
11

Throughput-Driven Synthesis of Embedded
Software for Pipelined Execution
on Multicore Architectures

MATIN HASHEMI and SOHEIL GHIASI

University of California, Davis

We present a methodology for pipelined software synthesis of streaming applications. First, we

develop a versatile task assignment algorithm capable of optimizing realistically-arbitrary cost

functions for two cores. The algorithm is exact (i.e., theoretically optimal) contrary to existing

heuristics. Second, our approximation technique provides an adjustable knob to trade solution

quality with algorithm runtime and memory. Third, we develop a recursive heuristic for more

cores. FPGA-based emulated experiments validate our theoretical results. The exact algorithm

yields 1.7× throughput improvement. The approximation method offers a range of tradeoff points

(e.g., 3× faster with 20× less memory) while degrading the throughput only 1% to 5%.

Categories and Subject Descriptors: B.8.2 [Performance and Reliability]: Performance Analysis

and Design Aids; D.3.4 [Programming Languages]: Processors–Optimization

General Terms: Algorithms, Experimentation

Additional Key Words and Phrases: Embedded software, graph partitioning, multi-core hardware,

streaming applications, task assignment

ACM Reference Format:
Hashemi, M. and Ghiasi, S. 2009. Throughput-driven synthesis of embedded software for pipelined

execution on multi-core architectures. ACM Trans. Embedd. Comput. Syst. 8, 2, Article 11 (January

2009), 35 pages. DOI = 10.1145/1457255.1457258 http://doi.acm.org/10.1145/1457255.1457258

1. INTRODUCTION

Despite the tremendous societal and economical potential of cyber-physical
systems, the process of application development for such systems is largely
ad hoc today [Sztipanovits et al. 2005; Lee 2006; Henzinger and Sifakis 2006].
Presently, the practitioners have to settle for slow and costly development pro-
cedures, which yield unreliable and unportable software [Lee 2005]. Many re-
searchers are working to develop a formal science to pave the way to systematic

Authors’ addresses: M. Hashemi and S. Ghiasi, University of California, Davis; email: hashemi@

ucdavis.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2009 ACM 1539-9087/2009/01-ART11 $5.00 DOI 10.1145/1457255.1457258 http://doi.acm.org/

10.1145/1457255.1457258

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 11, Publication date: January 2009.

11:2 • M. Hashemi and S. Ghiasi

and high-confidence development of embedded systems [Sztipanovits et al.
2005; Meeting 2006].

In order to automatically realize an application software, a sequence of re-
finement stages have to be carried out to bridge the gap between high-level
specifications and application implementation. Formal modeling and model
checking, such as existing results on interfacing inherent continuity of physical
world with discreteness of digital computing [Alur et al. 1992; Henzinger et al.
1992; Stankovic 2007] and guaranteeing properties of computing processes
[Henzinger et al. 1994; Henzinger et al. 1998; Alur 2003], provide means
to ensure quality and correctness of specifications. Refinement stages of the
synthesis need to preserve such properties and deliver provably efficient
implementations [Bonivento et al. 2005; Benveniste et al. 2003; Pinto et al.
2006].

This article takes a step toward the grand challenge of bridging the gap be-
tween formal application specification and its implementation. We study the
problem of task assignment during synthesis of embedded streaming applica-
tions on parallel processors, where applications are modeled as task graphs or
synchronous dataflow [Lee and Messerschmitt 1987b].

Streaming applications are characterized by the requirement to process a
virtually infinite sequence of data items under performance constraints [Owens
et al. 2002; Thies et al. 2002]. They are becoming increasingly important and
widespread, and they appear in many disciplines such as networking, signal
processing, security, and multimedia. Typically, they demand high throughput
but are not very sensitive to response latency. Hence, pipelined execution is a
favorable design choice for their implementation [Gordon et al. 2002; Rangan
et al. 2006; Owens et al. 2000].

The contribution of this article is threefold. First, we present a task as-
signment methodology for synthesizing pipelined streaming applications that
execute on dual-core platforms. The objective is to maximize the pipeline
throughput. Our proposed method is an exact algorithm, as opposed to many
existing heuristic approaches that do not provide a guarantee on quality of task
assignment.

In addition to being optimal (i.e., exact), our technique is also versatile, mean-
ing that it can readily optimize any realistically1 arbitrary function of compu-
tation workloads and interprocessor communications. Therefore, our task as-
signment supports different situations, such as heterogeneous processors and
different on-chip communication strategies.

The proposed methodology is different from exhaustive-search approaches
such as branch-and-bound and ILP. Such methods often allow a more arbitrary
cost function, but are not scalable because their runtime and memory require-
ment can exponentially grow. Simulated annealing and genetic algorithms can
help reduce the runtime, but they do not deliver high-quality solutions. Our al-
gorithm is both exact and versatile, while it is pseudopolynomial with respect
to problem size.

1A cost function is realistic iff out of two solutions with identical workload distributions, the one

with smaller interprocessor communication is always favored.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 11, Publication date: January 2009.

Throughput-Driven Synthesis of Embedded Software • 11:3

Our second contribution is to extend the exact task assignment algorithm to
a strictly polynomial approximate task assignment. It takes as input a tolerable
error bound and guarantees that solution quality is not degraded beyond the
bound. The algorithm runtime and memory requirement are improved with
loosening of the error bound. Thus, it serves as an adjustable knob for trading
application throughput with compilation runtime and memory requirement.

Third, we develop a heuristic task assignment algorithm for pipeline soft-
ware synthesis for three or more processors. We recursively use our dual-core
algorithm for this purpose.

In order to validate practicality of our theoretical contributions, we in-
tegrated the proposed algorithms in MIT StreamIt 2.1 compiler framework
[Gordon et al. 2002], and generated executable code for multicore platforms. We
emulated several multicore architectures on an FPGA, and executed parallel
applications. Subsequently, we measured the throughput of running applica-
tions on emulated design. Empirical measurements validated the effectiveness
of our approach.

Our exact task assignment method for two processors yields 1.7× through-
put improvement over single-core baseline, on average. Out of a total six bench-
marks, half of them had the same results with both our exact algorithm and
StreamIt 2.1, but for the other three benchmarks, our approach yields 25%,
15% and 14% more throughput. In addition, our approximation method offers a
range of runtime-throughput tradeoff points. For example, it runs about 3 times
faster and requires about 20 times less memory, while results in throughput
degradation of only 1% to 5%. On average, the heuristic method yields 13.3%,
45.8% and 14.3% more throughput than StreamIt 2.1, for 3, 4 and 5 processor
platforms respectively.

2. RELATED WORK

A number of recent efforts address the problem of multiprocessor software syn-
thesis for SDF-based streaming applications. Thies et al. present StreamIt, a
modeling language and compiler, for developing streaming applications [Thies
et al. 2002]. Gordon et al. [2002] and Thies et al. [2003] describe a task assign-
ment algorithm for StreamIt. The algorithm partially explores task parallelism
and partitions the tasks among multiple processors. Gordon et al. [2006] extend
their work and present a heuristic algorithm for acyclic StreamIt task graphs to
exploit task, data and pipeline parallelism. As part of the Ptolemy project, Pino
et al. [1995] propose a technique to address the combined problem of task assign-
ment and task scheduling for DSP applications modeled as acyclic SDF graphs.

Stuijk et al. [2007] propose a task assignment method for heterogeneous
architectures in which, tasks are first sorted based on their impact on through-
put. Subsequently, a greedy method assigns one task at a time to the processor
with the least workload. Cong et al. [2007] present an algorithm for assign-
ment of acyclic task graphs onto application specific softcore multiprocessor sys-
tems. The method is similar to technology mapping in logic synthesis domain.
It starts by labeling the tasks, followed by clustering them into processors,
and finally, tries to reduce the number of processors by packing more tasks

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 11, Publication date: January 2009.

11:4 • M. Hashemi and S. Ghiasi

onto under-utilized processors. For pipelined network processors executing a
sequential code (e.g., C), a program partitioning algorithm is proposed in Yu et
al. [2007]. Heuristic graph bipartitioning algorithm is recursively applied to the
task graph in order to balance instruction counts across the processors, then a
refinement algorithm tries to balance the computation workload.

Unlike existing techniques, our work contributes to the state of the art by for-
mally delivering the optimal solution. We exploit planarity of target task graphs
to deliver provably optimal results with reasonably low complexity. Some SDFs,
such as those specified in StreamIt, are inherently planar. In addition, we de-
velop a planarization transformation to handle nonplanar task graphs. Our
technique supports many hardware-inspired throughput estimation functions
during software synthesis. That is, it is capable of minimizing realistically
arbitrary cost functions that model execution period in a specific hardware
implementation.

Some researchers have taken the approach of exploring the design space
via enumeration. Ma et al. [2005] propose a task interleaving algorithm for
acyclic task graphs. First, an exhaustive search algorithm for three processors
is developed based on which, the technique is extended heuristically to handle
architectures with more number of processors. Resource allocation for acyclic
graphs on heterogeneous architectures is studied in Hu and Marculescu [2005].
A branch-and-bound algorithm is presented to minimize communication over-
heads between tasks. A multiobjective genetic task assignment algorithm for
applications modeled as Kahn Process Network to a heterogeneous architec-
tures is presented in Erbas et al. [2006]. It considers power consumption, com-
putation workload and communication overheads; however, it requires about
1,000 generations to converge. Approaches based on exhaustive search of the
design space are typically not scalable because the runtime and/or memory
requirement grow exponentially with problem size.

Our work also relates to a number of theoretical results on graph partition-
ing. The reason is that at the core of our proposed task assignment technique is
a graph bipartitioning algorithm, which operates on planar graphs. Note that
the proposed task assignment is not limited to planar task graphs because non-
planar task graphs are planarized before applying the partitioning algorithm
(Section 7.4). Graph bipartitioning remains to be intractable for planar graphs
[Karpinski 2002], and thus, it admits no polynomial optimal algorithm unless
P = NP. Several bipartitioning algorithms exist for planar graphs that run in
pseudopolynomial time. Our method offers value in comparison to such meth-
ods for two main reasons. Firstly, it exploits specific features of application task
graphs to improve time complexity of the general case. Secondly, it supports a
broad class of cost functions, while existing techniques focus on finding bal-
anced cut (also known as min cut), or minimum quotient cut (also known as
sparse cut).2

2Balanced cut is a subset of edges whose removal would create two equally sized partitions. Min-

imum quotient cut minimizes the cost function C
min(W1,W2)

where, W1 and W2 refer to total weight

of nodes in each partition, and C denotes the cost of cut edges. From a practical viewpoint, Wi and

C model computation workload and communication latency, respectively.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 11, Publication date: January 2009.

