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Abstract—Unlike their hard real-time counterparts, soft real-
time applications are only expected to guarantee their “expected
delay” over input data space. This paradigm shift calls for cus-
tomized statistical design techniques to replace the conventional
pessimistic worst case analysis methodologies. We present a novel
statistical time-budgeting algorithm to translate the application
expected delay constraint into its components’ local delay con-
straints. We utilize the mathematical properties of the problem
to quickly calculate the system expected delay and incrementally
estimate the component utility variation with its timing relaxation.
Our algorithm determines the optimal maximum weighted timing
relaxation of an application under expected delay constraint. Ex-
perimental results on core-based synthesis of several multimedia
applications targeting field-programmable gate arrays show that
our technique always improves the design area. Furthermore,
it consistently outperforms optimal time budgeting under hard
real-time constraint, which is the best existing competitor. Design
area improvements were up to 26% and averaged about 17% on
several MediaBench applications.

Index Terms—Expected delay constraint, high-level synthesis,
probabilistic analysis, timing relaxation.

I. INTRODUCTION

TRADITIONAL design methodologies try to meet system
constraints on a flattened design. This approach is gener-

ally thought to be limited by the design complexity and is not
scalable to complex systems. To tackle this problem, modular
and hierarchical design techniques have been employed, which
require system-level constraints to be translated into compo-
nent-level constraints [1], [2]. The translation process can be
thought of assigning budget for individual components and is
generally referred to as budget management.

The problem of budget management has been studied for sev-
eral design constraints including timing and area. Particularly,
time budgeting is performed to slow down as many components
as possible without violating the system’s timing constraints.
The slowed down components can be further optimized to im-
prove a system’s area, power dissipation, or other design quality
metrics (see Section III).

On the other hand, timing is usually treated as a hard constraint
throughout the system design process. As a result, designs are
often pessimistically analyzed for worst case scenarios, and their
critical paths determine their performance. Although this is a
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necessity for hard real-time applications, there are some classes
of applications that are less sensitive to timing constraints.1

For example, soft real-time applications are expected to per-
form a task within the timing constraint, however, they can oc-
casionally take longer to finish some task. Considering the fact
that the applications latency depends on the input data, they are
often expected to guarantee an expected delay (or latency) rather
than a worst case runtime over the input data space. Therefore,
realistic statistical design techniques, as opposed to pessimistic
worst case analysis, are required to automate the design process
for such application domains.

We proceed to present a probabilistic delay budgeting tech-
nique for soft real-time applications. Our technique, which is
based on mathematical properties of our model, relaxes the
timing constraints of different components of a design, while
guaranteeing that the expected delay of the application does not
violate a given constraint. We develop and employ an optimal
incremental delay relaxation algorithm for each component of
the design. The incremental technique is integrated into a higher
level probabilistic algorithm that performs time budgeting for
the entire design. Note that the output design might (and most
probably will) have a larger delay than the constraint for infre-
quent data inputs. However, the expected delay over the input
data space meets the given constraint. The components with re-
laxed timing constraint are further optimized to improve design
area. Experimental results on several multimedia applications
show an average of about 17% and 9% area improvement over
not using our technique and the best competitor, respectively.

Inaddition to expecteddelay, theprobabilityofmissingadead-
line, expected tardiness, and -quantile of makespan are other
scalar constraints that have been used for analyzing system per-
formance [3], [4]. In this paper, we focus on expected delay as
our scalar performance constraint due to its effectiveness in many
practical applications. Furthermore, expected delay leads to ac-
curate analysis in situations where overall runtime of the applica-
tionon a set of inputs is constrained (amortized runtime analysis).

II. BACKGROUND

A. Application and Execution Model

Fig. 1 illustrates the application model and corresponding
hardware realization used throughout this paper. We use the
well-known control data flow graph (CDFG) representation to
model a given application or the computationally intensive por-
tion of it. In the CDFG model, nodes represent application basic
blocks (tasks), and outgoing edges of a node model control flow

1Note that the discussion pertains to system- and application-level design as
opposed to the gate or layout level where critical paths determine the clock
period.
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Fig. 1. Our synthesis scheme. (a) Example CDFG: each node is a basic block
containing an internal DFG. (b) Illustration of generated hardware.

conditionals [5], [6]. Generation of the CDFG from high-level
specification of the application, e.g., C or VHDL representation,
is straightforward, and standard compiler front-ends can be uti-
lized for this purpose.

