tasks. 
Though the algorithm’s space and time complexity make is 
prohibitory, it provides a solid foundation for the 
polynomial-time ε-approximation algorithm introduced in 
the next section.  

Approximate(NewPointsList) 
1:  Sort points in NewPointsList in non-decreasing 
order of makespan 
2:  Place the first point in ApproxPointList 
3:  for each point n in NewPointsList 
4:      for each point a in ApproxPointsList 
5:          if (n.reconfiged[r] > a.reconfiged[r] for 

any resource r and currentTaskType = 
nextTaskType)  or n.makespan > 
a.makespan*(δ+1) or (n.Cost[r] > a.Cost[r] 
and n.Cost[r] > a.Cost[r]*(δ+1) for all 
resources r) 

The scheduling problem, as formulated in Section 2The scheduling problem, as formulated in Section 2
complete, proven by a reduction from the well-known set-
sub problem; unless it is somehow proven that P=NP, an 
optimal polynomial time algorithm for this scheduling 
problem does not exist [5].  

The optimal dynamic progra

complete, proven by a reduction from the well-known set-
sub problem; unless it is somehow proven that P=NP, an 
optimal polynomial time algorithm for this scheduling 
problem does not exist [5].  

The optimal dynamic progra 6:              add a to ApproxPointsList 
7:         endif the preceding section has an exponential worst-case time 

complexity. Using a trimming procedure, however, this 
algorithm can be converted into a fully polynomial-time ε -
approximation algorithm.  The approximation algorithm 
can find solutions that are a factor of at most 1+ε away 
from the optimal solution.  

The underlying idea is t

the preceding section has an exponential worst-case time 
complexity. Using a trimming procedure, however, this 
algorithm can be converted into a fully polynomial-time ε -
approximation algorithm.  The approximation algorithm 
can find solutions that are a factor of at most 1+ε away 
from the optimal solution.  

The underlying idea is t

8:  endfor 
9:   endfor 
10: return ApproxPointList 
 
Figure 5. Pseudocode for the approximation algorithm.  

 
The approximation algorithm starts off by adding the first 
point in NewPointsList to the newly formed list, named 
ApproxPointList. The remaining points are added to 
ApproxPointList, if a point does not already exist in 
ApproxPointList that approximates it. 

dimensional space are sufficiently close, then it suffices to 
examine just one of them; although this sacrifices 
optimality, the tradeoff between runtime and solution 
quality can be tuned by the user’s choice of ε. 

A point, o, in the original space is not transfer

dimensional space are sufficiently close, then it suffices to 
examine just one of them; although this sacrifices 
optimality, the tradeoff between runtime and solution 
quality can be tuned by the user’s choice of ε. 

A point, o, in the original space is not transfer The input to the scheduling algorithm is a collection of N 
tasks, M resources, and an approximation parameter ε, space if: space if: 
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Theorem 5: The approxi

where 0 < ε < 1. The algorithm returns a schedule whose 
makespan is worst than optimal by a factor of at most 1+ ε. mation algorithm runs in 

f 

he maximum number 

We set ε to be related  δ by the following equation: δ  = 
ε/2N, so that the following proof will hold. 

polynomial worst-case time.  
Proof: First, we need to bound the number of points in the 
space; this is accomplished by using a maximum value for 
the makespan, denoted by T (similar to Fig. 2). T, for 
example, could be the makespan of all of the tasks 
scheduled onto one single resource; or, alternatively, it 
could be the makespan computed by an efficient heuristic, 
such as list scheduling, that makes no guarantees o

 
Theorem 4: The approximation procedure presented in 
section 5.1 returns a schedule for the input tasks on the 
given resources, where the makespan of the schedule is 1+ε 
factor of the makespan of the optimal schedule. 
Proof: The approximation algorithm introduces no error 
except in the trimming of points from the space. Thus we 
consider only that part of the algorithm. 

solution quality; the optimal makespan cannot exceed T.   
Based on the approximation scheme, each point in the 
space must differ from the other points by at least 1 + ε/2N 
along all M axes in the space. Thus, tLet makespano be an optimal solution and makespana be an 

approximate solution. We use an asterisk to denote the 
solution after the final iteration, e.g., makespan0*.  