Throughput-Driven Synthesis of Embedded Software • 11:5

Bui and Peck [1992], a bipartitioning algorithm is presented to find the bal-
anced cut of an unweighted planar graph in O(b2N 324.5b) time, where N is the
number of nodes in the graph, and b is the number of cut edges. The authors also
present another algorithm that runs in O(k2N 323k) time if each biconnected
component of the planar graph is at most k-outerplanar. In Rao [1992], two
1.5-approximation and 3.5-approximation algorithms are presented that find
minimum quotient cut in O(N 2×min(W, C)) and O(N 2×min(N , log WC)) time,
respectively. Rao’s work has been adapted and improved by many researchers.
In Park and Phillips [1993], an exact algorithm and a 3.5-approximation algo-
rithm is presented for finding minimum quotient cut that run in O(N 3W) and
O(N 2 × min(

√
N , log W × C)) time, respectively.

A 2-approximation algorithm for finding 2/3-balanced cuts is proposed in
[Garg et al. 2000], which runs in O(N 4W 2C log(N W 2C)) time. An O(log N)-
approximation algorithm for finding minimum bisection in polynomial time is
developed by Feige and Krauthgamer [2002]. A closely related problem is that of
vertex-cut partitioning (i.e., dividing a graph by removing some of the vertices
instead of edges). It is possible to transform variants of edge-cut and vertex-cut
partitioning problems to each other [Rao et al. 2003]. Initially, the existence
and construction of vertex-cut in planar graphs was studied by Lipton and
Tarjan [1979], and based on that, a number of other algorithms for vertex-cut
partitioning have been designed [Rao et al. 2003; Aleksandrov et al. 2007].

Our graph bipartitioning algorithm can be viewed as a customized extension
to the work of Park and Philips [1993], in that we exploit the practical features
of software synthesis problem to reduce time complexity for the restricted class
of subject graphs, and to handle a variety of arbitrary partitioning objectives.

3. BACKGROUND AND PRELIMINARIES

3.1 Application Model

Many researchers have investigated appropriate abstractions for modeling of
streaming applications that are meant to be implemented as parallel software
modules. While the purpose of this article is not delving into model of computa-
tion and programming languages research, we briefly discuss several outstand-
ing choices for modeling streaming applications.

It is a widely accepted assertion that coarse grain parallelism-extraction
is a very difficult problem, and hence, sequential single-threaded languages,
such as standard C, are not appropriate choices for modeling concurrent ap-
plications. A number of leading experts believe that thread-based application
development in general, is not a productive and reliable method of developing
concurrent software [Gordon et al. 2002; Lee 2006]. A possible alternative would
be to represent the applications in an actor-oriented model, where coarse-grain
parallelism is explicit, tasks co exist and communicate with one another using
a governing protocol [Zhou et al. 2007; Stuijk and Basten 2008].

We adopt a task graph application model whose variations are widely used in
embedded systems community [Thoen and Catthoor 2000; Pimentel et al. 2001;
Balarin et al. 2003]. Task graphs conform to the general notion of actor-oriented

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 11, Publication date: January 2009.

11:6 • M. Hashemi and S. Ghiasi

computing. In this model, applications are represented with a directed acyclic
graph (DAG) whose nodes represent tasks. Edges of the DAG represent inter-
task data dependencies. Tasks are atomic, in other words, their corresponding
computation is specified in sequential semantics and hence, intra-task paral-
lelism is not exploited.

Our loosely defined notion of task graph is very similar to acyclic Kahn pro-
cess networks [Kahn 1974] in which, tasks communicate asynchronously using
unidirectional FIFO links, and receiving tasks block on empty input links. This
model has a dataflow nature, which fits streaming applications very well. Sev-
eral other dataflow-based models, such as synchronous dataflow (SDF) [Lee and
Messerschmitt 1987b] can be represented with task graphs. In case of SDF, for
example, a node in the task graph would correspond to its associated node in
SDF repeated i times, where i is the number of appearances of that node in
SDF static schedule.

Each task is associated with a computation that incurs latency when run on
a processor. We use the notion of task workload (w) to refer to the time that
the associated computation takes on a certain processor (Section 3.2). We use
the terms wv and w(v) interchangeably to refer to workload of task v. Moreover,
edges of the task graph are associated with data that needs to be communicated
between two adjacent tasks. We use the term communication latency (c) to refer
to the time it takes for a processor to send or receive the associated data onto
the network in a certain architecture (Section 3.2). We use the terms ce and c(e)
interchangeably to refer to communication latency of edge e. For a given appli-
cation, values of w and c are estimated with respect to given target architecture.

Unlike general SDF, however, our target task graphs contains no cycles.
Thus, we collapse cycles in SDF-based specifications into single nodes to repre-
sent the application as an acyclic task graph. Such task graphs are an important
subset of general SDFs because, as we will see in Section 9, many important
applications are represented in this form.

3.2 Abstract View of Hardware

We aim at implementing a given streaming application as software modules
running on parallel processors. To depart from the problems associated with
shared states among threads and to move closer to a robust actor-oriented
implementation [Lee 2006], we envision processors to work with distributed
(separate) memory spaces. Therefore, synthesized software processes would
need to directly send and receive messages to synchronize.

The streaming nature of the application suggests pipelined execution as a
favorable design choice for throughput maximization. For pipelined software
execution, the hardware seems to be composed of processors connected using
unidirectional FIFO channels (links). For the optimal task assignment algo-
rithm, there is only two processors in the system. Later, in Section 7.3, we will
extend our discussion to arbitrary number of processors and develop a heuristic
task assignment.

Figure 1(a) illustrates the hardware model with two processors and a FIFO
link. Note that this is the abstract view of the hardware, and not necessar-
ily the available physical hardware. For example, a shared-memory multicore

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 11, Publication date: January 2009.

Throughput-Driven Synthesis of Embedded Software • 11:7

Fig. 1. (a) Abstract dual-core architecture. (b) Example task graph. (c) Generated software for

depicted task assignment.

architecture can realize the abstract view by implementing interprocessor link
in shared memory. In such architectures, unidirectional FIFO channels are im-
plemented as arrays in the shared memory space. The access to the array has
to be synchronized via a conventional locking mechanism. Another example
implementation would be a parallel platform with on-chip static routers. We
abstract out the implementation of message passing and discuss the work with
respect of our abstract view of hardware (Figure 1(a)). We temporarily use this
abstracted communication model, and later in Section 7.1, we will discuss how
our proposed algorithm is capable of considering implementation details.

We temporarily assume that the processors are identical in that they have
the same clock speed and the same instruction set architecture, or essentially
the same computation power. Later, in Section 7.2, we discuss extensions to
our technique to handle heterogeneous processors. A number of existing par-
allel platforms utilize distributed memory spaces and on-chip communication
network for data transfer. Examples include AsAP [Yu et al. 2006] and RAW
[Taylor et al. 2004].

3.3 Software Synthesis

Given a set of tasks allocated to processor p, we synthesize the code running
on p by combining computations of tasks according to the given schedule, fol-
lowed by adding communication interfaces (i.e., architecture read and write
communication primitives).

Figure 1 shows an example, in which the top two nodes (tasks) are assigned to
the first processor and the bottom node to the second processor. Let us examine
the generated code for processor 1. We first add a read function to read the
input data and initialize S. Then, we insert tasks’ internal code to perform
the computation of node a followed by the node b. Finally, write functions are
inserted in the code to output the results X and Z to the second processor.

Notice that we implicitly assume that some schedule is present to order
the tasks assigned to the same processor. The schedule ensure that tasks are
combined considering their dependencies. For example, node b has to come only
after node a because it has data dependency to node a. Note that our model is
based on streaming applications that are scheduled statically.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 11, Publication date: January 2009.

11:8 • M. Hashemi and S. Ghiasi

3.4 Performance Model

We define the performance to be the steady state throughput of synthesized
application. Performance of our abstract hardware is affected by a number of
factors such as tasks assigned to each processor, tasks schedule, and channel
buffer depth. We assume that interprocessor channel buffer is deep enough to
not play a role in steady-state performance [Stuijk et al. 2006].

For our target applications, task firing schedule can be determined stat-
ically for the entire task graph before task assignment. Once task assign-
ment is performed, a subset of tasks are assigned to a given processor. We
assume that the original schedule determines the ordering of tasks assigned
to the processor. Hence, a new schedule for tasks assigned to a processor is not
needed.

The performance of synthesized pipeline code is determined by the slow-
est part in the pipeline. It follows that the execution period3 is equal to
Max(W1 + C, C + W2), where W1 and W2 refer to total computation workload
assigned to processor 1 and 2, and C denotes interprocessor communication
latency. Note that in the synthesized software, interprocessor data commu-
nication is aggregated in time to better highlight the impact of each term on
performance.

Specifics of the platform selected to implement the abstract hardware play a
key role in estimation of both the three aforementioned terms (W1, W2, C) and
their impact on performance. For simplicity, we develop our technique assuming
that Max(W1 + C, C + W2) determines application performance. In Section 7.1,
we generalize our task assignment technique to handle other implementation-
specific cost functions.

4. TASK ASSIGNMENT PROBLEM

In order to compile a task graph G(V , E) onto our abstract architecture, we
need to assign every node (task) in G to one of the processors. In other words,
every node v ∈ V needs a processor to execute the computation represented
by v. This procedure is called task assignment. Since the number of tasks is
usually larger than the number of processors, each processor has to execute a
group of tasks. Given a task graph G, the problem is to assign a subset of tasks
to each processor to maximize application throughput.

4.1 Motivating Example

Consider the example task graph in Figure 2(a), in which tasks and edges
are annotated with their corresponding workload and communication latency,
respectively. The application is to be mapped onto the target dual-processor
architecture. In this example, there exist a total of six possible cuts in the
graph (C1, . . . ,C6), which are depicted in Figure 2(b). The goal is to pick the cut
which maximizes throughput (i.e., minimizes execution period).

3Execution period is equal to one over throughput. It is the time period between successive arrivals

of output data samples.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 11, Publication date: January 2009.

Throughput-Driven Synthesis of Embedded Software • 11:9

Fig. 2. (a) An example task graph. Vertex and edge annotations represent task workload and

communication latency. (b) Possible cuts for task assignment. Nonconvex cuts 5 and 6 are not valid

choices. (c) Resulting execution period.

