
An Approximation Algorithm for Scheduling on
Heterogeneous Reconfigurable Resources

Ani Nahapetian1, Philip Brisk2, Soheil Ghiasi3, Majid Sarrafzadeh1

1Computer Science Department, UCLA, {ani, majid}@cs.ucla.edu
2School of Computer and Communication Sciences, EPFL, philip.brisk@epfl.ch

3Department of Electrical and Computer Engineering, UC Davis, soheil@ece.ucdavis.edu

ABSTRACT Dynamic Reconfiguration, Heterogeneous Resources, Fully
Polynomial Approximation Algorithm. Dynamic reconfiguration imposes significant penalties in

terms of performance and energy. Scheduling the execution
of tasks on a dynamically reconfigurable device is therefore
of critical importance. Likewise, other application domains
have cost models that are effectively the same as dynamic
reconfiguration; examples include: data transmission across
multiprocessor systems; dynamic code updating and
reprogramming of motes in sensor networks; and module
allocation, wherein the sharing of resources effectively
eliminates inherent reconfiguration costs.

1. INTRODUCTION
Reconfigurable computing has the potential to dynamically
adapt a hardware platform to meet the requirements of an
application; however, the overhead associated with
dynamic reconfiguration has inhibited the widespread use
of this promising technology over the past two decades. In
many cases, the delay of dynamic reconfiguration is
comparable to the runtime of the application; even when
dynamic reconfiguration is used, its latency—rather than
the latency of the application—will dominate the overall
runtime. Consequently, effective scheduling algorithms
that can map tasks onto a set of reconfigurable resources—
including the scheduling of reconfiguration operations—
are required in order to make reconfigurable computing a
reality.

This paper contributes a fully polynomial time
approximation algorithm for the problem of scheduling
independent tasks onto a fixed number of heterogeneous
reconfigurable resources, where each task has a different
hardware and software latency on each device; the
reconfiguration latencies can also vary between resources.
Assuming that P != NP, an optimal algorithm for this
problem would exhaustively enumerate all assignments of
tasks onto resources; this search space is exponential in
size. The algorithm presented in this paper is a fully
polynomial ε-approximation. Using a trimming procedure,
a provably polynomial sub-space of possible solutions is
explored while ensuring that the solution found is within a
factor of at most 1+ε from the optimal solution. This
approach can also extended to task graph scheduling in
which one task may be dependent on several others.

Virtually all modern parallel systems employed today are

s library

composed of heterogeneous components, each of which
has an associated reconfiguration cost. The most obvious
component would be a dynamically programmable FPGA,
or some other type of coarse-grained reconfigurable device.
In a more general sense, the time and energy consumed
through the transmission of code and/or data to remote
processors across a network can also be modeled as a form
of reconfiguration [30][31], even though the underlying
hardware platform does not change. One particularly
poignant example of this type of reconfiguration is
dynamic module uploading in sensor networks.

Another application is the allocation of variou

A general-purpose processor and an FPGA were used to
experimentally validate the proposed technique using a pair
of encryption algorithms. The latencies of the schedules
obtained by the approximation scheme were at most 1.1x
longer than the optimal solution, which was found using
integer linear programming; this result is better than the
theoretical worst-case guarantee of the approximation
algorithm, which was 1.999x. The length of the schedules
obtained using list scheduling, a well-known polynomial-
time heuristic, were at most 2.6x longer than optimal,
demonstrating that the proposed approximation algorithm
is useful both in theory and practice.

modules to available resources given a fixed area
constraint. Resource sharing among IP cores can reduce the
area, as well as other costs, and can therefore maximize the
number of library modules implemented in hardware. [24]
Resource sharing, in this context, can be modeled as the
absence of a reconfiguration cost. Sharing resources can
reduce the amount of time spent reconfiguring a device at
runtime, and can therefore reduce the overall application
latency.

Keywords

 1

All of these problems can be reduced to a straightforward
scheduling problem on a set of heterogeneous resources
with heterogeneous reconfiguration costs.

1.1 Contribution
This paper presents a full polynomial-time ε-approximation
algorithm that solves this scheduling problem. An
approximation algorithm is a heuristic whose solution
quality is guaranteed to be at most a constant factor away
from the optimal solution. A fully polynomial-time
approximation algorithm is one whose solution quality and
runtime can be varied according to a term denoted ε [2, 7].
The ε-approximation algorithm presented in this paper is
based on an optimal scheduling algorithm that considers all
possible assignments of tasks to resources. A subset of the
possible assignments is considered; the specific choice of
which assignments to consider yields the ε-approximation.
Two sets of experiments confirm the efficacy of the ε-
approximation approximation algorithm. The first set of
experiments, on a randomly generated set of input data,
compares the ε-approximation algorithm to list scheduling,
a well-known and well-understood heuristic that has been
used in the past for a wide variety of scheduling problems,
and to an optimal integer linear programming (ILP)
formulation of the problem. The ε-approximation algorithm
found the optimal solution in the vast majority of cases,
while list scheduling found optimal solutions rarely.
The second set of experiments focuses on parallel
encryption using the Advanced Encryption Standard (AES,
a.k.a. Rijndael) algorithm: blocks of data to be encrypted
are scheduled on a system containing a general-purpose
processor and an FPGA. Once again, the ε-approximation
algorithm found optimal and near-optimal solutions in all
cases, while list scheduling performed considerably worse.
Altogether, these experiments validate the efficacy of the ε-
approximation algorithm while confirming that the
solutions fall within the theoretically established bounds.
Lastly, we briefly sketch a set of extensions to the ε-
approximation algorithm that allow it to be used in the
context of task graph scheduling, where tasks may be
dependent on one another and where there is a
communication costs between dependent tasks that are
scheduled on distinct resources.

1.2 Paper Organization
The paper is organized as follows. Section 2 begins with a
motivating example. Section 3 formalizes the problem
statement. Section 4 presents two optimal solutions to the
problem: an ILP formulation, which we implemented, and
a dynamic programming algorithm, from which the ε-
approximation algorithm is derived in Section 5. Section 6
presents the experimental evaluation of the ε-
approximation algorithm and compares it to list scheduling
and the ILP formulation. Section 7 describes a set of

extensions that adapt the ε-approximation algorithm to task
graph scheduling. Section 8 proceeds to summarize related
work, and lastly, Section 9 concludes the paper.