Nodes of the graph take a given amount of time to finish
their execution (called delay or latency). Edges of the graph
model the dependency among tasks and are assumed to have
zero delay. Note that our model can capture edge delays by in-
serting a dummy node on the edge whose delay is equal to the
original edge delay. Therefore, our model is not restricted to ig-
nore communication latency.

Each basic block has an internal data flow graph (DFG),
which is composed of a number of basic operations. The execu-
tion model within a node (DFG) is different from the CDFG in
that all of the DFG paths are activated at runtime. Hence, all of
the DFG paths have to meet the timing constraint of the basic
block (see Fig. 1). We utilize different algorithms to synthesize
the hardware from a given CDFG. The synthesized hardware is
a preoptimization design that has a separate datapath for each
basic block. To evaluate the effectiveness of different proba-
bilistic delay budgeting algorithms, we compare the quality of
the designs generated by them.

When the execution of a basic block is finished, depending
on the computation result, it invokes another dependent basic
block. Hence, depending on the input data, one and exactly one
path in the graph is executed at runtime. Edges of the graph are
annotated with the probability of taking that edge if its source
node is executed. For example, in Fig. 1, upon completion
might invoke or with probability or , respectively.
The probabilities are profiled over the input data space and are
assumed to be known a priori.

Edge probabilities show the likelihood of the application
taking a particular edge, once it executes the basic block at the
source of that edge. For instance, the conditional might check
for a pattern in the input data. In that case, edge probabilities
represent the likelihood of occurrence of the pattern in the input
over the input data space. Edge probabilities and their profiling
is widely used technique in high-level synthesis and compiler
communities [6].

We assume that there is no feedback edge in the CDFG.
Therefore, loops and other types of feedback edges are removed
from the CDFG by preprocessing. Edge removal is performed
by either putting loops into nodes and, thus, forming complex
nodes or completely unrolling the loops and removing them
from the application. In case neither complex node formation
nor complete unrolling are possible, we focus on the loop body,

Fig. 2. Probabilistic timing budget assignment under expected delay constraint.

often referred to as the computationally intensive portion of the
application, which has no feedback edge.

B. Motivating Example

Fig. 2 illustrates an example application, its execution traces,
and several examples of delay budget assignment under ex-
pected delay constraint. In this example, after completion of the
execution of task (basic block) , exactly one of the two tasks

or are invoked. The edge probabilities suggest that 80% of
the time task is invoked. Similarly, task (basic block) upon
completion might invoke task or with probability of 0.9 or
0.1, respectively. The dashed lines demonstrate the possible
execution traces of the application. Each trace is annotated with
the probability of its activation over the input data space. Note
that the number of execution traces can grow exponentially
with the number of edges in the graph.

To motivate the idea of time budgeting under the expected
delay constraint, let us assume that the delay of the tasks are
as shown in the “original delay” column of the table, and the
application’s expected delay constraint is 5. The second column
of the table shows the probability of each node being executed,
i.e., being visited, over execution traces of the application. For
example, node is always executed, while node is executed
8% of the time, over the input data space. The last row of the
table illustrates the expected delay of the application in each
case. The expected delay, according to definition, is the sum
total of the probability of each execution trace multiplied by its
latency.

Originally, the expected delay of the application is 4.52 over
the input data space. The table illustrates three delay budget
assignment examples that would all meet the expected delay
constraint. Each delay budgeting example increases the delay or,
equivalently, relaxes the delay constraint of some tasks subject
to meeting the expected delay constraint. Note that tasks are
slowed down for further optimization and improving the quality
of the synthesized design.

This paper provides detailed formulation, analysis of the
properties, and efficient algorithms to address the delay budget
management under expected delay constraint. We develop and
utilize an optimal incremental delay budgeting algorithm for
each node (basic block) to maximize the utility function for the
entire application. Note that, after delay budget assignment,
some application traces might take longer than the expected
delay, which makes the problem drastically different from
conventional pessimistic analysis, where all paths must meet
the timing constraint.
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III. RELATED WORK

The concepts of slack and timing relaxation have been exten-
sively studied in the synthesis community. Time budgeting on
directed acyclic graph, while different in principle, relates to the
conventional slack idea [7]. However, our problem at hand is dif-
ferent due to the soft real-time constraints and the probabilistic
nature of the required analysis. The budgeting problem on a
graph (both temporal and spatial budgeting) has been studied for
many different applications. Timing-driven placement and floor
planning is one such example, during which the issue of delay
budgeting has been addressed by several researchers [8]–[10],
[10]–[12]. Moreover, delay budgeting has been utilized to per-
form gate and wire sizing for power optimization. Under a given
timing constraint, budget management can be applied to find a
set of nodes or edges in the netlist graph such that their phys-
ical size or power dissipation can be reduced by mapping to
smaller or power-efficient cell instances with larger delays from
a target library [9], [13], [14]. High-level synthesis is another
application, in which timing slack of the operations is utilized
for optimization in area and power. Examples are the algorithms
and techniques developed for area minimization in a pipelined
datapath [15] and power minimization under timing constraint
[16], [17].