If we partition the task graph with cut C1, the top node is assigned to proces-
sor one and the other three nodes to processor two. One full cycle of the entire
application takes: 10 unit time for computation carried out in the first proces-
sor plus 1 + 2 = 3 unit time to write data onto the link, and 9 + 8 + 7 = 24
unit time for computation carried out in the second processor plus 3 unit time
to read the same data. Since this particular cut partitions the graph into a
pipeline-like structure (starting from the first processor and ending in the sec-
ond processor), we can issue one new task every max(10 + 3, 3 + 24) = 27 units
time. In other words, the execution period is 27 and the application throughput
is 1

27
.

Figure 2(c) shows the same analysis for all possible cuts. C1 and C2 are not
taking that much advantage of the parallel architecture as most of the load is
on one processor. Both C3 and C4 have a high throughput, since they both divide
the computation workload almost even. However, despite the fact that C4 has
a more balanced workload than C3, its throughput is lower. This is because the
higher communication latency of C4 negatively effects the overall throughput
(max(18 + 5, 5 + 16) = 23).

C5 and C6 are called nonconvex cuts and are not considered as possible can-
didates. Nonconvex cuts create a cyclic dependency among processors, which
greatly complicate task scheduling and also may reduce throughput [Atasu
et al. 2003; Cong et al. 2007; Yu et al. 2007]. For example, in case of C6, the
synthesized code for processor one should have a read at the beginning to pro-
vide input data for the top node, and after some computations another read in
the middle of the code for the bottom node. In such cases, finding an optimal
ordering of tasks and read/write operations for efficient pipelined execution
becomes very difficult. In addition, it requires a bidirectional link.

As highlighted in the above example, task assignment has a significant im-
pact on the overall application throughput. Both computation workloads and
communication latencies need to be considered during task assignment. The
example also points out that nonconvex cuts should be avoided to guarantee
existence of a feasible pipelined schedule.

5. TASK ASSIGNMENT VIA GRAPH PARTITIONING

In this section, we formulate throughput-driven task assignment problem as
graph partitioning. Then, we proceed to develop our task assignment algorithm,

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 11, Publication date: January 2009.

11:10 • M. Hashemi and S. Ghiasi

which considers computation workloads assigned to processors and interpro-
cessor communication traffic. We refer to our algorithm as TAP for “throughput-
driven application partitioning.”

Note that the discussion of this section is restricted to parallel platforms
with two processors. As a result, the corresponding graph partitioning problem
becomes a bipartitioning instance. Later, in Section 7.3, we present a heuristic
method to handle arbitrary number of partitions in the graph, or equivalently,
arbitrary number of processors. In addition, we restrict our discussion in this
section to partitioning planar task graphs. In Section 7.4, we extend our tech-
nique to address generic task graphs.

From a theoretical point of view, TAP is an exact algorithm (i.e., provably op-
timal) for maximizing bipartition throughput. Accurate dependency of through-
put to either workload distribution and/or interprocessor communication traffic
depends on specifics of target platform and software synthesis. Temporarily, for
the sake of discussion, we assume that application throughput is determined
by the slowest of (a) computation on core 1 plus the time needed to write data
into the channel, and (b) computation on core 2 plus the time needed to read data
sent by core 1 from the channel. In other words, task assignment cost function
is the maximum of these two terms. In Section 7.1, we look beyond this specific
cost function and discuss extensions to TAP to handle other platform-inspired
cost functions.

5.1 Formalization and Definitions

Graph G is planar if and only if it can be drawn on a two-dimensional (2D) plane
in such a way that no two edges cross. A crossing-free drawing of a planar graph
G is also referred to as an embedding of G in 2D plane. A given embedding of
a planar graph defines faces, that are regions on 2D plane that border edges of
G.

Similar to a planar graph, a planar DAG G(s, t), is a directed acyclic graph
that has crossing-free drawings on 2D plane, where s is the source vertex and t
is the sink vertex. If there are multiple sources (sinks), we add a dummy source
(sink) connected to all sources (sinks) to make G a single-source (single-sink)
DAG. Figure 3(a) shows an example planar DAG embedded in 2D plane.

A given application is viewed as a planar directed acyclic task graph G(V , E),
where V and E denote the set of vertices and edges of the graph, respectively.
Each vertex v ∈ V is associated with the workload of the corresponding task
w(v). Additionally, every edge e ∈ E is annotated with the corresponding inter-
task communication latency c(e). Note that c(e) denotes the communication
latency when the sending and receiving tasks are assigned to different proces-
sors. We use the notions of ei j , e(i, j) and (i, j) interchangeably to refer to the
edge that connects vertex i to vertex j in the graph.

Cut C in G is defined as a subset of edges in G that divide the graph into
two smaller connected subgraphs, G1 and G2. WG = ∑

v∈V w(v) is total work-
load of application tasks, which determines application throughput in a single-
processor implementation. Similarly, WG1

and WG2
denote the total workload of

tasks in subgraph G1 and G2, respectively. The total communication latency of

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 11, Publication date: January 2009.

Throughput-Driven Synthesis of Embedded Software • 11:11

Fig. 3. (a) Example planar DAG G(a, g). (b) its dual graph G∗(s∗, t∗).

cut edges C is represented with CC = ∑
e∈C c(e), which represents total latency

of transferring (both writing and reading) data between the processors.

5.2 Problem Formulation

The task assignment problem is to allocate processing resources to constitut-
ing tasks of the application, and subsequently, generate software such that the
application throughput is maximized. Each partitioning of the task graph im-
plies a task assignment for software synthesis. Hence, in the graph partitioning
domain, the problem transforms to finding the best convex cut in the applica-
tion task graph. The convexity constraint ensures unidirectional dependency
among processors, which simplifies pipelined scheduling of tasks and improves
throughput [Atasu et al. 2003; Cong et al. 2007].

Specifically, we seek to maximize the overall throughput by finding a convex
cut C in graph G that minimizes the cost function QC = max(WG1

+ CC, CC +
WG2

). This cost function, inspired by our discussion in Section 3.4, jointly con-
siders the impact of workload imbalance and inter-partition communication on
throughput. In Section 7.1, we discuss extensions to other cost functions.

5.3 Transformations and Properties

Given a planar graph G(V , E), its dual graph G∗(V ∗, E∗) is well defined and is
constructed as follows: For each face of G, including the external face, a vertex
is introduced in V ∗. For each edge e ∈ E, a new edge is introduced in E∗ to
connect the two dual vertices that correspond to two faces of G meeting at e.
Note that G∗ is also a planar graph. Edges in E are in one-to-one relation with
edges in E∗, faces of G relate to vertices of V ∗, and vertices of V relate to faces
of G∗.

Similarly, we construct dual of a planar DAG G(s, t) and denote it by
G∗(s∗, t∗), where s∗ and t∗ are G∗ source and destination vertices (Figure 3(b))
[Angelini et al. 2007]. The trick here is that for the purpose of dual graph con-
struction, we assume there are two infinite edges, one from infinity to s, and
one from t to infinity. Without the two infinite edges, there would be only one

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 11, Publication date: January 2009.

11:12 • M. Hashemi and S. Ghiasi

Fig. 4. Example planar DAG G(a, g). �-edges are marked bold. (a) S(v) set for vertices of G.

(b) S(e) set for edges of G.

external face, but now there are two; one on the left4 and one on the right side
of the planar DAG G(s, t). Therefore, we have two vertices for our two external
faces, s∗ is defined as the one on the left, and t∗ on the right. Note that edges of
G∗ are all directed from s∗ to t∗ and there is no cycle in G∗.

Any convex cut C in the planar DAG G(s, t) corresponds to a simple path P
from s∗ to t∗ in G∗. Path P is simple in that it does not revisit a vertex v ∈ V ∗.
Based on the duality, P does not visit a face f ∈ G more than once. Intuitively
speaking, s and t belong to different partitions, and any path from s to t in G is
cut exactly once. Figure 5(a) shows a valid cut in G and Figure 5(b) shows its
corresponding simple path in the dual graph G∗.

Definition 5.1. In planar DAG G(s, t) with a fixed embedding, we call edge
euv a �-edge iff euv is not the rightmost outgoing edge of u. Note that with a
particular embedding in mind, the rightmost outgoing edge is well defined for
node u. E� ⊂ E is the set of all �-edges in G. Figure 4(a) shows a planar DAG
G with its �-edges marked bold.

Definition 5.2. For vertices u and v in a planar DAG G(s, t), u reaches v iff
there is a directed path P with no �-edges from u to v. We use the notions u � v
to denote that u reaches v. Their connecting path is referred to as Pu→v that by
definition does not include any �-edges. Every vertex reaches itself. The set of
all vertices that reach a vertex v is called S(v). Formally:

u � v ⇐⇒ ∃Pu→v∀e ∈ P : e /∈ E�

S(v) = {ui ∈ V |ui � v}
Figure 4(a) shows S(v) sets for all vertices of the graph in which a reaches

b, d , and g , but not c, e, and f .

COROLLARY 5.3. If u � v and v � w then u � w.

COROLLARY 5.4. All vertices of G reach the destination vertex, i.e., S(t) = V .

PROOF: because G(s, t) is a connected graph.

4Since the graph is planar, left and right is well defined because we fix an embedding on the 2D

plane. Note that it is not required to actually calculate X and Y coordinates because a simple

ordering of incoming and outgoing edges of every vertex is enough for our purpose.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 11, Publication date: January 2009.

Throughput-Driven Synthesis of Embedded Software • 11:13

Fig. 5. (a) Graph G and its cut properties. (b) Paths from s∗ to t∗ in G∗ correspond to convex cuts

in G.

Definition 5.5. S(euv) is the set of all vertices that reach edge euv, and is
defined to be:

S(euv) = ∅ if e ∈ E�

S(euv) = S(u) otherwise.

Figure 4(b) shows S(e) sets for all the edges in graph G. For example, S(ebd)
is equal to S(b).

LEMMA 5.6. For every vertex v ∈ V with incoming edges e(u1, v), . . . , e(un, v),
the following properties hold:

I)
⋃n

i=1 S(e(ui, v)) = S(v) − {v}
II) ∀1 ≤ i, j ≤ n, i �= j : S(e(ui, v)) ∩ S(e(u j , v)) = ∅

That is, the union of S(e) sets of incoming edges of a vertex is equal to the
S(v) set of that vertex excluding itself; and all distinct S(e) sets have empty
intersections. As an example, consider vertex d in Figure 4, where S(d) =
{a, b, c, d }, S(ecd) = {c} and S(ebd) = {a, b}.

PROOF: (I) because for a vertex v, all ui vertices either reach v or have empty
S(e(ui, v)). The term {v} is needed because v reaches itself. (II) because based
on the definition of S(euv), only one of the outgoing edges of u have the value of
S(u) and the rest receive zero.