Table 1. Tasks to schedule.

Task
Type

Execution Time
on Processor

Execution Time
on FPGA Task

1 1 5 2

2 2 4 3

2. MOTIVATING EXAMPLE
This section presents a motivating example for the
scheduling problem that illustrates the key point of the ε-
approximation algorithm, which is the primary contribution
of this paper. We are given two resources: a processor and
an FPGA with respective reconfiguration costs of 0 and 5.
Table 1 lists two tasks to be scheduled, including their
respective runtimes on the processor an FPGA. The tasks
have distinct types, meaning that the FPGA must be
reconfigured between the execution of one task and
another.

Scheduling is performed in a 2-dimensional space, where
the x-axis represents the runtime of tasks on the processor
and the y-axis represents the FPGA. Fig. 1(a) considers the
potential assignment of the first task to both of the
resources. The points (0+5, 0) and (0, 5+2) represent the
time taken to schedule the task on the processor and the
FPGA, inclusive of reconfiguration costs. Fig. 1(b)
proceeds to schedule the second task following the first.
This yields 4 data points: (0, 15), (4, 7), (5, 8), and (9, 0).

The runtime of each data point (x, y) is max{x, y}. For
example, point (4, 7) represents the parallel execution of
Task 1 on the FPGA and Task 2 on the processor, requiring
a total time of 7; point (5, 8) represents the parallel
execution of Task 1 on the processor and Task 2 on the
FPGA, requiring a total time of 8. Point (0, 15), in contrast,

(a)

FPGA FPGA

Eliminate
this point 15

5+3

7 7
0+4

5+2 5+3

50+5 Processor 95 Processor
0+4

(b)

Figure 1. (a) Assignment of Task 1; (b) Assignment of Task 2.

 2

represents the serial execution of both tasks on the FPGA,
and point (9, 0) represents the serial execution of both tasks
on the processor; the total times are 15 and 9, respectively.

The optimal solution for these two tasks is point (4, 7);
however, this example also illustrates something further.
Suppose that there were several additional tasks to be
scheduled. In this case, the four points in Fig. 1(b) are
partial solutions (it should be noted that none of these
partial solutions is guaranteed to be part of the optimal
solution). Within these partial solutions, however, it is
quite clear that point (4, 7) is superior to point (5, 8): if
there were more tasks to schedule, then (5, 8) could not
possibly be part of an optimal schedule, as such a schedule
could be improved via substitution of point (4, 7) instead.
Hence, the point (4,7) dominates (5,8), and this point can
be eliminated without comprising the optimality of the
algorithm. The ability to remove points from consideration
is a key feature of the ε-approximation algorithm described
in Section 5.

3. PROBLEM STATEMENT
The problem addressed in this paper is to schedule N
independent tasks onto a fixed set of M heterogeneous
resources with heterogeneous reconfiguration costs; we
assume that the scheduling is non-preemptive, meaning that
the execution of a task is not interrupted once it has been
scheduled. The goal is to minimize the makespan, i.e., the
completion time of the final task.
Independent tasks means that there is no precedence
relation among tasks, i.e., given a sufficient number of
resources, all of the tasks can be executed in parallel; the
problem, therefore, only becomes challenging when M <
N. This is a special case of general task graph scheduling
where the task graph contains no edges.
Each of the tasks can have different and unrelated
execution times on each resource; each resource has an
associated reconfiguration cost. We make two simplifying
assumptions regarding reconfiguration costs: (1)
reconfiguration is preemptive, i.e., no task may execute on
a resource during reconfiguration; and (2) the
reconfiguration cost is known a priori.
By extending the notion of a resource to also be a portion
of an FPGA that can be partially reconfigured, partial
reconfiguration can also be addressed. The approach
presented in this paper is robust enough to handle partial
reconfigurations, for cases where the portions of the FPGA
to be partially reconfigured are known.
Clearly, this model abstracts away many low-level details.
For example, consider a program executing on a processor.
Here, we assume that the execution time is constant. In
reality, there may be many different execution times,
depending, for example, on which optimizations were
enabled during compilation. The same is true for execution

on an FPGA, as variations in high-level optimizations,
technology mapping, floorplanning, placement, and routing
can all affect the latency of the task.
Each task has an associated type, whose implication is as
follows. Suppose that tasks t1 and t2 are scheduled to
execute consecutively on resource r. If their types are
different, then r must be reconfigured following the
execution of t1 in order to execute t2; if their types are the
same, then the reconfiguration is unnecessary. Exploiting
task types to eliminate unnecessary reconfigurations is key
to achieving low-latency schedules under this model.
An alternative model allows the reconfiguration costs to be
associated with each task type rather than the resources.
This, for example, can model partial reconfiguration for
FPGAs. The advantage is that smaller tasks do not need to
spend the time to reconfigure the whole device; however,
there are still some restrictive assumptions: (1) This
approach models reconfiguration time, but not area, i.e.,
two small tasks with short reconfiguration times cannot
execute simultaneously on the same resource; (2) in
practice, the reconfiguration time depends on both the task
and the resource, e.g., the reconfiguration time of task t on
an Altera Stratix-series FPGA is different from that of an
Altera Cylone-series FPGA, and a Xilinx Virtex-series
FPGA, etc. These details are abstracted away in our model.

3.1 Problem Details and Decomposition
The scheduling problem can be decomposed into two
interacting subproblems: (1) the binding of tasks to
resources; and (2) computing a schedule for each task on
each resource. Due to the independence of tasks, the
optimal solution to step (2) is to schedule all tasks of the
same type that are bound to the same resource
consecutively, as this minimizes the aggregate
reconfiguration delay. This is implicit in scheduling
heuristics presented in [21][22][28], and we formally prove
its optimality in Theorem 1.

Theorem 1. Assume that each task is bound to exactly one
resource. Then the optimal schedule executes all tasks of
the same type consecutively on each resource.