The techniques employed in above papers are suboptimal
heuristics driven from Zero Slack Algorithm [18] and MISA
[19]. In our previous result [20], we solved various non-
probabilistic formulations of the problem through a unified
theoretical framework. In this paper, we extend our previous
work to incrementally solve the problem of delay budget
assignment for each basic block of the CDFG. We develop a
probabilistic analysis framework that considers the stochastic
behavior of the application.

IV. TARGET APPLICATION DOMAIN

We focus on the class of soft real-time applications that
perform intensive computations and demand hardware real-
izations to exhibit satisfactory performance. Examples include
multimedia applications such as video encoding/decoding,
image compression, and audio playback. Such applications are
characterized by their intensive, periodic, heavily input-data-de-
pendent (content-dependent), and loss-tolerant behavior.

While intensity and periodicity impose timing constraints on
the designs that target such applications, loss tolerance allows
occasional violations of the timing constraint for infrequent
input data. For example, a video decoder can occasionally
skip a frame without affecting the user experience. For such
application domains, guaranteeing an expected delay for each
period of execution is as good as maintaining a hard timing
constraint. We argue that the former should be preferred due
to the potentials of further optimizations under softer timing
constraints.

In this paper, we target the aforementioned class of applica-
tions and, hence, assume that the application demands a guar-
antee on the expected delay. Furthermore, we assume that the
input data or a representative subset of it is available at design
time. This is a reasonable assumption that allows us to profile
the probability of execution traces of the application.

Fig. 3. (a) Example CDFG and its edge execution probabilities, execution
traces, and trace execution probabilities. (b) Subgraph induced by node c and
corresponding partial traces.

V. FORMALIZATIONS AND PROBLEM STATEMENT

A given application can be represented as a directed acyclic
graph , where is a set of vertexes and is a set
of directed edges. Each vertex represents a task (basic
block) of the application that takes units of time to perform
its computation. When finishes its computation, it invokes
exactly one of its successor (dependent) nodes depending on the
computation results. Fig. 3(a) illustrates an example CDFG.

Edge models the data dependency between and
, denoting that can start its computation only when is

finished and is selected to continue the execution trace of
the application. There is a probability associated with each

that corresponds to the probability of taking when
node finishes its computation, over the input data space. For
example, in Fig. 3(a), the probability associated with edge
is 0.1. This implies that, if node is executed, 10% of the time
edge and 90% of the time edge would be taken over the
input data space. Similarly, for each node , its probability is
defined as the probability of the execution trace visiting node .
For example, in Fig. 3(a), is 0.72 and is ,
because node can be executed via two distinct traces. It is
straightforward to observe that

(1)

A source node is a vertex without incoming edges,
and a sink node is a vertex without outgoing edges. We
assume that there is exactly one source and exactly one sink
node in . Note that an application graph with more than one
sink node can be transformed to comply with this constraint
by adding a dummy sink with zero delay and connecting all
application sink nodes to it.

An execution trace (or simply a trace) of the application is a
directed path from to in . Let be the set of execution
traces of . will contain , , , and for the example
in Fig. 3(a). Note that can grow exponentially with
respect to . A trace can be represented by the edges that
appear in the path from to . We use the notion

to represent the constituting edges of a trace. For the
example in Fig. 3(a), is represented as .
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The probability of an execution trace
or is defined as the probability of the appli-

cation taking at runtime, over the input data set. Assuming
that the edge probabilities are independent, the execution prob-
ability of a trace is equal to

. The runtime or delay of trace or is
defined as the application’s runtime when taking trace and is
equal to . In Fig. 3(a), both edges
and traces are annotated with their execution probability. The
probability of execution traces are shown within parentheses.