We transform the application task graph by annotating its edges with addi-
tional information. Specifically, we annotate edges with workloads of selected
vertices. Each node v ∈ V propagates the sum of its workload w(v) and the
propagated workload from its incoming edges to its rightmost edge. Figure 5(a)
shows an example of the transformation. Every edge e ∈ E is annotated with
w(e) that is formally defined as:

w(e) = ∑
v∈S(e) w(v)

After the transformation, there would be two values associated with each
edge: workload and communication latency. For instance in Figure 5(a),
edge eac has both communication latency c = c(eac) and workload w = 0

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 11, Publication date: January 2009.

11:14 • M. Hashemi and S. Ghiasi

annotations. This transformation simplifies evaluation of cuts by decoupling
their cost (according to cost function) from graph structure. That is, one only
needs to consider a cut, including the values annotated on edges in the cut, to
evaluate its cost. Note that before the transformation, information about graph
structure was needed to evaluate a given cut.

We define workload of a cut WC, to be sum total of workloads of the edges in
cut: WC = ∑

e∈C w(e). Also, recall that workload of a subgraph G1 was defined
as WG1

= ∑
v∈G1

w(v). Formally:

THEOREM 5.7. For every convex cut C in G, WG1
= WC.

PROOF: We make a small change to G1 to make it a single-sink planar DAG.
Assume that there is a dummy sink vertex t ′ added below the cut in G1, and all
cut edges are connected to this dummy vertex. Now, the modified G1 becomes a
planar single-source and single-sink DAG G1(s, t ′). Graph G1(s, t ′) has exactly
the same S(e) and S(v) values as the corresponding part of original graph G,
because S(e) and S(v) values depend only on graph structure between source
node and the cut. Hence, the inserted dummy sink does not affect S(e) and S(v)
values in G1. Thus, according to corollary 5.4:

V (G1) = S(t ′)

According to Lemma 5.6, S(t ′) is equal to union of S(e) sets of all t ′ in-
coming edges. Note that incoming edges of t ′ are the cut edges. Therefore,
S(t ′) = ⋃

e∈C S(e) which leads to V (G1) = ⋃
e∈C S(e). Based on the second part of

Lemma 5.6, S(e) sets are nonoverlapping. Therefore, we can safely substitute
each vertex with its workload value in the above equation, and arrive at another
equality: ∑

v∈G1
w(v) = ∑

e∈C
∑

v∈S(e) w(v)

And based on the definition of edge workloads w(e), we have:

WG1
= ∑

v∈G1
w(v) = ∑

e∈C w(e) = WC

Figure 5(a) illustrates an example. Sum of the workloads of cut edges (edges
that cross dotted lines) is WC = (0) + (We) + (Wc) + (Wa + Wb), which is equal
to sum of the workloads of all vertices in the upper partition WG1

= Wa + Wb +
Wc + We.

Theorem 5.7 implies that we can obtain both the computation workload of
the upper-partition of a cut C, and the sum total of inter-partition commu-
nication latency, by examining cut C alone. Subsequently, the cost function
QC = max(WG1

+ CC, CC + WG − WG1
) can be written as QC = max(WC +

CC, CC + WG − WC). Since WG is constant for a given application and graph
transformation (edge annotations) is performed only once, evaluation of dif-
ferent cuts does not need successive analysis of the entire graph. Cuts can be
evaluated only by taking into account the information annotated on cut edges.

5.4 Throughput-Driven Application Partitioning Algorithm

We proceed to develop our optimal throughput-driven application partitioning
(TAP) algorithm in this section. We will utilize the definitions and properties

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 11, Publication date: January 2009.

Throughput-Driven Synthesis of Embedded Software • 11:15

discusses in previous subsections to formally establish algorithm’s correctness
and optimality.

We construct the dual graph G∗ = (V ∗, E∗) from the original task graph
G = (V , E). Assuming that edge e ∈ E corresponds to edge e∗ ∈ E∗, edge e∗ is
annotated with workload and communication latency of edge e. That is:

c(e∗) = c(e) and w(e∗) = w(e)

Based on duality, a convex cut C in G corresponds to a simple path P in G∗

from s∗ to t∗ (Figure 6(b)). Therefore:

QC = Q P = max(WP + CP , CP + WG − WP)

where CP and WP are equivalent to CC and WC but are calculated from path
P that corresponds to cut C. More formally, WC = WP = ∑

e∗∈P w(e∗) and
CC = CP = ∑

e∗∈P c(e∗).
The number of convex cuts in G, or equivalently the number of simple paths

in G∗, can grow exponentially with respect to graph complexity. In order to
tractably find the best cut, we expand dual graph G∗ to graph G† = (V †, E†),
which is formally constructed as follows:

V † = {v∗
w : v∗ ∈ V ∗, 0 ≤ w ≤ WG}

E† =
{(

u∗
w, v∗

w+w(u∗,v∗)

)
: (u∗, v∗) ∈ E∗

}

That is, G† is constructed by duplicating G∗ vertices WG times. Vertex u∗
p is

connected to vertex v∗
q in G† if and only if u∗ and v∗ are connected with an

edge having q − p units of workload in G∗. Note that for a given edge e∗ ∈ E∗

connecting u to v in G∗, and a given constant w0, there is a unique edge in
E† that connects u∗

w0
to v∗

w0+w(e∗) in G†. Edges of G† have no direct workload
annotations because their placement contains the workload information. They
are, however, annotated with the communication latency of the corresponding
edge in G∗.

It is interesting to observe that any path from s∗ to t∗ in G∗ corresponds to one
and only one path from s∗

0 to t∗
ω in G†, where t∗

ω is one of the nodes corresponding
to t∗ in G†. Moreover, such path has total workload of ω. Intuitively, the subscript
difference between u∗

p and v∗
q denotes increase of q − p units in path workload,

should their connecting edge be taken in path in G†. Since we start at s∗
0 and

arrive at t∗
ω, the total workload of path edges (WP) is ω.

Figure 6 illustrates the situation in which, an example task graph G is trans-
formed to graph G∗. Subsequently, graph G† for the example task graph is con-
structed. Note that there is a one to one correspondence between convex cuts
in G, source to destination paths in G∗, and paths in G†.

Recall that the objective is to find a path P in G∗ from s∗ to t∗ that minimizes
Q P , where Q P = max(WP + CP , CP + WG − WP). Let us assume path P in
G∗ corresponds to path P † in G†. Since the index of the vertex where P † ends
in G† is equal to WP , we do not need to calculate this value. In addition, since
communication latency of an edge in G† is equal to communication latency of
the corresponding edge in G∗, CP = CP † .

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 11, Publication date: January 2009.

11:16 • M. Hashemi and S. Ghiasi

Fig. 6. (a) planar DAG G. (b) G after moving the workload values to edges. (c) dual graph G∗.

(d) expanded graph G†. (e) Shortest path cuts for each WG1
value in G† and also the minimum QC

among all shortest paths. (f) The cut with minimum cost is selected.

Let us treat edge communication latencies as edge distances in G†. It follows
that for a given workload target ω, the shortest path from s∗

0 to t∗
ω in G† mini-

mizes CP † . The corresponding path in G∗ has the minimum CP value and hence,
optimizes the cost function for the given workload target. In other words, such
path gives the best partitioning such that the top partition has workload of ω.

Since we do not know the proper choice of ω at the beginning, we run the
single-source shortest path G† from s∗

0 to all possible destinations t∗
ω(∀0 ≤

ω ≤ WG). The shortest path prunes many possible cuts that will not result
in minimized cost function, and hence, we are left with only WG paths. Each
shortest s∗

0 to t∗
ω path gives the best possible cut with ω units of workload in

the top partition. Subsequently, we calculate the minimum possible value of
Q P = max(WP + CP , CP + WG − WP) at each of t∗

ω nodes, and select the desti-
nation node that globally minimizes Q P (Figure 6).

5.5 Complexity

Task graphs and subsequent graphs constructed from task graphs are directed
acyclic graphs. Hence, the complexity of discussed transformations and the
shortest path algorithm linearly depend on the number of edges in the subject
graphs. Note that on directed acyclic graphs, single source shortest path can
be implemented using topological sort and thus has linear time complexity
[Cormen et al. 2001].

In planar graphs, the number of edges grows linearly with the number of ver-
tices. Therefore, time complexity of our algorithm is determined by the number
of vertices in the largest subject graph, G†. There are at most N × WG nodes

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 11, Publication date: January 2009.

Throughput-Driven Synthesis of Embedded Software • 11:17

in G†, where N is the number of nodes in the application task graph and WG
is the total workload of application tasks. Thus, our algorithm has the time
complexity of O(N .WG), which is considered pseudopolynomial. The following
theorem proves that the problem is NP-Complete, and therefore, algorithms
with strictly-polynomial complexity do not exist unless P = NP.

THEOREM 5.8. The decision problem corresponding to the graph partitioning
problem formulated in Section 5.2 is NP-Complete.

PROOF: Membership in NP is obvious because any given solution can be ver-
ified in polynomial time. We reduce an instance of set partition NP-Complete
problem [Garey and Johnson 1990] to an instance of our graph partitioning
problem. The set partition problem asks the following question: can a given set
of arbitrary integer numbers be partitioned into two disjoint subsets such that
the summation of numbers in partitions are equal?

For a given set partition instance, we create the corresponding graph par-
titioning instance in the following manner: For each number in the set, we
insert a task in the graph with the same workload. Tasks are not dependent
and can run in parallel. We connect all tasks to a dummy source (sink) with
edges that have zero communication latency. Maximizing throughput for such
a task graph would answer the set partitioning question. Therefore, our task
assignment problem is NP-Complete.

In practice, task workload values can be normalized so that WG value re-
mains relatively small. Therefore, pseudopolynomial time complexity does not
impose a real constraint on practicality of our approach. Pseudopolynomial
time algorithms display polynomial time behavior unless we have to deal with
exponentially large numbers which are uncommon in many practical settings
[Garey and Johnson 1990].

6. APPROXIMATE TASK ASSIGNMENT

In this section, we present an approximation method for task assignment with
strictly linear complexity. The approximation algorithm takes as input a tolera-
ble error bound, ε, and guarantees that solution quality is not degraded beyond
the bound. In other words, throughput of the near-optimal solution is not more
than a factor of 1 + ε worse than the optimal throughput.

We reduce the complexity by simplifying graph G† in the exact algorithm. The
number of vertices in the expanded graph G† is reduced to O(N log WG) from
the original O(N .WG), by judiciously trimming all the WG possible values of w
to only log WG distinct numbers. For this purpose, we need an approximation
function y = f (w) to return a representative value y for a range of w values.

Definition 6.1. The approximation function y = f (w) is defined as f (0) =
0, f (w) = (1 + δ)�logw

1+δ�, δ > 0.