Proof. Let S = (t1, t2, …, tn) be an ordering of tasks that are
bound to a resource, R. Now, let us decompose S into five
sub-orderings, S = S1S2S3S4S5, such that S1 = (t1, t2, … ta),
S2 = (ta+1, ta+2, ..., tb), S3 = (tb+1, tb+2, ..., tc), S4 = (tc+1, tc+2,
…, td), S5 = (td+1, td+2, …, tn), S2 and S4 are non-empty and
only contain tasks of type i, S3 is non-empty, and ta, tb+1, tc,
and td+1 all have types other than i. We prove by
contradiction that S is sub-optimal.

Assume to the contrary that S is an optimal ordering, i.e.,
that L(S), the latency of executing the tasks in order S,
including reconfiguration latencies, is minimal among all
orderings.

 3

4.2 Dynamic Programming Algorithm Let Σk be the latency of executing all tasks in Sk, including
reconfiguration latencies. The optimal algorithm is formulated as a dynamic

programming problem. An M-dimensional space is created
where M is the number of resources (e.g., M = 2 in Fig. 1).
Points are plotted onto the graph, according to their
execution times, or costs. For example the point (3, 4, 0)
represents 3 units of time on the first resource, 4 units of
time on the second resource, and 0 units of time on the
third.

For S2 and S4, all tasks have type i. Let ρi be the latency of
reconfiguring R to support tasks of type i, and let L2 and L4
be the respective latencies executing the tasks in S2 and S4,
without the reconfiguration latencies. Therefore, Σ2 = ρi +
L2 and Σ4 = ρi + L4.

Then:
Pseudocode for the optimal algorithm is shown in Fig. 3. L(S) = Σ1 + Σ2 + Σ3 + Σ4 + Σ5 L(S) = Σ1 + Σ2 + Σ3 + Σ4 + Σ5





=
otherwise

k typeof is i task if
0
 1

t ki,





=
otherwise

j resource toassigned is i task if
0
 1

x ji,





=
otherwise

j resource toassigned isk typeofa task if
0
 1

y kj,

Ni1 ,1x
M

1j
ji, ≤≤=∑

=

 Rk 1 M, j 1 N, i 1 0,tx ki,ji,kj, ≤≤≤≤≤≤≥−

Mj1 ,Txpyr
R

1k

N

1i
ji,ji,kj,j ≤≤≤+∑ ∑

= =

Constants = Σ1 + ρi + L2 + Σ3 + ρi + L4 + Σ5 = Σ1 + ρi + L2 + Σ3 + ρi + L4 + Σ5

 = 2ρi + Σ1 + L2 + Σ3 + L4 + Σ5 = 2ρi + Σ1 + L2 + Σ3 + L4 + Σ5 N – number of tasks
 = 2ρi + X, where X = Σ1 + L2 +Σ3 + L4 + Σ5 = 2ρi + X, where X = Σ1 + L2 +Σ3 + L4 + Σ5 M – number of resources
Now, consider a different task ordering S’ = S1S3S2S4S5.
Since all tasks in S2 and S4 have type i, there is no need to
reconfigure the device between S2 and S4. Therefore, the
latency of executing the tasks in S2S4 is ρi + L2 + L4.
Therefore, the total latency of S’, denoted L(S’) is:

Now, consider a different task ordering S’ = S1S3S2S4S5.
Since all tasks in S2 and S4 have type i, there is no need to
reconfigure the device between S2 and S4. Therefore, the
latency of executing the tasks in S2S4 is ρi + L2 + L4.
Therefore, the total latency of S’, denoted L(S’) is:

R – number of task types

rj – reconfiguration cost of resource j

pi,j – runtime of task i on resource j

 L(S’) = Σ1 + Σ3 + ρi + L2 + L4 + Σ5 L(S’) = Σ1 + Σ3 + ρi + L2 + L4 + Σ5
 = ρi + X < = ρi + X < 2ρi + X = L(S)

If ρi > 0, then L(S’) < L(S), contradicting the assumption that S is
optimal. It follows that all tasks of the same type must occur
consecutively in an optimal ordering. ⁪

Variables

T - Makespan
In conclusion, Theorem 1 proves that obtaining an optimal
schedule is trivial once tasks have been bound to resources;
therefore, the most important problem is to determine
precisely the binding of tasks to resources. This task,
nonetheless, is NP-complete.

4. OPTIMAL ALGORITHMS
This section presents two optimal algorithms that solve the
scheduling problem that was characterized in the preceding
section. Subsection 4.1 presents an ILP formulation, which
is used for comparison against the ε-approximation
algorithm in Section 6. Subsection 4.2 presents an optimal
dynamic programming algorithm from which the ε-
approximation algorithm is derived.

Integer Linear Program

Minimize: T

Subject to the following constraints:

 (1)

4.1 Integer Linear Program
Fig. 2 shows the ILP formulation of the scheduling
problem outlined in Section 3. The objective function is to
minimize the makespan; since the goal is to minimize the
makespan, it follows that the makespan is equal to the
maximum finishing time among all resources. Constraint
(1) ensures that each task is bound to exactly one resource;
Constraint (2) ensures that the reconfiguration cost is
calculated once for each task type that is bound to each
resource, in accordance with Theorem 1. Constraint (3)
ensures that the maximum finishing time of all of the tasks
bound to each resource does not exceed the makespan.

y (2)

(3)

Figure 2. Integer linear program formulation of the
reconfigurable scheduling problem for independent tasks

with heterogeneous resources.

 4

The algorithm proceeds as follows. First, the tasks are
sorted according to their type, to allow for concise record
keeping of reconfigurations. Next, the first M points are
placed in the space. The reconfiguration cost, if applicable,
is summed with the execution time to plot the points.
Each remaining task creates M new points for each existing
point in the graph. The cost of each new point is the sum of
the cost of the old point and the cost of the current task on
the current resource. The reconfiguration cost is added,
only if it has not yet been incurred for the current task type.

In the pseudocode, the position of the point in the space is
represented by the array named Cost, which stores the cost
incurred on each resource.
During each iteration after the new points are added, the
old points are discarded. After all the tasks have been

graphed, the optimal solution is the one with the smallest
makespan. The makespan of all the points on the graph is
calculated as the maximum of the finish times on each of
the resources.
While plotting points, certain cases arise where a point will
obviously not lead to an optimal solution, thus these points
can be eliminated from consideration. This occurred, for
example, with point (5, 8) in the example shown in Fig. 1.
Fig. 4 shows pseudocode for the elimination procedure.