The expected value of a random variable is defined as the
probability of each possible value multiplied by the value itself,
summed over possible values of the variable. Consequently, the
expected execution delay of an application is the sum of the ex-
ecution delay of a trace times the likelihood of that trace being
taken at runtime, over all possible execution traces. The fol-
lowing equations quantify the sum of trace execution probabil-
ities, and the expected execution delay of an application:

(2)

(3)

A partial execution trace refers to a subset of an execution
trace that connects two nodes that lie on the trace. Let denote
a partial execution trace that starts from node and finishes at
node . We use to refer to the set of all possible (i.e.,
all possible partial execution traces that start at and finish at
). We define and as the probability of the execution

of a particular partial trace or one of the traces in ,
respectively. By definition, . Example partial traces
and are depicted in Fig. 3(b).

Note that we use the lower case variables and when re-
ferring to the delay of a node and probability of a/an node/edge,
respectively. The upper case variables and denote the delay
and probability of a (partial) trace. A node induces a sub-
graph in that is composed of nodes and edges that can be
visited by some . We extend the notion of expected delay to
such induced subgraphs, that is, is the expected delay
of the subgraph, induced by treating node as the sink node.
Fig. 3(b) illustrates the subgraph induced by node in the ex-
ample graph. Considering the notion of partial execution trace,
we can write

(4)

(5)

Now, we can move on to defining the problem. Let us as-
sume that each node utilizes a unit of slowdown in its
delay with weight . Intuitively, represents the gain pro-
duced by relaxing the local timing constraint of a node with a
unit delay. For example, might represent the power savings
of the hardware realizing a basic block (a node in the CDFG)
with a unit relaxation of its deadline. The value of depends
on the structure of the basic block modeled by among other

factors. Section VII explains our analysis and methodology for
accurately estimating the vector for a given application. The
problem of timing budget management for soft real-time appli-
cations can be formally stated as follows.

• Given are , vectors , , and , and an expected
delay constraint .

• The objective is to determine a delay budget for each
and to

maximize

Note that the delay of node after assigning the delay
budget would be . Intuitively, this objective func-
tion tries to maximize the gain by maximizing the total
weighted slow down of nodes. We assume that the gain
at each node is a linear function of the slow down. This
is rather accurate for some utility functions such as area
(see Section IX) and provides a decent tradeoff between
the quality and optimization runtime for some other design
metrics such as power [21].

• Such that the expected delay of the application is not larger
than the given constraint, that is,

where is the updated delay of trace after slowing
down the nodes by vector .

In practice, the application, its timing constraint, and the li-
brary elements are the only inputs to the problem. Hence, the
remaining input parameters, vectors , , and , have to be de-
termined from application’s structure and behavior. The edge
probabilities are determined by profiling the execution traces
over input data space. In Section VII, we prove several theorems
according to which vectors and can be easily determined for
a given problem instance.

VI. TRACTABLE EXPECTED DELAY CALCULATION

By definition, the expected execution delay of an applica-
tion can be calculated using (3). However, the number of ex-
ecution traces of an application often grows exponentially with
respect to the problem size (i.e., the number of nodes or edges in
the graph). Therefore, the complexity of a definition-based ap-
proach to calculating the expected delay can be prohibitive. In
this section, we prove some interesting properties of the problem
by which we can rapidly relate the expected delay of the ap-
plication to parameters that are easy to calculate from problem
inputs.

Theorem 1: The expected delay of an application under ex-
ecution model explained in Section V can be calculated using
the following equation in (note that each edge has to be
traversed once to determine node visiting probabilities):
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Fig. 4. Nodes are visited once per each outgoing edge during expansion of the
recursive (6). Node w contributes (p + p + p ):d (G ) = d (G ) to
the application’s expected delay.

Proof Outline: We break the execution traces over fanins
of . Fig. 4 assists in visualizing the following equations:

(6)

Equation (6) presents a recursive method to calculate the ex-
pected delay of based on the partial expected delay at fanins of
. We can reuse (6) for subgraphs induced by fanins of to plug

in the expanded forms for and eliminate the recursion.
A nonrecursive solution is favorable due to its practicality and
improved complexity, especially if it leads to a closed-form ex-
pression, which is easy to calculate.

When expanding (6), each edge is considered exactly once
in reverse topological order. For each edge , the source node

contributes to with the term . Interest-
ingly, the addition of all such terms for fanouts of a node is
equal to due to (1). Hence, we can reuse (6) to ex-
pand , which would contribute to with the
term . However, is the probability of the execution
trace visiting node over the input data space, which is equal to

, by definition.
Theorem 1 provides a very intuitive expression for the ex-

pected delay: the contribution of a node to the application’s ex-
pected delay is its intrinsic delay times the likelihood of that

node being visited during application runtime (no matter what
trace is being taken as long as the node is being executed). In
addition, it raises the point that infrequently visited nodes can
be assigned large delay budgets with little effect on the applica-
tion’s expected delay. This problem is further analyzed in future
sections.