We apply this function whenever a new edge is to be added to graph G†.
Thus, for a path P from s∗ to t∗ in G∗, the approximation function is applied k
times, where k is the number of edges in path P . Figure 7 shows an example
in which, path P is marked with dashed lines. All paths start from s∗

0.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 11, Publication date: January 2009.

11:18 • M. Hashemi and S. Ghiasi

Fig. 7. Example: (a) Dual graph G∗ from Figure 6, (b) An illustrative approximation function with

1 + δ = 2. (c) The resulted graph G† with approximation and (d) without approximation.

In path P , workload of the edge from s∗ to m∗ is equal to 1, and based on
Figure 7(b), f (0 + 1) = 1; therefore, the first edge of this path is from s∗

0 to m∗
1.

Now, the next edge starts from m∗
1. 1+4 = 5 and f (5) = 4; therefore, the second

edge is from m∗
1 to t∗

4 (Figure 7(c)). As a result, WP of this path is equal to 4
which is an approximation of its original value WP = 5 (Figure 7.d). We denote
the approximated WP with �P .

Therefore, the number of vertices in the graph G† is O(N logWG
1+δ

) because
the above approximation function will result in one of the following possible

distinct numbers for y : 0, 1, 1 + δ, (1 + δ)2, . . . , (1 + δ)

⌊
log

WG
1+δ

⌋
.

LEMMA 6.2. For approximation function, y = f (w) described in Defini-
tion 6.1

w
1 + δ

< y ≤ w

PROOF:
⌊
logw

1+δ

⌋ ≤ logw
1+δ <

⌊
logw

1+δ

⌋ + 1

(1 + δ)�logw
1+δ� ≤ (1 + δ)logw

1+δ < (1 + δ)�logw
1+δ�+1

And thus based on definition of the approximation function y = f (w):

y ≤ w < (1 + δ) y

Therefore, we have w
1+δ

< y ≤ w.

THEOREM 6.3. For every path P from s∗ to t∗ in the expanded graph G†, the
approximated workload �P is within the following range from its original value
WP .

WP

(1 + δ)k < �P ≤ WP

PROOF: Let Pi denote a partial path consisting of the first i edges of path P .
For example, in Figure 7(c), P1 has only one edge (s∗

0,m∗
1), and P2 has two edges

(s∗
0,m∗

1) and (m∗
1,t∗

4). Since k is the number of edges in P , Pk is equal to P . �Pi

is approximated workload of Pi and WPi is its original value. In our example,
�P1

= 1, �P2
= 4, WP1

= 1 and WP2
= 5. Also, let wi denote workload of the ith

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 11, Publication date: January 2009.

Throughput-Driven Synthesis of Embedded Software • 11:19

edge in P , e.g., w1 = 1 and w2 = 4. We have:

WP1
= w1, WPi = WPi−1

+ wi, WP = WPk

�P1
= f (w1), �Pi = f (�Pi−1

+ wi), �P = �Pk

Now, we use induction. For k = 1, �P1
= f (w1) and WP1

= w1; therefore, based
on lemma 6.2

WP1

1 + δ
< �P1

≤ WP1

Now, we assume for k = i −1 the theorem holds, and we prove it holds for k = i:

WPi−1

(1 + δ)i−1
< �Pi−1

≤ WPi−1

WPi−1

(1 + δ)i−1
+ wi < �Pi−1

+ wi ≤ WPi−1
+ wi

WPi−1
+ (1 + δ)i−1wi

(1 + δ)i−1
< �Pi−1

+ wi ≤ WPi−1
+ wi

Since 1 < (1 + δ)i−1

WPi−1
+ wi

(1 + δ)i−1
< �Pi−1

+ wi ≤ WPi−1
+ wi

WPi = WPi−1
+ wi; therefore,

WPi

(1 + δ)i−1
< �Pi−1

+ wi ≤ WPi (I)

�Pi = f (�Pi−1
+ wi), based on lemma 6.2

�Pi−1
+ wi

1 + δ
< �Pi ≤ �Pi−1

+ wi (II)

From (I) and (I I), we have

WPi

(1 + δ)i < �Pi ≤ WPi

Therefore, induction is complete and
WPk

(1+δ)k < �Pk ≤ WPk . Since Pk = P , we

have WP
(1+δ)k < �P ≤ WP .

COROLLARY 6.4. If we set δ = ε
2F where 0 < ε < 1 and F is the number of

faces in task graph G, then we have WP
1+ε

< �P ≤ WP .

Because k < F and therefore (1 + δ)k < 1 + ε, this means that for every path
P from s∗ to t∗ in the expanded graph G†, the approximated workload �P is
within the above range from its original value WP .

THEOREM 6.5. Let �P = max
(
�P + CP , CP + f (f (WG) − �P)

)
denote ap-

proximated value of our cost function Q P = max(WP + CP , CP + WG − WP). We
have

Q P < �P ≤ Q P (1 + ε)

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 11, Publication date: January 2009.

11:20 • M. Hashemi and S. Ghiasi

PROOF: For brevity, we omit details of the proof. In short, we first ignore the
CP part of function Q P and consider two cases, Q P = WP iff WP > WG − WP ,
and Q P = WG − WP iff WP < WG − WP . In both cases, we apply Corollary 6.4
and eventually prove that Q P < �P ≤ Q P (1+ε) is true in both cases. Then, we
add CC into the equations and will see that it does not change the result.

The above theorem states that the error in calculating the cost function is
bounded within a factor of 1+ε. Therefore, the near-optimum solution found in
the approximated graph G† is not more than a factor away from the optimum
solution which we can find in the original graph G†.

7. PRACTICAL EXTENSIONS

In this section, we show that our task assignment technique can readily opti-
mize any function of WG1

and CC that is nondescending in CC. In addition, we
discuss extensions to our basic technique to handle heterogeneous processors,
multiple pipeline processors, and nonplanar task graphs.

7.1 Platform-Inspired Cost Functions

In Section 5, we presented our method with cost function QC = max(WG1
+

CC, CC + WG2
). However, specifics of target platform might demand other esti-

mations of throughput. For example, in most network-based interconnect ar-
chitectures, communication latency does not grow linearly with the volume of
traffic. In such cases, a more complex function of communication latency must
be employed.

Recall that in our algorithm discussed in Section 5.4, the choice of cost func-
tion did not play any role in graph transformations and constructions of G∗ and
G†. Many graph properties hold regardless of the choice of cost function. For
example, regardless of the cost function, any s∗

0 to t∗
ω path in graph G† gives a

cut in G that has ω units of workload in the top partition.
The choice of cost function only plays a role when it is being evaluated for

all t∗
ω(0 ≤ ω ≤ WG) nodes in G†. Therefore, QC can be safely replaced with

(almost) any other function of WG1
and CC. The only constraint is that the

selected function must be ascending in CC, since the underlying assumption is
that the shortest s∗

0 to t∗
ω path is better than any other s∗

0 to t∗
ω path in G†. This is

not a restrictive constraint in practice, because out of solutions with identical
workload distributions, the one with smaller interprocessor communication is
always preferred.

7.2 Heterogeneous Processors

If processing resources are not homogeneous, they can be examined to establish
a relative processing performance. For example, if processors share the same
architecture but operate at different clock frequencies, their relative processing
performance is proportional to their clock frequencies. If processors utilize dif-
ferent architectures, an estimation of relative performance can be carried out
to establish a similar performance ratio.

Once relative processing performance is established, its impact on through-
put can be readily incorporated into graph partitioning cost function. For

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 11, Publication date: January 2009.

Throughput-Driven Synthesis of Embedded Software • 11:21

Fig. 8. (a) Pipeline dual-core. (b) Two-dimensional pipeline quad-core. (c) One-dimensional

pipeline quad-core. (d) Sample task assignment by exact bipartitioning algorithm. (e) Sample task

assignment based on (d) for architectures in (b) and (c).

example if processors utilize the same architecture but first processor runs
at half the frequency of the second processor, pipeline period can be estimated
as follows:

QC = max(2 × WG1
, CC, WG2

) = max(2 × WG1
, CC, WG − WG1

)

According to our discussion in Section 7.1, our technique can readily optimize
such a cost function during partitioning. Other source of heterogeneity can
be similarly incorporated in the cost function. Although, relative performance
estimation is harder for some heterogeneity sources such as instruction set
differences.

7.3 K-Way Partitioning

We develop a heuristic based on the exact bi-partitioning method of Section 5,
to partition the application task graph into arbitrary number (K) of subgraphs.
The basic idea is to successively apply our bi-partitioning algorithm K − 1
times to find K −1 cuts that partition the graph into K rather balanced pieces.
Partitions of graph G with total workload of WG each have an ideal workload
of WG

K .
Figure 8 is an example on K = 4 processors (note that K is not restricted to

power of 2). In the example, our exact bi-partitioning algorithm is first used to
partition the task graph in two subgraphs (Figure 8(d)), then each of them are
further divided in two smaller subgraphs, one for each processor (Figure 8(e)).
As shown in Figure 8(b) and 8(c), by recursively applying the exact bipartition-
ing algorithm, we are able to assign tasks to both one- and two-dimensional
pipeline platforms.

To apply the successive bipartitioning, we calculate K1 and K2, which de-
note the number of processors available for tasks of each partition and hence,
K1 + K2 = K . Our initial estimation is that K1 is as close as possible to K2;
however, adjustments might be needed if the workload of the application can-
not be equally distributed among the two sets of processors. For example, if one
of application tasks is much more intensive that the other tasks, the partition
containing that task will have a much larger workload and, hence K1 and K2

have to be adjusted.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 11, Publication date: January 2009.

11:22 • M. Hashemi and S. Ghiasi

Fig. 9. (a) Portion of a sample non-planar graph G with one edge crossing. (b) Transforming G
into planar graph G p by adding a dummy node. (c) An invalid cut in G p. (d) A valid cut in G p.

(e) The resulting cut in G.

The bipartitioning algorithm of Section 5 can be used in many different ways;
however, here, we use it to develop only a one-dimensional K -way heuristic
algorithm as follows. The cost function QC = max(WG1

+ CC, CC + WG2
) is

replaced with QC = max(
WG1

K1
+ CC, CC + WG2

K2
), where K1 = 1 and K2 = 1 in

the original K = 2 case. Therefore, the cost function remains intact for bi-
partitioning case.

For K > 2, we try to consider the effect of future partitions. As graph G
is partitioned into two subgraphs G1 and G2, we take into account that G1

and G2 will be partitioned into K1 and K2 subgraphs, respectively. That’s why
in the new cost function, WG1

is divided by K1 and WG2
by K2. However, the

communication latency (CC) term is not changed in the updated cost function,
because it should represent the cost of communication between processor K1

and K1 + 1 in the pipeline.