Optimal Algorithm: Minimize Makespan RemoveEliminatablePoints(NewPointsList)
1: Sort tasks to group together according to their type

Now, consider the case where all points of one type are
plotted, but before any points of the next type have been
plotted. The points that are larger in all dimensions can be
eliminated. These points will not be a part of the optimal
solution because a better solution exists up to that point.
Eliminating these points will not diminish the quality of the
solution due to the optimal substructure of the problem.
A larger cost between points of the same type is not enough
to eliminate a point. Points with a larger cost are still
potentially optimal, because they have already incurred the
reconfiguration cost. If a point is larger than another point
that has not incurred the reconfiguration cost, it is too early
to say if the point will be larger than the other point after
all the tasks of the same resource have been plotted.
Points, however, can be eliminated if they have equal or
worse reconfiguration histories. The reconfiguration
history of each point is maintained by the array reconfiged,
which stores whether the point’s assignment, so far, has
involved a reconfiguration of the resource, r, on the current
task type.
Until now, we have only considered the case where the
reconfiguration cost is associated with the resource. The
reconfiguration, in actuality, may be associated with the
task; for example, to transmit data to a remote processor in
a multiprocessor system, the reconfiguration cost is
proportional to the size of the data. The only modification

1: for each point n in NewPointsList
2: for every other point p in NewPointsList
3: if n.Cost[r] <= p.Cost[r] for all resources r

and (n.reconfiged[r] >= p.reconfiged[r] for all
resources r or currentTaskType <>
nextTaskType)

4: remove n from newPointsList
5: endif
6: endfor
7: endfor

Figure 4. Pseudocode to remove provably sub-optimal
points from consideration during scheduling.

2: for each task t
3: ►Keep track of what set has been assigned
4: if currentTaskType <> t.type
5: currentTaskType = t.type
6: for each old point o OldPointsList
7: for each resource r
8: o.reconfiged[r] = 0
9: end for
10: end for
11: endif
12: ►Add M new points to the graph for each old point
13: for each old point o in list of old points
14: for each resource r
15: Create a new point n
16: ►Initialize new point to old point
17: for each resource r1
18: n.Cost[r1] = o.Cost[r1]
19: n.reconfiged[r1] = o.reconfiged[r1]
20: endfor
21: ►Add new costs to the point
22: n.Cost[r] = n.Cost[r] + t.Cost[r]
23: if n.reconfiged[r] == 0
24: n.Cost[r] += resource[r].ReconfigCost
25: n.Cost[r] = 1
26: endif
27: add n to list of NewPointsList
28: endfor
29: endfor
30: RemoveEliminatablePoints(NewPointsList)
31: OldPointsList = NewPointsList
32: endfor
33: return assignment with the minimum makespan

Figure 3. Optimal dynamic programming algorithm for
the reconfigurable scheduling problem for independent

tasks with heterogeneous resources.

 5

to the algorithm is to store the reconfiguration cost for each
task type rather than each resource.
Theorem 2: Assume we are given

 ao
a makespanmakespan

makespan
≤≤

+)1(δ
, (4)

 two points, p and q,

lem

gorithm in Figs.

an exhaustive search of

mming algorithm has an exponential

5. APPROXIMATION ALGORITHM
, is NP-

mming algorithm described in

hat if two points in the M-

red to a new

lem

gorithm in Figs.

an exhaustive search of

mming algorithm has an exponential

5. APPROXIMATION ALGORITHM
, is NP-

mming algorithm described in

hat if two points in the M-

red to a new

where a is the point in the new space and δ the factor by
which points are trimmed. It should be noted that δ is not
the same as ε; δ and ε will be related to one another after
some further discussion.

representing the intermediate solutions of the dynamic
programming algorithm. If p has a greater cost on all
resources and has completed the same or less
reconfigurations, then point p is dominated by the point q
and hence will never be a part of the optimal solution.
Proof: Assume the contrary, that there is a prob

representing the intermediate solutions of the dynamic
programming algorithm. If p has a greater cost on all
resources and has completed the same or less
reconfigurations, then point p is dominated by the point q
and hence will never be a part of the optimal solution.
Proof: Assume the contrary, that there is a prob

Three considerations are necessary when approximating
points. First, when approximating between the assignment
of tasks of the same type, the point in the new space must
have a larger or equal approximation history; this is based
on the same reasoning applied to the elimination of points,
e.g., Fig. 1. Second, the makespan of the point that is
eliminated must be approximately equal to the point that
replaces it. Third, the cost along all axes must be
approximately the same or greater for the point to be
approximated.

instance where point p is part of the optimal solution. As
point p and point q represent the same set of scheduled
tasks, if point p was replaced with point q, the completion
time on all the resources would decrease, and hence the
makespan would decrease. Thus, the optimal solution could
be improved, which is a contradiction. Hence point p will
never be a part of the optimal solution. ⁪
Theorem 3: The dynamic programming al

instance where point p is part of the optimal solution. As
point p and point q represent the same set of scheduled
tasks, if point p was replaced with point q, the completion
time on all the resources would decrease, and hence the
makespan would decrease. Thus, the optimal solution could
be improved, which is a contradiction. Hence point p will
never be a part of the optimal solution. ⁪
Theorem 3: The dynamic programming al

The psuedocode for the approximation algorithm is the
same as for the optimal algorithm, but with one additional
modification. After removing all points that can be
eliminated, the remaining points are approximated, using
the procedure in Fig. 5. A call to this approximation
procedure is placed between lines 30 and 31 in Fig. 3.

3 and 4 minimizes the makespan.
Proof: The algorithm carries out
3 and 4 minimizes the makespan.
Proof: The algorithm carries out
all possible task assignments. It only eliminates points from
its consideration, when, provably, they will not lead to the
optimal solution. ⁪
The dynamic progra

all possible task assignments. It only eliminates points from
its consideration, when, provably, they will not lead to the
optimal solution. ⁪
The dynamic progra worst-case time and space complexity of O(MN), where M
is the number of resources and N is the number of tasks.
Though the algorithm’s space and time complexity make is
prohibitory, it provides a solid foundation for the
polynomial-time ε-approximation algorithm introduced in
the next section.

worst-case time and space complexity of O(MN), where M
is the number of resources and N is the number of tasks.
Though the algorithm’s space and time complexity make is
prohibitory, it provides a solid foundation for the
polynomial-time ε-approximation algorithm introduced in
the next section.