VII. TIMING BUDGET MANAGEMENT FOR BASIC BLOCKS

The problem of delay budget management for CDFGs has
two stages. First, the extra delay budget (timing constraint relax-
ation) has to be assigned to each node of the graph (basic block).
Subsequently, it has to be distributed onto functional units in-
side the basic block to improve design utility. In this section,
we discuss the problem of intra basic block delay budgeting
and its connection with the problem formulated in Section V.
We leverage the existing techniques for basic-block-level time
budgeting and present properties of the problem that enable us
to quickly and efficiently determine the proper weights for basic
blocks (vector in Section V).

The execution model for the DFG of each basic block is dif-
ferent from the CDFG model we presented for soft real-time ap-
plications (see Fig. 1). Specifically, all of the execution traces of
a DFG are activated at runtime and, therefore, all of them have
to meet the timing constraint. Existing techniques offer poly-
nomial-time algorithms to maximize the total delay budget as-
signed to operations of a DFG under delay constraints [20], [7].
The most efficient existing technique converts the problem into
a weighted edge budgeting instance and injects delay units onto
selected edges, until all of the edges become critical.

A. Incremental Time Budgeting for Basic Blocks

The timing constraint for each basic block cannot be less
than its critical path. The weight assigned to each basic block
(vector in Section V) determines its potential for utilizing
additional units of relaxation in its timing constraint. Ideally,
we would like the weight to be an easy-to-calculate function of
the DFG’s structure. In this subsection, we utilize an existing
optimal method for edge budgeting on DFGs to determine the
weight vector for basic blocks.

In the graph representation of an application, so far, we
have assumed that nodes incur delay and edges have zero
delay. Equivalently, we can assume that edges incur delay
and nodes have zero delay. The assumption is not restrictive,
because nodes with nonzero delay in the original graph can
be modeled using standard node splitting, followed by proper
delay assignment to the edges connecting split nodes. Fig. 6
illustrates this process. Therefore, in the remainder of this
paper, we assume that edges incur delay and nodes have zero
delay. Consequently, delay relaxation can be assigned to edges,
and we focus on the edge budgeting problem, which handles
node budgeting as a special case (see Fig. 6).

Formally, a DFG is a directed acyclic graph. As-
sume that two dummy nodes called super input (SI) and super
output (SO) are connected to the primary inputs and primary
outputs of to make it single input/output. We can state the
following [20].

Definitions: A subset of edges of is called a cut if and only
if every SI to SO path contains exactly one edge of the set (see
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Fig. 5. (a) Sample DFG and a sample cut are shown. (b) Corresponding edge
graph. The edges in the cut correspond to dark nodes. (c) The transitive closure
of the edge graph. The cut corresponds to the maximum independent set here.

Fig. 6. Node budgeting instance is transformed to an edge budgeting one.

Fig. 5). Graph is called the intersection graph (or
edge graph) of , if there is a node for every

, and there is an edge between and .
Lemma 2: A cut in corresponds to an independent set of

the transitive closure of ( ). In the transitive closure, if
there is an edge from node to and from to , there is
also an edge from to . We use to represent the transitive
closure of . Similarly, a weighted cut in corresponds to a
weighted independent set of the transitive closure of ( ).
The cut with the maximum weight in (weighted max cut)
corresponds to the maximum weighted independent set (MWIS)
in .

Note that, although finding the maximum (weighted) inde-
pendent set of an arbitrary graph is known to be NP-complete,
it can be solved in polynomial time for transitive graphs [22].

Definitions: Let denote the maximum
amount of weighted delay budget that can be added to the edges
of DFG under timing constraint . Let graph be the new
DFG that is formed by adding the delay budgets to the edges of

. Hence, has the same structure as , however, the delay
of its edges are different.

The authors in [20] present a polynomial combinatorial algo-
rithm for determining and , however,
we are not concerned with the algorithm details and treat it as
an available black box here.

Fig. 7. Maximum possible slow down of basic block operations versus timing
constraint.

Lemma 3: For a given instance of the weighted edge bud-
geting problem with critical path equal to

Gain

MWIS

MWIS

Lemma 3 states that, if the timing constraint is increased by
, we do not need to recalculate the solution from scratch. It

provides an optimal incremental method to extend the solution
under timing constraint to another solution under timing con-
straint . To extend the solution, more specifically, the
budget of the edges that form a weighted-max-cut (a cut with
the maximum weight) will be increased by . Such edges cor-
respond to the MWIS in the transitive intersection graph of the
problem instance (see Fig. 5). Therefore, incremental calcula-
tion of the edge delay budgets for various values of timing con-
straint can be performed quite rapidly.