of points in the space, P, is given by: 
M ( ) M!1TlogP ε/2N1 ×+= +

M!1lnT
M

×





+=

   (11) To prove the approximation bound, we must formally 
porve that makespana* < (1 + ε)makespan0*. Our approach 
uses inductions on the number of iterations. Specifically, 
we prove that for every point o in the original space at 
iteration i, there is a point a in the new space such that:  

   (12) ( )ε/2N1ln  +

Since x/(1+x) ≤ ln(1+x), it follows that: 

( ) M!1lnTε/2N12N M

×



 +

+
≤ao

a makespanmakespan

1
2N
ε

makespan
≤≤







 +

i .  (5) 
ε 

  (13) 

M!14NlnT M

×



 +≤This equality must hold for the final iteration as well, i.e.: 

ε 

Here, we assume that M, the number of resources, is a 
constant value. Therefore, M! is also constant, and the 
number of points in the space is proportional to 1/ε raised 
to a constant power. Since the complexity of the algorithm 
is polynomial in terms of the number of points in the sp

** ao
a makespanmakespan

1
2N
ε

*makespan
≤≤







 +

N . (6) 

It follows that: 
N







 +≤ 1

2N
ε

makespan
*makespan

o

a

*
.   (7) 

Now, observe that: 
2

ε/2
N

N 2
ε

2
ε1e1

2N
εlim 






++≤=






 +

∞→
,  (8) 

Since 0 < ε < 1, it follows that: 

ε1
2
ε

2
ε1

2

+≤





++     (9) 

From which we can conclude: 

ε
makespan

*makespan

o

a +≤ 1
*

    (10) 

    (14) 

ace, 
nd ε, the ε-approximation is fully polynomial-time. ⁪ 

oximation, but 
whose running time is less dependent on M. 

e 

es a theoretical 
study on a set of randomly generated data.  

a
 
It is important to note that the runtime on the algorithm is 
heavily dependent on the number of resources, M, which is 
assumed to be a constant. If the approximation algorithm 
trimmed points according to their distance from the origin 
instead of makespan results in an ε-√2 appr

6. EXPERIMENTAL RESULTS 
This section evaluates the quality of the ε-approximation 
algorithm presented in this paper; it is compared against the 
optimal ILP formulation, as well as list scheduling, a well-
understood greedy heuristic. The list scheduling heuristic 
processes tasks in the sorted order, and schedules th
current task on the resource with the earliest finish time.  

Subsection 6.1 applies the algorithm to scheduling parallel 
encryption tasks. Subsection 6.2 summariz

This proves that the algorithm is an ε-approximation. ⁪ 
 
Next, we prove that the algorithm runs in polynomial time.  
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6.1 Application to Encryption 
The first set of experiments schedules a parallelized 
encryption algorithm on a system with heterogeneous 
resources. The encryption algorithm used is the Advanced 
Encryption Standard (AES, a.k.a. Rijndael), which is a 
block cipher. The target system contains an Intel Pentium 
III general-purpose processor and a Virtex-E 1000e FPGA.  
The system initially splits the data inputs, which are to be 
scheduled, into heterogeneous blocks with different 
encryption levels, i.e., three different key sizes: 128, 196, 
and 256 bits. The input data is also split into blocks of 128, 
196, and 256 bits for encryption.  
 This yields nine distinct task types. The reconfiguration 
time of the FPGA for each task type was determined a-
priori by implementing different versions of the AES and 
synthesizing it on the FPGA. The runtime on both the 
Pentium III and FPGA was determined by encrypting 
randomly-generated input data on each system.  
We generated a suite of 1000 test cases with randomly 
generated input bitstreams to encrypt. We then scheduled 
each test case 3 times: using the optimal ILP formulation, 
using the approximation algorithm, and using list 
scheduling. For the approximation algorithm, we set the 
value of ε to 0.999, which means that the makespan of the 
approximate solution should be 1.999x greater than the 
makespan of the optimal solution in the worst case.  

 
Figs. 6(a) and (b) show the results of these experiments. 
Fig. 6(a) compares the approximation algorithm to the ILP, 
while Fig. 6(b) compares the list scheduling heuristic to the 
ILP. In both figures, the y-axis shows the number of 
experiments out of 1000, and the x-axis represents the 
maximum factor by which the makespan is different from 
the optimal value.  
Fig. 6(a) shows that out of the 1000 test cases, the 
approximation algorithm found the optimal solution in the 
vast majority of cases; in the few cases where it could not 

find an optimal solution, the makespan of the approximate 
solution was 1.1x worse than the optimal makespan.  These 
results are far closer to the optimal solution than to the 
theoretical worst case. 
Figures 6(b) shows that list scheduling performs much worse; in 
no case did list scheduling find an optimal solution. The 
makespans obtained from list scheduling range from 1.6x to 2.6x 
worse than optimal. 