Approximate(NewPointsList)
1: Sort points in NewPointsList in non-decreasing
order of makespan
2: Place the first point in ApproxPointList
3: for each point n in NewPointsList
4: for each point a in ApproxPointsList
5: if (n.reconfiged[r] > a.reconfiged[r] for

any resource r and currentTaskType =
nextTaskType) or n.makespan >
a.makespan*(δ+1) or (n.Cost[r] > a.Cost[r]
and n.Cost[r] > a.Cost[r]*(δ+1) for all
resources r)

The scheduling problem, as formulated in Section 2The scheduling problem, as formulated in Section 2
complete, proven by a reduction from the well-known set-
sub problem; unless it is somehow proven that P=NP, an
optimal polynomial time algorithm for this scheduling
problem does not exist [5].

The optimal dynamic progra

complete, proven by a reduction from the well-known set-
sub problem; unless it is somehow proven that P=NP, an
optimal polynomial time algorithm for this scheduling
problem does not exist [5].

The optimal dynamic progra 6: add a to ApproxPointsList
7: endif the preceding section has an exponential worst-case time

complexity. Using a trimming procedure, however, this
algorithm can be converted into a fully polynomial-time ε -
approximation algorithm. The approximation algorithm
can find solutions that are a factor of at most 1+ε away
from the optimal solution.

The underlying idea is t

the preceding section has an exponential worst-case time
complexity. Using a trimming procedure, however, this
algorithm can be converted into a fully polynomial-time ε -
approximation algorithm. The approximation algorithm
can find solutions that are a factor of at most 1+ε away
from the optimal solution.

The underlying idea is t

8: endfor
9: endfor
10: return ApproxPointList

Figure 5. Pseudocode for the approximation algorithm.

The approximation algorithm starts off by adding the first
point in NewPointsList to the newly formed list, named
ApproxPointList. The remaining points are added to
ApproxPointList, if a point does not already exist in
ApproxPointList that approximates it.

dimensional space are sufficiently close, then it suffices to
examine just one of them; although this sacrifices
optimality, the tradeoff between runtime and solution
quality can be tuned by the user’s choice of ε.

A point, o, in the original space is not transfer

dimensional space are sufficiently close, then it suffices to
examine just one of them; although this sacrifices
optimality, the tradeoff between runtime and solution
quality can be tuned by the user’s choice of ε.

A point, o, in the original space is not transfer The input to the scheduling algorithm is a collection of N
tasks, M resources, and an approximation parameter ε, space if: space if:

 6

Theorem 5: The approxi

where 0 < ε < 1. The algorithm returns a schedule whose
makespan is worst than optimal by a factor of at most 1+ ε. mation algorithm runs in

f

he maximum number

We set ε to be related δ by the following equation: δ =
ε/2N, so that the following proof will hold.

polynomial worst-case time.
Proof: First, we need to bound the number of points in the
space; this is accomplished by using a maximum value for
the makespan, denoted by T (similar to Fig. 2). T, for
example, could be the makespan of all of the tasks
scheduled onto one single resource; or, alternatively, it
could be the makespan computed by an efficient heuristic,
such as list scheduling, that makes no guarantees o

Theorem 4: The approximation procedure presented in
section 5.1 returns a schedule for the input tasks on the
given resources, where the makespan of the schedule is 1+ε
factor of the makespan of the optimal schedule.
Proof: The approximation algorithm introduces no error
except in the trimming of points from the space. Thus we
consider only that part of the algorithm.

solution quality; the optimal makespan cannot exceed T.
Based on the approximation scheme, each point in the
space must differ from the other points by at least 1 + ε/2N
along all M axes in the space. Thus, tLet makespano be an optimal solution and makespana be an

approximate solution. We use an asterisk to denote the
solution after the final iteration, e.g., makespan0*.

of points in the space, P, is given by:
M () M!1TlogP ε/2N1 ×+= +

M!1lnT
M

×





+=

 (11) To prove the approximation bound, we must formally
porve that makespana* < (1 + ε)makespan0*. Our approach
uses inductions on the number of iterations. Specifically,
we prove that for every point o in the original space at
iteration i, there is a point a in the new space such that:

 (12) ()ε/2N1ln  +

Since x/(1+x) ≤ ln(1+x), it follows that:

() M!1lnTε/2N12N M

×



 +

+
≤ao

a makespanmakespan

1
2N
ε

makespan
≤≤







 +

i . (5)
ε 

 (13)

M!14NlnT M

×



 +≤This equality must hold for the final iteration as well, i.e.:

ε 

Here, we assume that M, the number of resources, is a
constant value. Therefore, M! is also constant, and the
number of points in the space is proportional to 1/ε raised
to a constant power. Since the complexity of the algorithm
is polynomial in terms of the number of points in the sp

** ao
a makespanmakespan

1
2N
ε

*makespan
≤≤







 +

N . (6)

It follows that:
N







 +≤ 1

2N
ε

makespan
*makespan

o

a

*
. (7)

Now, observe that:
2

ε/2
N

N 2
ε

2
ε1e1

2N
εlim 






++≤=






 +

∞→
, (8)

Since 0 < ε < 1, it follows that:

ε1
2
ε

2
ε1

2

+≤





++ (9)

From which we can conclude:

ε
makespan

*makespan

o

a +≤ 1
*

 (10)

 (14)

ace,
nd ε, the ε-approximation is fully polynomial-time. ⁪

oximation, but
whose running time is less dependent on M.

e

es a theoretical
study on a set of randomly generated data.

a

It is important to note that the runtime on the algorithm is
heavily dependent on the number of resources, M, which is
assumed to be a constant. If the approximation algorithm
trimmed points according to their distance from the origin
instead of makespan results in an ε-√2 appr

6. EXPERIMENTAL RESULTS
This section evaluates the quality of the ε-approximation
algorithm presented in this paper; it is compared against the
optimal ILP formulation, as well as list scheduling, a well-
understood greedy heuristic. The list scheduling heuristic
processes tasks in the sorted order, and schedules th
current task on the resource with the earliest finish time.