Caution has to be taken when applying delay budget to MWIS
of a problem instance. Although MWIS can be used to augment
an existing solution under timing constraint to , it
cannot correctly solve the instance for timing constraint . Pre-
vious work has discussed and investigated this issue [19].

Corollary 4: The maximum total delay budget that can be
added to the edges of a DFG under timing constraint is a
linear function of the relaxed timing constraint. Namely

MWIS

In other words, the gain versus timing constraint graph is a
line with a slope of MWIS . Fig. 7 visualizes the re-
lationship between and . The slope of the line
determines the weight of each basic block ( ).

Corollary 5: For the problem presented in Section V, the
minimum delay of each node is equal to the critical path of
the corresponding basic block. The weight of each basic block

is equal to , where represents the DFG
of the basic block. The cardinality of the maximum weighted
independent set of transitive closure of or
can be determined using existing results [22].

In summary, the linear increase of the maximum total
weighted delay budget with the timing constraint for each
basic block provides a fast and accurate method to determine
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the delay vector and the weight vector for the original
problem (i.e., delay budgeting for soft real-time applications).
Once the original problem is solved and individual timing con-
straints for each basic block are determined ( ), existing
basic-block-level techniques can be utilized to assign the delay
budget to basic block operations.

VIII. TIMING BUDGET MANAGEMENT FOR CDFGS

Considering the arguments and results presented in
Sections VI and VII, here we reformulate the CDFG time
budgeting problem and present our methodology to solve it. For
developing the technique, note that vectors , , and (node
probabilities) can be determined using polynomial-efficient
algorithms from problem structure and characteristics of the
operations in the library. The problem of timing budget man-
agement for CDFGs (Section V) is equivalent to the following.

• Given are , a library of functional units for imple-
menting operations in , vector for edges, and an ex-
pected delay constraint . Determined are vectors ,

, and for nodes.
• The objective is to determine a delay budget for each

and to

maximize

Note that the delay of node after assigning the delay
budget would be .

• Such that the expected delay of the application is not larger
than the given constraint, i.e.,

or equivalently

where is the probability of node being executed
over input data space (on any trace), and is the updated
delay of nodes (basic blocks) after slowing them down by
vector .

Interestingly, the problem is transformed into maximizing
a linear expression of budget variables under the constraint
of another linear expression of budget variables. For arbitrary

, , and edge vector, the coefficients of the linear
expressions ( and node vectors) are arbitrary. Therefore,
the problem is equivalent to the general integer knapsack
problem, which is proved to be NP-complete [23]. It follows
that off-the-shelf available dynamic programming solutions
with pseudopolynomial complexity (with respect to timing con-
straint) and strongly polynomial -approximation algorithms
are both applicable to the problem at hand [23], [24].

For real-life CAD problems with practical graph size and
timing constraints, exact pseudopolynomial algorithms reflect
reasonable performance. For example, integer linear program-
ming (ILP) only took 0.06 s on an ordinary PC to solve our
largest problem instance. Section IX discusses the details of our
experience in practice.

After solving the aforementioned problem and determining
the vector , each basic block is assigned a local timing con-
straint, namely, basic block is assigned the timing constraint

. Then, the existing DFG-based timing budget manage-
ment algorithm [20] can be applied to all of the basic blocks to
assign delay budgets to the operations of each DFG. The delay
budget of an operation allows optimization of the operation or
smart selection of the operation from the given library. The ex-
pected delay of the application is met by formulation and proper-
ties of the problem. The procedure is summarized in Algorithm
PTBM (Probabilistic Timing Budget Manager).

Algorithm 1 Algorithm PTBM (Probabilistic Timing Budget
Manager)

Input: , and a library of operations
in

Output:

Let be the critical path delay of ;

Let

Let ;

for all in topological order do

for all do

Let ;

end for

end for

Let ;

Run ILP solver to maximize under ;

Return

/* will be treated as local delay constraint for */

IX. DELAY BUDGET ASSIGNMENT DURING LIBRARY MAPPING

We applied the probabilistic budget assignment to the problem
of library mapping during synthesis of CDFGs for multimedia
applications. In this section, the setup of our experimental
framework is described, and then the results are discussed.