6.2 Random Input Data 
This subsection presents an experimental study in which 
we vary the number of tasks and task types; unlike the 
preceding subsection, the set of tasks to be scheduled are 
generated randomly. First, we randomly generate a number 
of task types, and the number of tasks per type (which is 
assumed to be the same for all types); from this we can 
derive the total number of tasks to be scheduled; in each 
case, we randomly generate 1000 instances of the problem 
to solve.  

Fig. 7 compares the ILP, ε-approximation algorithm, and 
list scheduling heuristic on these benchmarks with ε set to 
0.999. Since ε must be between the values zero and one, a 
very large value for ε was chosen to give the list scheduling 
heuristic the best chance to be competitive. 
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(a) (b) 

 
Figure 6. AES scheduling error distribution: (a) ε-approximation versus ILP; (b) list scheduling heuristic vs. ILP. 

Fig. 7 shows that in the vast majority of cases, the ε-
approximation algorithm found optimal solutions, while the 
list scheduling heuristic did not; furthermore, in a fair 
number of cases, the list scheduling heuristic found 
solutions that were worse than the theoretical guarantee of 
1.999x of the ε-approximation algorithm. List scheduling 
faired best when there was only one type of task: in this 
case, reconfiguration occurs at most once per resource: an 
overly simplistic instance of the problem.  
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In Fig. 8, the value of ε is varied, and there are 3 task types 
with 3 tasks per type.  For each choice of epsilon, the 
results are compared to the ILP. Also, we verify than no 
experiment results in a makespan (1+ε)x longer than 
optimal. The list scheduling heuristic, once again, produces 
many solutions whose makespan are more than (1+ε)x 
longer than the optimal solution. 
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In Fig. 9, we examine the effect of varying the number of 
resources. This work assumes a finite and limited number 
of resources, as the algorithm’s complexity increases 
exponentially with respect to the number of resources. Fig. 
9 experimentally demonstrates an increase in the number of 
resources improves the quality of the resulting schedules 
both for our algorithm as for the list scheduling heuristic, 
as would be expected by spreading out the tasks across 
resources. However, even with 100 resources, the list 
scheduling algorithm averages over 18% of the makespans 
as more the worst case theoretical bound imposed on the 
approximation algorithm.  Figure 7. Varying the number of tasks to be scheduled. 

7. EXTENSION TO TASK GRAPH 
SCHEDULING WITH COMMUNICATION  
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Until now, we have considered independent tasks. Our 
work, however, can be extended to handle the case where 
there are dependencies between tasks. This is in the case 
where we are given as input a data flow graph, where each 
node is a task and each edge represents a data dependency 
between the parent node and the child node. The graph, of 
course, is a precedence directed acyclic graph (DAG). 
To extend out work, the basic idea is to levelize the graph 
and then run our algorithm on each level of the graph. 
There are a few additional issues that need to be 
considered. First, to handle the case when certain resources 
take longer to execute than others at a certain level, the 
execution time of the resources should be given as input to 
the next level’s iteration, so the appropriate axis will be 
scheduled from a new starting point instead of from zero, 
or the origin.  

Figure 8. Varying the value of ε.  
When working with precedence DAGs, communication 
between tasks can also be a constraint on the schedule. 
Fortunatly, communication cost between tasks can be 
incorporated into our algorithm, by adding the cost of 
communication to the task execution cost, for schedules 
which split the tasks onto different resources. We do not 
have a proof for whether this heuristic is an approximation 
algorithm for the problem of DAG scheduling.  In the 
future, we hope to extend our work to address this more 
general model of tasks, and provide not just a heuristic for 
this problem but an approximation algorithm.  