Subsection 6.1 applies the algorithm to scheduling parallel
encryption tasks. Subsection 6.2 summariz

This proves that the algorithm is an ε-approximation. ⁪

Next, we prove that the algorithm runs in polynomial time.

 7

6.1 Application to Encryption
The first set of experiments schedules a parallelized
encryption algorithm on a system with heterogeneous
resources. The encryption algorithm used is the Advanced
Encryption Standard (AES, a.k.a. Rijndael), which is a
block cipher. The target system contains an Intel Pentium
III general-purpose processor and a Virtex-E 1000e FPGA.
The system initially splits the data inputs, which are to be
scheduled, into heterogeneous blocks with different
encryption levels, i.e., three different key sizes: 128, 196,
and 256 bits. The input data is also split into blocks of 128,
196, and 256 bits for encryption.
 This yields nine distinct task types. The reconfiguration
time of the FPGA for each task type was determined a-
priori by implementing different versions of the AES and
synthesizing it on the FPGA. The runtime on both the
Pentium III and FPGA was determined by encrypting
randomly-generated input data on each system.
We generated a suite of 1000 test cases with randomly
generated input bitstreams to encrypt. We then scheduled
each test case 3 times: using the optimal ILP formulation,
using the approximation algorithm, and using list
scheduling. For the approximation algorithm, we set the
value of ε to 0.999, which means that the makespan of the
approximate solution should be 1.999x greater than the
makespan of the optimal solution in the worst case.

Figs. 6(a) and (b) show the results of these experiments.
Fig. 6(a) compares the approximation algorithm to the ILP,
while Fig. 6(b) compares the list scheduling heuristic to the
ILP. In both figures, the y-axis shows the number of
experiments out of 1000, and the x-axis represents the
maximum factor by which the makespan is different from
the optimal value.
Fig. 6(a) shows that out of the 1000 test cases, the
approximation algorithm found the optimal solution in the
vast majority of cases; in the few cases where it could not

find an optimal solution, the makespan of the approximate
solution was 1.1x worse than the optimal makespan. These
results are far closer to the optimal solution than to the
theoretical worst case.
Figures 6(b) shows that list scheduling performs much worse; in
no case did list scheduling find an optimal solution. The
makespans obtained from list scheduling range from 1.6x to 2.6x
worse than optimal.

6.2 Random Input Data
This subsection presents an experimental study in which
we vary the number of tasks and task types; unlike the
preceding subsection, the set of tasks to be scheduled are
generated randomly. First, we randomly generate a number
of task types, and the number of tasks per type (which is
assumed to be the same for all types); from this we can
derive the total number of tasks to be scheduled; in each
case, we randomly generate 1000 instances of the problem
to solve.

Fig. 7 compares the ILP, ε-approximation algorithm, and
list scheduling heuristic on these benchmarks with ε set to
0.999. Since ε must be between the values zero and one, a
very large value for ε was chosen to give the list scheduling
heuristic the best chance to be competitive.

0
200
400
600
800

1000
1200

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

Factor away from the Optimal

N
um

be
r o

f E
xp

er
im

en
ts

0
50

100
150
200
250
300
350

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

Factor Away from Optimal

N
um

be
r o

f E
xp

er
im

en
ts

(a) (b)

Figure 6. AES scheduling error distribution: (a) ε-approximation versus ILP; (b) list scheduling heuristic vs. ILP.

Fig. 7 shows that in the vast majority of cases, the ε-
approximation algorithm found optimal solutions, while the
list scheduling heuristic did not; furthermore, in a fair
number of cases, the list scheduling heuristic found
solutions that were worse than the theoretical guarantee of
1.999x of the ε-approximation algorithm. List scheduling
faired best when there was only one type of task: in this
case, reconfiguration occurs at most once per resource: an
overly simplistic instance of the problem.

 8

In Fig. 8, the value of ε is varied, and there are 3 task types
with 3 tasks per type. For each choice of epsilon, the
results are compared to the ILP. Also, we verify than no
experiment results in a makespan (1+ε)x longer than
optimal. The list scheduling heuristic, once again, produces
many solutions whose makespan are more than (1+ε)x
longer than the optimal solution.

0

200

400

600

800

1000

1200

3x3 1x10 10x1 5x3 3x5
No. of types x No. of tasks/type

N
um

be
r o

f E
xp

er
im

en
ts

Equal to Optimal: Approximation
Equal to Optimal: Heuristic
Worse than 1+epsilon: Approximation
Worse than 1+epsilon: Heuristic

In Fig. 9, we examine the effect of varying the number of
resources. This work assumes a finite and limited number
of resources, as the algorithm’s complexity increases
exponentially with respect to the number of resources. Fig.
9 experimentally demonstrates an increase in the number of
resources improves the quality of the resulting schedules
both for our algorithm as for the list scheduling heuristic,
as would be expected by spreading out the tasks across
resources. However, even with 100 resources, the list
scheduling algorithm averages over 18% of the makespans
as more the worst case theoretical bound imposed on the
approximation algorithm. Figure 7. Varying the number of tasks to be scheduled.

7. EXTENSION TO TASK GRAPH
SCHEDULING WITH COMMUNICATION

0

200

400

600

800

1000

1200

0.001 0.1 0.3 0.5 0.7 0.9 0.999
Epsilon

N
um

be
r o

f E
xp

er
im

en
ts

equal to optimal
worse than 1+epsilon
heuristic worse than 1+epsilon

Until now, we have considered independent tasks. Our
work, however, can be extended to handle the case where
there are dependencies between tasks. This is in the case
where we are given as input a data flow graph, where each
node is a task and each edge represents a data dependency
between the parent node and the child node. The graph, of
course, is a precedence directed acyclic graph (DAG).
To extend out work, the basic idea is to levelize the graph
and then run our algorithm on each level of the graph.
There are a few additional issues that need to be
considered. First, to handle the case when certain resources
take longer to execute than others at a certain level, the
execution time of the resources should be given as input to
the next level’s iteration, so the appropriate axis will be
scheduled from a new starting point instead of from zero,
or the origin.

Figure 8. Varying the value of ε.
When working with precedence DAGs, communication
between tasks can also be a constraint on the schedule.
Fortunatly, communication cost between tasks can be
incorporated into our algorithm, by adding the cost of
communication to the task execution cost, for schedules
which split the tasks onto different resources. We do not
have a proof for whether this heuristic is an approximation
algorithm for the problem of DAG scheduling. In the
future, we hope to extend our work to address this more
general model of tasks, and provide not just a heuristic for
this problem but an approximation algorithm.