A. Experimental Setup

We utilize our delay budgeting technique during core-based
datapath synthesis of application CDFGs. Fig. 8 illustrates our
synthesis flow for mapping the applications to an FPGA device.
We implemented the aforementioned probabilistic time bud-
geting algorithm to evaluate its impact on the datapath area. We
compare and contrast its effectiveness against max-budgeting,
which is a pessimistic optimal competitor (optimal under hard
real-time constraint), and not performing delay budgeting.
These three algorithms correspond to the three applications to
analysis paths in Fig. 8.

We extract the application CDFG from the MediaBench [25]
test suite using SUIF compiler [26] and Machine-suif [27]. Note
that the MediaBench test suite is comprised of multimedia appli-
cations, which cope with our intensity, periodicity, loss tolerance,
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Fig. 8. Comparison of delay budgeting schemes in CDFG synthesis targeting
FPGAs.

Fig. 9. Percentage of execution time of mesa and mpeg2dec.

and content-sensitivity assumptions quite well (Section IV). In
our experiments, the standard input data coming with the Me-
diaBench test suite is used to maintain consistency and allow
repetition of our experiments by other researchers. We apply
the call graph profiling on our benchmarks in order to locate the
computational kernels of the applications, and estimate the time
spent in each subprogram of the application. We also analyze
the kernels to select the compute-intensive subprograms as our
benchmarks.

The call graph profiling results and the CDFG structures of
the subprograms assist us in selecting the testbenches. The pro-
filing results for mesa and mpeg2dec testbenches are shown in
Fig. 9. Some subprograms that contribute significantly to the
overall runtime due to intensive memory access or file I/O (such
as putbyte or floor in mpeg2dec) are not considered for our
experiments. Note that those benchmarks do not comply with
our compute-intensity assumption, and their contribution to the
datapath area is negligible. To the contrary, compute-intensive
subprograms, such as smooth-color and clear in mesa and ref-
erence-idct in mpeg2dec that contribute significantly to the ap-
plication runtime, are used for our experiments.

The testbenches are profiled to compute the edge probabilities
required to perform probabilistic time budgeting. We use Halt
(the Harvard Atom-Like Tool) [28] to perform the edge profiling
on CDFGs. After labeling and instrumenting the programs that
contain computation kernels, we link the edge-profiling anal-
ysis routine with the instrumented programs and execute them

TABLE I
CHARACTERISTICS OF BENCHMARK CONTROL DATA FLOW GRAPHS

Fig. 10. Area characteristics of the library multiplier cores.

to acquire the measured frequency of each edge. The calcula-
tions of the edge probabilities are done by tracing the forward
edges of the CDFGs. The characteristics of our benchmarks are
illustrated in Table I.

For experimentation purposes, we assumed that all of the
operands are 8 b wide. Furthermore, we assumed that the timing
constraint for each application is equal to its critical path la-
tency. For probabilistic budgeting, timing is treated as a soft
constraint, and the application’s expected latency is guaranteed
not to exceed the timing constraint. However, for max bud-
geting, which performs worst case analysis, the timing con-
straint is met for all of the input samples.

We used Xilinx CoreGen [29] to generate parameterized
hardware modules (cores) with different latencies. Xilinx syn-
thesis (XST) and placement and routing tools [29] are used in
our flow to implement the designs and measure their area re-
quirement. Our FPGA target platform is Xilinx VirtexE device
XCV3200V with FG1156 package and speed grade . The
Xilinx Integrated Software Environment (Xilinx ISE) version
6.3 was used for the experiments.

The major ALU operations (excluding data movement
and memory access) in the selected application CDFGs are
addition, subtraction, multiplication, division, and shifting.
We characterized the area variations of the CoreGen library
modules with respect to their latency. Fig. 10 demonstrates the
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TABLE II
QUALITY COMPARISON AMONG DELAY BUDGETING ALGORITHMS

area characteristic of the CoreGen sequential multiplier cores.
The CoreGen shifting, addition, and subtraction cores imple-
ment latency variation by inserting registers and pipelining
the operation. Therefore, slower implementations of shifting,

addition, and subtraction consume more area. In our exper-
iment, consequently, we assigned the timing budget only to
multipliers of the application CDFG. This has been achieved
through assigning proper weights to different operations. We
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Fig. 11. Impact of different budget assignment policies on area requirement (LUT count).

also insert multiplexers to implement the connections of basic
blocks [30]. The multiplexers are not targeted for delay budget
assignment in our experiment procedure.