Second, the reconfiguration status of the resources should 
be given as input to the next level, so that the 
reconfigurations can be accounted for properly. To ensure 
that tasks, whose parents have not completed their 
execution not be executed, tasks type orderings can be 
reshuffled to ensure that this constraint is not violated. In 
the worse case, some idle time will be scheduled. 
There exist a cost and even a delay for moving data from 
one resource to another. These parameters can easily be 
considered with our algorithm. The cost of scheduling 
children tasks onto different resources can be added to the 
reconfiguration cost for that task, on all resources other 
than the one the parent task is scheduled on. Similarly, the 
delay can be accounted for by adding the delay to the 
execution time of the task. 
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Work on scheduling algorithms for reconfigurable 
resources that consider area and execution time together 
include [27]. Our approach is robust enough to be applied 
to this problem area.. 
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An approximation algorithm is presented in [25] for 
problems with a delay-cost model, as with the problem 
presented in this paper. Unfortunately, the addition of 
reconfiguration cost to the model can only be done by 
mapping reconfiguration cost to the execution delay, which 
results in schedules with gaps in execution and potentially 
unnecessary additional reconfigurations. Similarly, [29] 
considers pareto optimal solutions for the case where there 
is a delay-cost tradeoff. The same limitation applies to this 
work as well. 
In [14], a mixed integer linear programming based heuristic 
is proposed for our problem. The algorithm carries out an 
exponential branch and bound search of all possible 
solutions, but halts the search after a certain amount of 
time, regardless of whether the search has completed. In 
[18], preemption of reconfiguration is examined. In [28], 
and optimal algorithm is given for the related problem of 
minimizing reconfiguration delay. In [16], several 
heuristics are presented, which are adaptations of the 
pseudopolynomial solutions for the famous parallel 
machines, single server problem. In [17], several simple 
heuristics are presented for this and related problems. 

Figure 9. Varying the number of resources to be scheduled. 

8. RELATED WORK 
There exists extensive literature in the classic problem of 
scheduling independent tasks onto heterogeneous resources 
so as to minimize the makespan. Note this literature does 
not consider reconfiguration cost, the main thrust of this 
work. A linear programming approach is taken in both [11] 
and [13]. The problem is formulated as an integer linear 
programming problem. An LP-relaxation is used to assign 
tasks to resources. Up to m-1 tasks can be split among 
different resources, where m is the number of resources. To 
obtain a valid non-preemptive solution, each split task must 
be reassigned to one resource. This is done with complete 
enumeration as shown in [13]. Also, the values can be 
rounded as shown in [14]. This paper goes on to give a 2-
approximation algorithm for the case of an unbounded 
number of resources 

This paper describes algorithms that do consider 
reconfiguration cost when scheduling independent tasks 
onto heterogeneous resources. The heuristic presented is an 
approximation algorithm whose solution quality can be 
bounded. Also, all the algorithms utilize only 
computational techniques, as opposed to linear 
programming techniques. The work presented in this paper 
is based on the preliminary work presented in [12]. 

More recently, [11] has improved on the previous work, by 
using linear programming to schedule short tasks and 
dynamic programming to schedule long tasks. The 
determination of long versus short tasks is carried out 
according to the level of approximation as determined by 
epsilon. 

9. CONCLUSION 
In this paper, we have presented a fully polynomial 
approximation algorithm for determining the optimal 
scheduling of independent tasks onto heterogeneous 
resources with heterogeneous reconfiguration costs. The 
approximation is derived form the optimal algorithm, by 
trimming the number of points in the space.  

In the related work where reconfiguration cost is 
considered several perspectives exists. [19] first introduced 
prefetching of a configuration profile to overlap the 
reconfiguration with execution in partially reconfigurable 
systems. [22] and [23] present heuristics that utilizes 
prefetching for reconfiguration aware scheduling. These 
approaches are orthogonal to our approach, as we do not 
consider the impact of prefeching in our work. 

The algorithm is shown both theoretically and 
experimentally to be a (1+ε)-approximation. Extensive 
verification of the algorithm utilizing random values was 
conducted. Additionally, a real world application to 
schedule the parallel encryption of tasks onto an FPGA and 
a general purpose processor was used to demonstrate that 
the approximation is capable of scheduling the encryption 
of heterogeneous inputs onto heterogeneous resources 
dramatically more effectively than list scheduling. Its 
solution quality also compares well with the optimal, 
though exponential, algorithm. 

Reconfiguration cost in task execution is considered in the 
realm of regenerative energy sources in [5][20][21][26]. 
These works present heuristics for schedule task execution 
given the variability of energy availability. 
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