Second, the reconfiguration status of the resources should
be given as input to the next level, so that the
reconfigurations can be accounted for properly. To ensure
that tasks, whose parents have not completed their
execution not be executed, tasks type orderings can be
reshuffled to ensure that this constraint is not violated. In
the worse case, some idle time will be scheduled.
There exist a cost and even a delay for moving data from
one resource to another. These parameters can easily be
considered with our algorithm. The cost of scheduling
children tasks onto different resources can be added to the
reconfiguration cost for that task, on all resources other
than the one the parent task is scheduled on. Similarly, the
delay can be accounted for by adding the delay to the
execution time of the task.

 9

Work on scheduling algorithms for reconfigurable
resources that consider area and execution time together
include [27]. Our approach is robust enough to be applied
to this problem area..

0

200

400

600

800

1000

1200

3 5 7 10 100
Number of Resources

N
um

be
r

of
 E

xp
er

im
en

ts

Equal to Optimal: Approximation
Equal to Optimal: Heuristic
Worse than 1+epsilon: Approximation
Worse than 1+epsilon: Heuristic

An approximation algorithm is presented in [25] for
problems with a delay-cost model, as with the problem
presented in this paper. Unfortunately, the addition of
reconfiguration cost to the model can only be done by
mapping reconfiguration cost to the execution delay, which
results in schedules with gaps in execution and potentially
unnecessary additional reconfigurations. Similarly, [29]
considers pareto optimal solutions for the case where there
is a delay-cost tradeoff. The same limitation applies to this
work as well.
In [14], a mixed integer linear programming based heuristic
is proposed for our problem. The algorithm carries out an
exponential branch and bound search of all possible
solutions, but halts the search after a certain amount of
time, regardless of whether the search has completed. In
[18], preemption of reconfiguration is examined. In [28],
and optimal algorithm is given for the related problem of
minimizing reconfiguration delay. In [16], several
heuristics are presented, which are adaptations of the
pseudopolynomial solutions for the famous parallel
machines, single server problem. In [17], several simple
heuristics are presented for this and related problems.

Figure 9. Varying the number of resources to be scheduled.

8. RELATED WORK
There exists extensive literature in the classic problem of
scheduling independent tasks onto heterogeneous resources
so as to minimize the makespan. Note this literature does
not consider reconfiguration cost, the main thrust of this
work. A linear programming approach is taken in both [11]
and [13]. The problem is formulated as an integer linear
programming problem. An LP-relaxation is used to assign
tasks to resources. Up to m-1 tasks can be split among
different resources, where m is the number of resources. To
obtain a valid non-preemptive solution, each split task must
be reassigned to one resource. This is done with complete
enumeration as shown in [13]. Also, the values can be
rounded as shown in [14]. This paper goes on to give a 2-
approximation algorithm for the case of an unbounded
number of resources

This paper describes algorithms that do consider
reconfiguration cost when scheduling independent tasks
onto heterogeneous resources. The heuristic presented is an
approximation algorithm whose solution quality can be
bounded. Also, all the algorithms utilize only
computational techniques, as opposed to linear
programming techniques. The work presented in this paper
is based on the preliminary work presented in [12].

More recently, [11] has improved on the previous work, by
using linear programming to schedule short tasks and
dynamic programming to schedule long tasks. The
determination of long versus short tasks is carried out
according to the level of approximation as determined by
epsilon.

9. CONCLUSION
In this paper, we have presented a fully polynomial
approximation algorithm for determining the optimal
scheduling of independent tasks onto heterogeneous
resources with heterogeneous reconfiguration costs. The
approximation is derived form the optimal algorithm, by
trimming the number of points in the space.

In the related work where reconfiguration cost is
considered several perspectives exists. [19] first introduced
prefetching of a configuration profile to overlap the
reconfiguration with execution in partially reconfigurable
systems. [22] and [23] present heuristics that utilizes
prefetching for reconfiguration aware scheduling. These
approaches are orthogonal to our approach, as we do not
consider the impact of prefeching in our work.

The algorithm is shown both theoretically and
experimentally to be a (1+ε)-approximation. Extensive
verification of the algorithm utilizing random values was
conducted. Additionally, a real world application to
schedule the parallel encryption of tasks onto an FPGA and
a general purpose processor was used to demonstrate that
the approximation is capable of scheduling the encryption
of heterogeneous inputs onto heterogeneous resources
dramatically more effectively than list scheduling. Its
solution quality also compares well with the optimal,
though exponential, algorithm.

Reconfiguration cost in task execution is considered in the
realm of regenerative energy sources in [5][20][21][26].
These works present heuristics for schedule task execution
given the variability of energy availability.

 10

10. REFERENCES [14] U. N. Shenoy, P. Banerjee, and A. Choudhary, A
System-level Synthesis Algorithm with Guaranteed
Solution Quality. In The Proceedings of Design
Automation and Test in Europe, 2003.

[1] B. Schneier, Applied Cryptography. John Wiley and
Sons, Inc, New York, 1996.

[2] T. H., Cormen, C. E. Leiserson, R. L. Rivest, C. Stein.
Introduction to Algorithms, Second Edition. The MIT
Press, Cambridge, MA, 2001.

[15] I. Verbauwhede, P. Schaumont, and H. Kuo, Design
and Performance Testing of a 2.29-GB/s Rijndael
Processor. IEEE Journal of Solid-State Circuits 38, 3
(March 2003), 569-572. [3] J. Daeman, and V. Rijmen, AES Proposal: Rijndael. In

the Proceedings of First Advanced Encryption
Standard Conference, 1998. [16] J. Angermeier and J. Teich, Heuristics for Scheduling

Reconfigurable Devices while Respecting
Reconfiguration Overheads. In The Proceedings of
22nd IEEE International Parallel and Distributed
Processing Symposium (ISDPS ’08), 2008.

[4] M. R. Garey, and D. S. Johnson, Computers and
Intractability, A Guide to the Theory of NP-
Completeness. W.H. Freeman and Company, New
York, 1979.