7.4 Task Graph Planarization

In our discussions so far, we assumed that application task graph is planar.
Some programming languages, such as StreamIt [Thies et al. 2002], guarantee
the planarity of specified applications. However, our proposed method does not
require developers to use a specific programming language, and thus, the input
graph might be nonplanar. We introduce a transformation to planarize nonpla-
nar task graphs, and to make them amenable to our task assignment technique.

For a given nonplanar input graph G, we start with the best embedding
of G with minimum number of edge crossings. The goal is to eliminate edge
crossings by adding dummy nodes at every edge crossing while guaranteeing
that graph partitioning estimations are accurate. We refer to the planarized
graph as G p. As an example, Figure 9(a) shows a portion of a nonplanar graph
with one crossing, and Figure 9(b) is the planarized graph with one dummy
node.

Conceptually, the dummy node passes data from its incoming edges to cor-
responding outgoing edges (i.e., data on edge a1 goes to edge a2 and the data
on b1 goes to b2). However, the node and its corresponding computation do not
appear in the generated code. We assign computation workload and communi-
cation cost values to the dummy bypass node and introduced edges, so the G p
can be correctly analyzed using our algorithm. We show that convex cuts of G p
correspond to convex task assignments in G.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 11, Publication date: January 2009.

Throughput-Driven Synthesis of Embedded Software • 11:23

Fig. 10. Flow of experiments carried out to validate our task assignment technique (TAP)

The introduced edges in G p have the same communication latencies as their
corresponding edge in the original nonplanar graph G. Specifically, c(a1) =
c(a2) = c(a) and c(b1) = c(b2) = c(b) (Figure 9(b)). In addition, workload of
the dummy node is set to zero (w(dummy) = 0) because dummy node does not
introduce any additional computation in the synthesized software. It will be
removed before code generation by carefully reordering data communication
during code generation.

Note that a convex cut in G p gives a convex task assignment in G. Further-
more, the computation workload and communication latency of such a convex
cut in G p accurately models the workload and interprocessor communication
of the corresponding task assignment in G. A convex cut in G p does not cross
both a1 and a2. Crossing both a1 and a2 implies nonconvexity (Figures 9(c) and
9(d)) and is not considered in this article (Section 4). As a result, we partition
G p without crossing the same edge of G twice, which enables us to infer a valid
task assignment solution after partitioning G p (Figure 9(e)).

8. EXPERIMENTAL PLATFORM

Our evaluation is based on measurements of application throughput on ac-
tual hardware. We use Digilent XUP Virtex-II PRO FPGA board to proto-
type single-, dual- and multi-core architectures. Xilinx MicroBlaze soft pro-
cessors are used as processing resources. MicroBlaze is a MIPS-based 32-bit,
in-order, single issue soft processor whose architectural parameters can be
configured.

In our experiments, processors have a FPU, an integer divider/multiplier,
and sufficient on-chip memory to contain both data and instructions. Inter-
processor FIFO communication channel is implemented using Xilinx 32-bit
fast simplex links (FSL) with buffer size of 256 words. Processors and FSL
both run at 100MHz. Figure 10 summarizes the experiments that we carried
out to validate TAP.

We utilize MIT StreamIt 2.1 [Gordon et al. 2002] compiler framework to
evaluate our algorithms. StreamIt is a programming language whose seman-
tics are closely related to synchronous dataflow model of computation [Lee
and Messerschmitt 1987b] with a few enhancement. Specifically, standard SDF
model is enhanced to allow application initialization phase and utilization of
limited control flow in program specification. In addition, StreamIt provides

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 11, Publication date: January 2009.

11:24 • M. Hashemi and S. Ghiasi

Fig. 11. (a) StreamIt Filter (b) Pipeline (c) SplitJoin (d) FeedbackLoop (e) Example task graph

structure in StreamIt

an open-source compilation framework for stream programs specified in its
language.

StreamIt compiler takes as input an application specified in enhanced syn-
chronous dataflow semantics with StreamIt syntax, and after static scheduling
and partitioning of the graph, generates parallel C codes for the target archi-
tecture. Parallel codes should be compiled for target uni-processor to generate
executable binary.

One step of the aforementioned compilation flow is to partition the applica-
tion graph to assign tasks to processors. We implement our algorithm (TAP)
within StreamIt 2.1 compiler framework to replace its built-in task assign-
ment algorithm, while utilizing its static scheduling and code generation capa-
bilities. The generated parallel C codes are compiled and loaded into MicroB-
laze processors. Subsequently, applications throughputs are measured during
execution.

8.1 Task Graph Composition and Planarization

Semantics of StreamIt are closely related to that of synchronous dataflow (SDF)
graphs: Task-level parallelism is explicitly specified in semantics, and tasks
internal computations are specified in a sequential C-like language. In addition,
tasks are composed using a few basic guidelines. Specifically, tasks are referred
to as filters, where a filter node has one input edge and one output edge. A
number of filter nodes can be composed to form larger filters, according to one of
the following composition rules: (1) Pipeline, (2) SplitJoin, and (3) FeedbackLoop
(Figure 11).

Pipeline implements a chain of filters in which, a node gets its input from
previous node and passes its output to next node. SplitJoin specifies indepen-
dent data-parallel or task-parallel streams that diverge from a common splitter
and merge into a common joiner. SplitJoin is similar in spirit to scatter-gather
operator in parallel computing domain. FeedbackLoop also has a splitter and a
joiner, but the joiner appears first in dataflow to join input with the output of
feedback path.

Application graphs that are hierarchically composed using Pipelines,
SplitJoins, and FeedbackLoop composition rules belong to class of series-
parallel graphs, and thus, are planar by construction. This implies that many
existing streaming applications are, or can be, modeled as planar task graphs.
Note that for any application that cannot be specified as a planar task graph,
the transformation discussed in Section 7.4 can safely transform the input task
graph to a planar graph.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 11, Publication date: January 2009.

Throughput-Driven Synthesis of Embedded Software • 11:25

Fig. 12. (a) Two sample subgraphs that are candidate for Fusion. (b) A subgraph which is not

considered as a Fusion candidate. (c) A Fusion candidate which is allowed to cut through a

SplitJoin. (d) A possible series of hierarchical Fusions for task assignment to a target with two

processors.

8.2 Task Assignment Algorithm in StreamIt 2.1

There are two separate situations for which StreamIt 2.1 provides two sep-
arate algorithms [Gordon et al. 2002]. In the first case, the number of avail-
able processors are more than the number of tasks (nodes) in the application
task graph. Therefore, the compiler employs a series of Fission transforma-
tions in order to split tasks across multiple processors. Specifically, this algo-
rithm looks for stateless tasks and duplicates them in order to explore data
parallelism.

However, in most platforms, the number of tasks is more than the number of
available processors. In this second case, the compiler applies a series of Fusion
transformations. Tasks are grouped together so that the resulted task graph
has the same number of tasks as processors. This is similar to our approach,
that is, the method is a graph partitioning algorithm which explores task
parallelism.

The partitioning algorithm tries to balance the computation workload across
processors. It hierarchically fuses subgraphs until the task graph fits on the
target architecture [Thies et al. 2003]. However, not all possible subgraphs
are considered as candidates for Fusion. The algorithm considers only the
subgraphs that are structured, that is, hierarchically composed based on the
three composition rules of Figure 11. For example, the two sample subgraphs
shown in Figure 12(a) are candidate for Fusion, but the subgraph shown in
Figure 12(b) is not.

Therefore, the graph partitioning is restricted to certain cuts. As a result of
the abovementioned restriction on subgraphs, a cut does not pass through a
SplitJoin construct. However, if a cut falls at the same position on all branches
of the SplitJoin, the algorithm does consider that cut. Figure 12(c) shows such
situation.

Note that in [Gordon et al. 2002] a heuristic algorithm is presented to explore
both task and data parallelism at the same time. It also employs software
pipelining at task level in order to run pipelined tasks in parallel. For evaluation
purposes, we compare against the latest publicly available StreamIt framework
which uses the original algorithm [Gordon et al. 2002].

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 11, Publication date: January 2009.

11:26 • M. Hashemi and S. Ghiasi

Fig. 13. Benchmark applications. V and E columns show number of vertices and edges in task

graph of each application. Last column is measured throughput of single-core hardware.

8.3 Computation Workload and Inter-Task Communication Estimation

We profiled MicroBlaze processor to estimate its cycle per instruction (CPI)
distribution. Subsequently, internal computations of tasks are analyzed at
high-level, and a rough mapping between high-level language constructs and
processor instructions is determined. The mapping is guided and verified by
comparison with generated assembly for the processor. For SDF-compliant
streaming applications, control-flow characteristics are minimal. As a result,
we employed first order estimation techniques such as average if-then-else path
latencies, and expected number of loop iterations, whenever needed. The analy-
sis derived w′(v), which represents clock cycles needed for every firing of node v.

Computing inter-task communication cost is simpler in our application
model. For applications modeled in SDF, each node appears a specific num-
ber of times in the steady state schedule. Assume node v is fired n(v) times in
an execution period. Note that n(v) is calculated statically for SDF applications
[Lee and Messerschmitt 1987a]. The number of data samples produced and
consumed per firing of each node is also specified at compile time. Let p(uv)
denote the number of data samples sent from u to v, every time u is fired. It
follows that wv = n(v) × w′(v), and cuv = n(v)×p(uv)

B , where wv is estimated work-
load of node v, and cuv is estimated communication latency from task u to v, in
case they are assigned to different processors. B denotes the bandwidth of the
interprocessor channel.

9. RESULTS

9.1 Performance of Exact Algorithm

Our first experiment results, compares applications throughput using StreamIt
2.1 and our exact task assignment (TAP) algorithms. Figure 13 shows different
benchmarks used in our evaluations. They are well-known stream applications
which are building blocks of many embedded platforms such as multimedia and
signal processing. The applications are selected from the StreamIt 2.1 bench-
mark set, having in mind the data and instruction memory constraints of our
FPGA board.

Throughput of above benchmarks is measured on operating hardware to
verify the effectiveness of our proposed approach. First, it is measured for a
single-core hardware as a baseline for comparisons. This enables us to compare

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 11, Publication date: January 2009.

Throughput-Driven Synthesis of Embedded Software • 11:27

Fig. 14. Throughput of the multicore hardware with K = 2, 3, 4 and 5 processors, normalized by

the single-core baseline from Figure 13, for both StreamIt 2.1 and TAP partitioning algorithms.