For further efficiency of the budgeting policies, we impose
the upper bound of two times the critical path on the relaxed
delay of each basic block, i.e,, the delay budget cannot exceed
the critical path latency. This prevents the assignment of large
delay relaxation to a few basic blocks and provides a rather fair
distribution of delay budget over them. Multipliers are the only
candidates for intra basic block delay budgeting. Therefore, they
are assigned the weight 1, while every other operation has the
weight 0 for determining the MWIS of basic blocks.

B. Experimental Results

We ran the aforementioned experiments on selected bench-
marks and measured the area requirement of the generated
hardware in each case. The results of our experiments are sum-
marized in Table II. For each benchmark, the design area in LUT
and slice count, the number of basic blocks that received extra
delay relaxation ( ), and the total delay budget ( )
are reported. The experiments are conducted assuming that the
application timing constraint is equal to its critical path latency.

Our results advocate the earlier statement that total delay
budget correlates well with design utility (area in our case). In
addition, distribution of the allocated delay budget is another
important factor affecting the effectiveness of the algorithms.
For instance, maximum budgeting assigns more delay budget to
the application CDFG, in the cases of huff – decoder, smooth –
color, and compute – row benchmarks. However, probabilistic
budget assignment does a better job of distributing the delay
budget to a larger number of multipliers (see the number of
relaxed nodes in Table II) as a result of which it outperforms
pessimistic maximum delay budget assignment.

Different from the optimal maximum budget assignment (op-
timal under the pessimistic hard timing constraint), probabilistic
budgeting assigns the delay budget to basic blocks based on
the characteristics of control flow. The associated cost is occa-
sional timing violation for infrequent inputs, which would spo-
radically hinder the real-time quality. This is because the prob-
abilistic budgeting guarantees to bound the expected delay of

the applications. Consequently, the execution delay might ex-
ceed the timing constraint for uncommon execution traces. As-
suming that this cost is tolerable for soft real-time applications,
probabilistic budget assignment approach consistently outper-
forms the other two competitors.

TableIIshowsthatprobabilisticbudgetingalwaysoutperforms
the other two competitors. On average, we consistently improve
the LUT count by 17.15% and 8.89% compared with not using
budgeting or using the maximum budgeting, respectively. Simi-
larly, the average improvements are 12.04% and 6.42% in terms
of slice count. The impact was as high as 25.98% in some cases.
Fig. 11 visualizes part of the data presented in Table II. The ver-
tical axes in the figure shows the area requirement of the bench-
marks in LUT count. For each benchmark, the area is shown
using three vertical bars, which correspond to different bud-
geting policies, i.e., probabilistic, maximum, and no budgeting.

The result of probabilistic budget assignment depends on a
number of factors. The topology and connectivity of the appli-
cations CDFG affects its result, like any other delay budgeting
algorithm. Unlike other competitors though, the control flow be-
havior of the application can either provide additional room for
or limit the improvements of probabilistic budgeting. For ex-
ample, there is a small difference between the performance of
the two algorithms for benchmark init. This is due to the fact that
control flow structure visits all of the basic blocks with multi-
plier operations in most of the execution traces.

The area improvement is magnified, if the application exe-
cutes multiplication operations in some of the infrequently vis-
ited traces. In such cases, the probabilistic budgeting algorithm
can assign a relatively large delay budget to those multipliers,
without significantly affecting the expected delay of the appli-
cation. Note that small probability of those multipliers being ex-
ecuted decreases the impact of their slow down on application
expected delay, while their area always contributes to total de-
sign area.

X. CONCLUSION

In this paper, we present a novel methodology toward the de-
sign of soft real-time application. Our approach is based on pro-
filing the execution traces of an application and constraining its
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expected delay over the input data space, rather than the worst
case scenario. This approach is sensible and favorable for the
class of intensive, content-sensitive, and loss-tolerant applica-
tions including multimedia applications.

We present mathematical properties of the execution model,
which enabled us to compute the seemingly intractable expected
delay, in polynomial time. We leverage the existing basic-block-
level delay budgeting techniques and present an optimal incre-
mental method for computing the utility improvement of a basic
block, with respect to variations in its timing constraint.

We develop a probabilistic timing budget management algo-
rithm that smartly translates the application’s timing constraint
into its components’ timing constraint. Experimental results on
core-based synthesis of some multimedia applications provide
consistent improvement of design area, under expected delay
constraint, and verifies the effectiveness of our technique. Future
directions include investigation of the effect of discrete delay
choices, dependency relation among application traces, and re-
source sharing on our current result.
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