[17] K. Bondalapati and V. Prasanna, Reconfigurable
Computing Systems. In The Proceedings of the IEEE
90 (7) (2002) pp.1201-1217.

[5] I. Follcarelli, A. Acquaviva, A. Susu, T. Kluter, G. De
Micheli, An Opportunistic Reconfiguration Strategy
for Environmentally Powered Devices. In The
Proceedings of the 3rd ACM International Conference
on Computing Frontiers (CF ‘06), 2006.

[18] F. Dittmann and S. Frank, Hard Real-Time
Reconfiguration Port Scheduling. In The Proceedings
of Design Automation Conference (DAC ’07), 2007. [6] P. M. Heysters, G. J. M. Smit, E. Molenkamp, Energy-

Efficiency of the MONTIUM Reconfigurable Tile
Processor. In The Proceedings of Engineering of
Reconfigurable Systems and Algorithms (2004).

[19] Z. Li and S. Hauck, Configuration Prefetching
Techniques for Partial Reconfigurable Coprocessor
with Relocation and Defragmentation. In The
Proceedings of International Symposium on FPGA,
2002. [7] D. S. Hochbaum. Approximation Algorithms for NP-

Hard Problems. PWS Publishing Co., Boston, MA,
1997. [20] C. Moser, d. Brunelli, L. thiele, and L. Benini, Real-

Time Scheduling with Regenerative Energy. In The
Proceedings of 18th Euromicro Conference on Rea-
Time Systems (ECRTS ’06), 2006.

[8] E. Horowitz and S. Sahni, Exact and Approximate
Algorithms for Scheduling Nonidentical Processors.
Journal of the Association of Computing Machinery
23, 2 (April 1976), 317-327. [21] A. Nahapetian, P. Lombardo, A. Acquaviva, L. Benini,

M. Sarrafzadeh, Dynamic Reconfiguration in Sensor
Networks with Regenerative Energy Sources. In The
Proceedings of Design Automation and Test Europe
(DATE ’07), 2007.

[9] Implementation of AES (Rijndael) in C/C++.
http://fp.gladman.plus.com/cryptography_technology/r
ijndael/index.htm

[10] K. Jansen, and L. Porkolab, Improved Approximation
Schemes for Scheduling Unrelated Parallel Machines.
In The Proceedings 31st ACM Symposium on Theory of
Computing (STOC ’99), 1999.

[22] J. Resano, D. Mozos, D. Verkest, F. Catthour, and S.
Vernalde, Specific Scheduling Support to Minimize
the Reconfiguration Overhead of Dynamically
Reconfigurable Hardware. In The Proceedings of
Design Automation Conference (DAC ’04), 2004. [11] J. K. Lenstra, D. B. Shmoys, and E. Tardos,

Approximation Algorithms for Scheduling Unrelated
Parallel Machines. Mathematical Programming 46,
1990.

[23] J. Resano et al, Run-time Minimization of
Reconfiguration Overhead in Dynamically
Reconfigurable Systems. In The Proceedings of
FPL’03, 2003. [12] A. Nahapetian, S. Ghiasi,, and M. Sarrafzadeh, Task

Scheduling on Heterogeneous Resources with
Heterogeneous Reconfiguration Costs. In The
Proceedings of Parallel and Distributed Computing
and Systems (PDCS): Special Session on Synthesis of
Programmable Systems, 2003.

[24] N. Moreano, E. Borin, C. C. de Souza, G. Araujo:
Efficient datapath merging for partially reconfigurable
architectures. IEEE Trans. on CAD of Integrated
Circuits and Systems 24(7): 969-980 (2005)

[25] S. Roy, K. Belkhale, and P. Banerjee, An α-
Approximate Algorithm for Delay-Constraint
Technology Mapping. In Proceedings of Design
Automation Conference (DAC ’99), 1999.

[13] C. N. Potts, Analysis of a Linear Programming
Heuristic for scheduling Unrelated Parallel Machines.
Discrete Applied Mathematics 10 , 1985.

 11

http://fp.gladman.plus.com/cryptography_technology/rijndael/index.htm
http://fp.gladman.plus.com/cryptography_technology/rijndael/index.htm

[26] C. Rusu, R. Melhem, and D. Mosse, Multi-Version
Scheduling in Rechargeable Energy-Aware Real-Time
Systems. In Proceedings of Euromicro Conference on
Rea-Time Systems (ECRTS ’03), 2003.

[29] P. Yang and F. Catthoor, “Pareto-Optimization Based
Run-Time Task Scheduling for Embedded Systems. In
Proceedings of International Symposium on Software
Synthesis (ISSS ’03), 2003.

[27] K. Bazargan, R. Kastner, and M. Sarrafzadeh, Fast
Template Placement for Reconfigurable Computing
Systems. In IEEE Design and Test – Special Issue on
Reconfigurable Computing, 17, 1 (Jan. 2000), 68-83.

[30] S. Kogekar, S. Neema, and X. Koutsoukos, Dynamic
Software Reconfiguration in Sensor Networks. In
Proceedings of the 2005 Systems Communications
(August 14 - 17, 2005).

[28] Soheil Ghiasi, Ani Nahapetian, Majid Sarrafzadeh. An
Optimal Algorithm for Minimizing Runtime
Reconfiguration Delay. ACM Transactions on
Embedded Computing Systems (TECS) Vol. 3, No 2,
pp. 237-256, May 2004.

[31] S. Kogekar, S. Neema, B. Eames, X. Koutsoukos, A.
Ledeczi, and M. Maroti, Constraint-guided dynamic
reconfiguration in sensor networks. In Proceedings of
the Third international Symposium on information
Processing in Sensor Networks (IPSN ’04), 2004.

 12

	INTRODUCTION
	Contribution
	Paper Organization

	�
	MOTIVATING EXAMPLE
	PROBLEM STATEMENT
	Problem Details and Decomposition

	OPTIMAL ALGORITHMS
	Integer Linear Program
	Dynamic Programming Algorithm

	APPROXIMATION ALGORITHM
	EXPERIMENTAL RESULTS
	Application to Encryption
	Random Input Data

	EXTENSION TO TASK GRAPH SCHEDULING WITH COMMUNICATION
	RELATED WORK
	CONCLUSION
	REFERENCES