X axis is the number of processors and Y axis is the normalized throughput. We use the exact

algorithm (Section 5) for K = 2, and the heuristic approach (Section 7.3) for K ≥ 3.

throughput of a K -core hardware with its ideal peak (i.e., K times the single-
core throughput).

The last column of Figure 13 shows the single-core results. Throughput is
measured as the number of outputs (data samples) per second produced by the
hardware. We can convert these values to Byte/sec. by multiplying them by a
factor of 4 because every data sample is either an int or a float number, and
in our MicroBlaze hardware, they are both four bytes long.

Figure 14 shows measured throughput of the multicore hardware for K = 2,
3, 4, and 5 processors, normalized by the single-core baseline from Figure 13.
Results are shown for both StreamIt 2.1 and TAP algorithms. For K = 2, we use
the optimal task assignment algorithm described in Section 5, but for K ≥ 3, we
use the heuristic approach of Section 7.3. The figure shows that throughput does
not linearly scale with the number of processors (i.e., after some point reaches
saturation). This is the case in any multiprocessor system, mainly due to the
overhead of interprocessor communications. Previous works by StreamIt group
on 4 × 4 array of RAW cores show similar behavior Gordon et al. [2002, 2006].

Figures 15, 16, and 17 present more analysis on Figure 14 data. Figure 15
shows the amount of extra throughput gained by TAP comparing to
StreamIt 2.1:

100 × Throughput(TAP) − Throughput(StreamIt)
Throughput(single − core)

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 11, Publication date: January 2009.

11:28 • M. Hashemi and S. Ghiasi

Fig. 15. Percentage of extra throughput gained by TAP comparing to StreamIt 2.1, for K = 2, 3,

4, and 5 processors. Note that this data is not a comparison with baseline.

For two processors, TAP has 25%, 15%, and 14% more throughput on FFT,
BSORT, and MATMUL, and no extra gain on the other three benchmarks. This re-
confirms our theoretical claim of optimality for exact task assignment algorithm
of Section 5 (i.e., the algorithm is always better than [or equal with] another
method, which is StreamIt 2.1 in this case).

As shown in Figure 15 for K ≥ 3, out of 18 different cases (3×6), the heuristic
method gains an extra throughput of more than 100% on two cases. However,
as shown in the figure, it may sometimes lead to throughput degradation. This
is expected because there is no theoretically proven result on the optimality of
heuristic methods in general.

Figure 16 shows workload distribution of TAP and StreamIt 2.1 task as-
signment algorithms. For example, it shows that StreamIt has assigned more
than 50% of the total computation workload of MATMUL to fourth processor of the
quad-core hardware (p4 in top left of Figure 16(b)). This is because MATMUL has
a compute intensive node in its task graph which has a heavy workload.

The cost function in Section 5 does not directly minimize the workload im-
balance, but Figure 16 shows that TAP also balances the computation work-
load better than StreamIt. In some cases, the hierarchical graph structure of
benchmark applications does not allow StreamIt to effectively partition the task
graph, but our graph bipartitioning algorithm is not limited to the hierarchical
structure and thus has a larger search space. Figure 17 shows that this case
happens for TDE application.

By comparing Figure 15 and 16, we see that system throughput does not
directly correlate to how well the workload is distributed. For example, in
MATMUL with K = 2 cores, TAP increases the workload imbalance, but it ac-
tually achieves an 14% higher throughput. This is mainly because throughput
is an implementation-dependent function of both computation workloads and
communication latencies.

9.2 Comparing Exact and Approximate Algorithms

Recall that runtime and memory requirement of TAP depend on the value of
estimated workload. TAP’s runtime and memory demand is quite reasonable
for small benchmarks. Figure 18 shows compilation time of TAP and StreamIt
algorithms.

However, since the algorithm is pseudopolynomial not strictly polynomial,
both runtime and memory requirement grow exponentially. To experiment the
effectiveness of our approximate task assignment algorithm, we intentionally
inflate workload estimation by two orders of magnitude. This pronounces the
inability of exact algorithm to scale arbitrarily. Note that inflating workload

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 11, Publication date: January 2009.

Throughput-Driven Synthesis of Embedded Software • 11:29

Fig. 16. Workload distribution for K = 2, 3, 4, and 5 processors with (a) TAP and (b) StreamIt

2.1 task assignment algorithm. X axis is the number of processors and Y axis is the workload

distribution. Each color represents one processor of the multicore hardware.

Fig. 17. Task assignment for TDE with (a) 2, (b) 3 and (c) 4 processors. Dotted lines are for TAP,

and boxes are for StreamIt 2.1.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 11, Publication date: January 2009.

11:30 • M. Hashemi and S. Ghiasi

Fig. 18. Runtime of StreamIt 2.1 and TAP task assignment algorithms in milliseconds.

Fig. 19. Modified benchmark applications. V , E, and F columns show number of vertices, edges,

and faces in the task graph of each application.

Fig. 20. Runtime and memory requirement for exact task assignment algorithm.

estimation preserves their relative intensity, and ideally, should not affect task
assignment quality.

Note that this experiment is done only for a dual-core architecture. Since
now there is more memory on the FPGA board for each processor, we modified
the testbenches and increased their computation requirement (Figure 19).

Figure 20 shows the time and memory required to run the exact task as-
signment algorithm, along with its throughput. Interestingly, the runtime for
BSORT, which has the most number of tasks, is the smallest. Also, it takes over
two minutes for FILTER, a small application with 53-only tasks. This is because
TAP runtime is a strong function of total workload, which does not necessarily
correlate with number of tasks. Total workload also depends on intra-task com-
putation and static schedule. Moreover, TAP allocates up to 2.5GB of memory,
which impedes its utilization in many systems.

Subsequently, we apply our approximate task assignment algorithm to trade
throughput for algorithm time and memory requirement. Figure 21 shows the
same parameters as Figure 20 but for the near-optimal solution offered by the
approximate algorithm. Throughput, runtime and memory values are normal-
ized with respect to their values from Figure 20. For example, in BSORT with

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 11, Publication date: January 2009.

Throughput-Driven Synthesis of Embedded Software • 11:31

Fig. 21. Normalized runtime, memory and throughput for selected approximation bounds.

Fig. 22. Geometric mean of throughput degradation versus runtime improvement.

ε = 0.1, the approximate algorithm finds a near-optimal assignment with 99.2%
throughput of the exact algorithm, while it consumes only 1.8% memory and
18.2% time. Due to space limitation, we report the results for only three values
of ε.

The approximation bound (ε) serves as a knob for designers to adaptively
favor throughput over time and memory consumption. In our experiments, ap-
plication graphs are small and, therefore, loosening the bound does not have
a large impact on solution quality or optimization cost. In other words, the
trimmed graphs at ε = 0.1 and ε = 0.9 look very similar. There are two impor-
tant points to notice here: Firstly, as expected, the results are within the proved
bound in all cases. Secondly, for a given application, throughput at a larger ε

does not have to be worse than throughput at a smaller ε. Approximation bound
only guarantees a lower bound on quality loss, but it does not provide provably
monotone quality degradation.

Figure 22 visualizes the geometric mean of throughput-memory and
throughput-runtime tradeoff points, over all applications and all ε values (0.1,
0.2, . . . 0.9). Note that Figure 21 only reports data for three ε values. On average,

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 11, Publication date: January 2009.

11:32 • M. Hashemi and S. Ghiasi

finding the near-optimal solution requires 30.4% to 33.1% time, 4.6% to 5.6%
memory, and results in 94.7% to 98.9% throughput, compared to the optimal
solution.

10. CONCLUSIONS

In this article, we presented a methodology for synthesizing embedded stream-
ing applications for pipelined execution on multicore architectures. We first de-
veloped an exact, that is, theoretically optimal, bipartitioning algorithm called
TAP, which jointly considers both the computation workload assigned to cores
and inter-core communication traffics. We discussed how the algorithm is ca-
pable of optimizing realistically arbitrary function of the two factors. We also
presented an approximation of the algorithm in order to have strictly linear
runtime. In addition, we deigned a heuristic method for three or more proces-
sor cores based on dual-core TAP algorithm. We measured the actual appli-
cation throughput on real multicore architectures. Hardware measurements
(not simulations) showed that our exact algorithm for two cores yields 1.7×
throughput improvement over single core baseline. In addition, our approxima-
tion method offers a range of runtime-throughput tradeoff points. For example,
it runs about 3 times faster and requires about 20 times less memory, while
results in throughput degradation of only 1% to 5%.

ACKNOWLEDGMENTS

We wish to thank all the reviewers for their constructive comments and we
would also like to thank Adam Harbour for helping with the experiments.

REFERENCES

ALEKSANDROV, L., DJIDJEV, H., GUO, H., AND MAHESHWARI, A. 2007. Partitioning planar graphs with

costs and weights. J. Exper. Algor. 11.

ALUR, R. 2003. Formal analysis of hierarchical state machines. In Verifcation Theory and Prac-
tice. Springer, Berlin, Germany, 42–66.

ALUR, R., COURCOUBETIS, C., HENZINGER, T. A., AND HO, P. H. 1992. Hybrid automata: An algorithmic

approach to the specification and verification of hybrid systems. In Proceedings of the 4th Annual
Conference on Hybrid Systems. Springer, Berlin, Germany, 209–229.

ANGELINI, P., DI BATTISTA, G., AND PATRIGNANI, M. 2007. Computing a minimum-depth planar graph

embedding in O(n4) time. Lecture Notes in Computer Science, vol. 4619, 287.

ATASU, K., POZZI, L., AND IENNE, P. 2003. Automatic application-specific instruction-set extensions

under microarchitectural constraints. In Proceedings of the Design Automation Conference (DAC).
IEEE, Los Alamitos, CA, 256–261.

BALARIN, F., WATANABE, Y., HSIEH, H., LAVAGNO, L., PASSERONE, C., SANGIOVANNI-VINCENTELLI, A.

2003. Metropolis: An integrated electronic system design environment. IEEE Comput. 36, 4,

45–52.

BENVENISTE, A., CARLONI, L. P., CASPI, P., AND SANGIOVANNI-VINCENTELLI, A. L. 2003. Heteroge-

neous reactive systems modeling and correct-by-construction deployment. In Proceedings of
the International Conference on Embedded Software (EMSOFT). Springer, Berlin, Germany,

35–50.

BONIVENTO, A., CARLONI, L. P., AND SANGIOVANNI-VINCENTELLI, A. L. 2005. Rialto: A bridge be-

tween description and implementation of control algorithms for wireless sensor networks.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 11, Publication date: January 2009.

Throughput-Driven Synthesis of Embedded Software • 11:33

In Proceedings of the 2nd International Conference on Embedded Software (EMSOFT). Springer,

Berlin, Germany, 183–186.

BUI, T. N. AND PECK, A. 1992. Partitioning planar graphs. SIAM J. Comput. 21, 2, 203–215.

CONG, J., HAN, G., AND JIANG, W. 2007. Synthesis of an application-specific soft multiprocessor sys-

tem. In Proceedings of the 15th ACM/SIGDA International Symposium on Field Programmable
Gate Arrays (FPGA). ACM, New York, 99–107.

CORMEN, T. H., LEISERSON, C. E., RIVEST, R. L., AND STEIN, C. 2001. Introduction to Algorithms. MIT

Press, Cambridge, MA.

ERBAS, C., ERBAS, S. C., AND PIMENTEL, A. D. 2006. Multiobjective optimization and evolutionary

algorithms for the application mapping problem in multiprocessor system-on-chip design. IEEE
Trans. Evolut. Comput. 10, 3, 358–374.

FEIGE, U. AND KRAUTHGAMER, R. 2002. A polylogarithmic approximation of the minimum bisection.

SIAM J. Comput. 31, 4, 1090–1118.

GAREY, M. R. AND JOHNSON, D. S. 1990. Computers and Intractability; A Guide to the Theory of
NP-Completeness. W. H. Freeman, New York.

GARG, N., SARAN, H., AND VAZIRANI, V. V. 2000. Finding separator cuts in planar graphs within

twice the optimal. SIAM J. Comput. 29, 1, 159–179.

GORDON, M. I., THIES, W., AND AMARASINGHE, S. 2006. Exploiting coarse-grained task, data, and

pipeline parallelism in stream programs. In Proceedings of the 12th International Conference
on Architectural Support for Programming Languages and Operating Systems (ASPLOS-XII).
ACM, New York, 151–162.

HENZINGER, T. A., MANNA, Z., AND PNUELI, A. 1992. Towards refining temporal specifications into

hybrid systems. In Proceedings of the 5th International Conference on Hybrid Systems. Springer,

Berlin, Germany, 60–76.

HENZINGER, T. A., NICOLLIN, X., SIFAKIS, J., AND YOVINE, S. 1994. Symbolic model checking for real-

time systems. Inform. Comput. 111, 2, 193–244.

HENZINGER, T. A., QADEER, S., AND RAJAMANI, S. K. 1998. You assume, we guarantee: Methodol-

ogy and case studies. In Proceedings of the 10th International Conference on Computer Aided
Verification. Springer, Berlin, Germany, 440–451.

HENZINGER, T. A. AND SIFAKIS, J. 2006. The embedded systems design challenge. In Proceedings of
the 14th International Symposium on Formal Methods. Springer, Berlin, Germany, 1–15.

HU, J. AND MARCULESCU, R. 2005. Energy- and performance-aware mapping for regular noc archi-

tectures. IEEE Trans. Comput. Aid. Des. Integr. Circ. Syst. 24, 4.

KAHN, G. 1974. The semantics of simple language for parallel programming. In Proceedings of
the International Federation for Information Processing (IFIP) Congress. 471–475.

KARPINSKI, M. 2002. Approximability of the minimum bisection problem: An algorithmic chal-

lenge. In Proceedings of the 27th International Symposium on Mathematical Foundations of
Computer Science (MFCS’02). Springer, Berlin, Germany, 59–67.

LEE, E. A. 2005. Building unreliable systems out of reliable components: The real time story.

Tech. rep. UCB/EECS-2005-5, EECS Department, University of California, Berkeley.

LEE, E. A. 2006. The problem with threads. IEEE Comput. 39, 5, 33–42.

LEE, E. A. and MESSERSCHMITT, D. G. 1987a. Static scheduling of synchronous data ow programs

for digital signal processing. IEEE Trans. Comput. 36, 1, 24–35.

LEE, E. A. AND MESSERSCHMITT, D. G. 1987b. Synchronous data ow. Proc. IEEE 75, 9, 1235–

1245.

LIPTON, R. J. AND TARJAN, R. E. 1979. A separator theorem for planar graphs. SIAM J. Applied
Mathematics 36, 177–189.

MA, Z., CATTHOOR, F., AND VOUNCKX, J. 2005. Hierarchical task scheduler for interleaving subtasks

on heterogeneous multiprocessor platforms. In Proceedings of the Conference on Asia South Pa-
cific Design Automation (ASP-DAC). IEEE, Los Alamitos, CA, 952–955.

MEETING. 2006. Joint United States-European Union-TEKES workshop: Long term chal-

lenges in high con dence composable embedded systems. http://www.truststc.org/euus/wiki/

Euus/HelsinkiMeeting.

MICHAEL I. GORDON, WILLIAM THIES, MICHAL KARCZMAREK, JASPER LIN, ALI S. MELI, ANDREW A.

LAMB, CHRIS LEGER, JEREMY WONG, HENRY HOFFMANN, DAVID MAZE, AND SAMAN AMARASINGHE.

2002. A stream compiler for communication-exposed architectures. In Proceedings of the 10th

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 11, Publication date: January 2009.

11:34 • M. Hashemi and S. Ghiasi

International Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS-X). ACM, New York, 291–303.

OWENS, J. D. ET AL. 2000. Polygon rendering on a stream architecture. In Proceedings of the
Workshop on Graphics Hardware. ACM, New York, 23–32.

OWENS, J. D. ET AL. 2002. Media processing applications on the Imagine stream processor. In

Proceedings of the IEEE/ACM International Conference on Computer Design (ICCD). IEEE, Los

Alamitos, CA, 295–302.

PARK, J. K. AND PHILLIPS, C. A. 1993. Finding minimum-quotient cuts in planar graphs. In Pro-
ceedings of the 25th Annual ACM Symposium on Theory of Computing (STOC). ACM, New York,

766–775.

PIMENTEL, A. D. ET AL. 2001. Exploring embedded-systems architectures with artemis. IEEE
Comput. 34, 11, 57–63.

PINO, J. L., HA, S., LEE, E. A., AND BUCK, J. T. 1995. Software synthesis for DSP using ptolemy. J.
VLSI Signal Process. Syst. 9, 1-2, 7–21.

PINTO, A., BONIVENTO, A., SANGIOVANNI-VINCENTELLI, A. L., PASSERONE, R., AND SGROI, M. 2006.

System-level design paradigms: Platform-based design and communication synthesis. ACM
Trans. Des. Autom. Electron. Syst. 11, 3, 537–563.

RANGAN, R., VACHHARAJANI, N., STOLER, A., OTTONI, G., AUGUST, D. I., AND CAI, G. Z. N. 2006. Sup-

port for high-frequency streaming in CMPs. In Proceedings of the 39th Annual International
Symposium on Microarchitecture. IEEE, Los Alamitos, CA, 259–272.

RAO, S., AMIR, E., AND KRAUTHGAMER, R. 2003. Constant factor approximation of vertex-cuts in

planar graphs. In Proceedings of the ACM Symposium on Theory of Computing (STOC). ACM,

New York, 90–99.

RAO, S. B. 1992. Faster algorithms for finding small edge cuts in planar graphs. In Proceedings
of the ACM Symposium on Theory of Computing (STOC). ACM, New York, 229–240.

STANKOVIC, J. A. 2007. Keynote speech: Control challenges in wireless sensor networks. In Pro-
ceedings of the 10th International Conference on Hybrid Systems: Computation and Control.
Springer, Berlin, Germany, 2.

STUIJK, S. AND BASTEN, T. 2008. Analyzing concurrency in streaming applications. Kluwver J.
Syst. Architec. (available online).

STUIJK, S., BASTEN, T., GEILEN, M., AND CORPORAAL, H. 2007. Multiprocessor resource allocation for

throughput-constrained synchronous dataow graphs. In Proceedings of the 44th Design Automa-
tion Conference (DAC). IEEE, Los Alamitos, CA, 777–782.

STUIJK, S., GEILEN, M., AND BASTEN, T. 2006. Exploring trade-offs in buffer requirements and

throughput constraints for synchronous dataow graphs. In Proceedings of the 43rd Design Au-
tomation Conference (DAC). IEEE, Los Alamitos, CA, 899–904.

SZTIPANOVITS, J., GLOSSNER, C. J., MUDGE, T. N., ROWEN, C., SANGIOVANNI-VINCENTELLI, A. L., WOLF, W.,

AND ZHAO, F. 2005. Panel session: Grand challenges in embedded systems. In Proceedings of
the 2nd International Conference on Embedded Software (EMSOFT). IEEE, Los Alamitos, CA,

333.

TAYLOR, M. B., PSOTA, J., SARAF, A., SHNIDMAN, N., STRUMPEN, V., FRANK, M., ET AL. 2004. Evaluation

of the RAW microprocessor: An exposed-wire-delay architecture for ILP and streams. In Proceed-
ings of the 31st Annual International Symposium on Computer Architecture (ISCA). IEEE, Los

Alamitos, CA, 2.

THIES, W., KARCZMAREK, M., AND AMARASINGHE, S. 2002. StreamIt: A language for streaming appli-

cations. In Proceedings of the 11th International Conference on Compiler Construction. Springer,

Berlin, Germany, 179–196.

THIES, W., LIN, J., AND AMARASINGHE, S. 2003. Partitioning a structured stream graph using dy-

namic programming. Tech. rep., CS Department, Massachusetts Institute of Technology.

THOEN, F. AND CATTHOOR, F. 2000. Modeling, Verification, and Exploration of Task-Level Concur-
rency of Real-Time Embedded Systems. Kluwer Academic Publishers.

YU, J., YAO, J., BHUYAN, L., AND YANG, J. 2007. Program mapping onto network processors by

recursive bipartitioning and refining. In Proceedings of the 44th Annual IEEE/ACM Design
Automation Conference (DAC’04). IEEE, Los Alamitos, CA, 805–810.

YU, Z., MEEUWSEN, M., APPERSON, R., SATTARI, O., LAI, M., WEBB, J., WORK, E., MOHSENIN, T., SINGH,

M., AND BAAS, B. M. 2006. An asynchronous array of simple processors for DSP applications.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 11, Publication date: January 2009.

Throughput-Driven Synthesis of Embedded Software • 11:35

In Proceedings of the IEEE International Solid-State Circuits Conference (ISSCC). IEEE, Los

Alamitos, CA.

ZHOU, G., LEUNG, M.-K., AND LEE, E. A. 2007. A code generation framework for actor-oriented

models with partial evaluation. In Proceedings of the International Conference on Embedded
Software and Systems. ACM, New York, 786–799.

Received August 2007; revised March 2008; accepted August 2008

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 11, Publication date: January 2009.

