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On Incremental Component Implementation
Selection in System Synthesis

Soheil Ghiasi, Member, IEEE

Abstract—Incremental design methods can substantially im-
prove products’ time-to-market through efficient handling of
engineering change orders (ECQO). In this paper, we present
a methodology for incrementally solving component implemen-
tation selection problem (CISP) in face of local or non-local
perturbations. CISP, which refers to judicious selection of com-
ponents implementation under system timing constraint, is a
generic problem that implicitly or explicitly appears in many
stages of CAD flow. For a commonly-used formulation of CISP,
we discuss necessary and sufficient conditions for optimality of
the solution. Based on the optimality conditions, we develop
an algorithm that maintains both validity and optimality of a
solution under incremental changes. We evaluated our approach
by incrementally updating the threshold voltage assignment
solution for a netlist going through engineering changes. On
average, our method ran 283 times faster than the full solver,
while delivering the same results.

Index Terms—Incremental, Library Mapping, Logic Synthesis

I. INTRODUCTION

NGINEERING change orders (ECO) modify design

specifications or constraints during development. ECOs
usually impose additional design iterations, which lengthen the
design process and hinder time to market. Realistically though,
most ECOs are incremental in nature. Incremental changes
might not require a computationally-intensive “full” solution
to CAD problems, if the solution determined in previous
iterations can be quickly and efficiently updated to address
the incremental perturbations [1].

The problem of component implementation selection is a
generic formulation for mapping design components to library
modules under timing constraints, which is either implicitly
or explicitly solved in different stages of library-based CAD
flow. CISP aims to select the proper implementation of each
component, from a number of choices available in the library,
such that design timing constraint is met and some cost
function, such as overall energy dissipation, is minimized.

CISP relates to the conventional slack distribution problem,
which has been studied extensively in different contexts,
such as wire and gate sizing [2], design timing closure [3],
energy savings via voltage and frequency adjustment [4], and
high-level synthesis [5]. The majority of existing results use
variations of Zero Slack Algorithm (ZSA) [6] to iteratively
distribute timing relaxation to non-critical components of a
design. Such approaches are known to be sub-optimal [7], [8].

Incremental CISP can be utilized in two broad ways: First,
perturbations can be applied to incrementally optimize some
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Fig. 1. a) Example optimal solution. b) After inserting an arc, greedy

selection correction is sub-optimal. ¢) Optimal solution. Nodes b and d that
are incident to the inserted arc, are not modified.

design quality metric, subject to meeting design constraints.
An example would be [9], which applies perturbations post-
placement to improve timing. The second group of incremental
CISP methods, which are the focus of our work, try to
revalidate constraints with minimal metric degradation in face
of a given set of perturbation. Our technique maintains the
optimality of the full solution, while guaranteeing to meet
the timing constraint. We present necessary and sufficient
conditions for quick validation of a candidate solution, and
develop guidelines to handle primitive incremental operations
such as insertion or deletion of a net in the design.

II. MOTIVATING EXAMPLE

Figure 1 depicts a simple example to illustrate the idea of
incremental CISP. Nodes and edges in the graph represent
components and dependencies, respectively. All nodes are
assumed to have two possible implementations in the library:
the first implementation has unit delay and dissipates two units
of energy, while the second implementation has two units of
delay and dissipates unit energy.

Figure 1.a shows the optimal selection of node implemen-
tations, such that the timing constraint of 6 time units is met,
and the total energy dissipation is minimized. The optimal
solution dissipates 7 units of energy. Now, let us assume that
as a result of some ECO, arc b — d is added to the DAG.
Insertion of the new arc creates the path a - b — d — e,
which violates the timing constraint.

A greedy approach would try to select a faster imple-
mentation for nodes incident to the arc, if possible, to meet
the timing. Figure 1.b shows the resulting solution, which
dissipates 8 units of energy. The optimal solution, however,
dissipates 7 units of energy (Figure 1.c) by modifying the
implementations of nodes ¢ and e. Our objective is to develop
an incremental algorithm to revalidate the solution (i.e., meet
the timing) while maintaining its optimality, under incremental
perturbations to the design.
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III. BACKGROUND AND PRELIMINARIES

We focus on designs that are modeled using directed acyclic
graphs (DAG), such as gate-level netlists. We assume that a
given design is represented as DAG G = (V, E), where V is
a set of vertices and E is a set of directed edges. Vertices,
also referred to as nodes, model the components (e.g. gates)
in the design. We use the terms vertex, node and component
interchangeably. We use the notations I and O to refer to
primary inputs and outputs, respectively.

Each vertex v € V is associated with a delay d(v) which
represents the time it takes for a signal to pass through v.
Edge delays are assumed to be zero, nevertheless interconnect
delay can be modeled by inserting “interconnect delay” nodes
on E. Node delays can be calculated using common gate-level
delay models such as load-dependent model. We assume that
the signal arrives at the primary inputs at time zero. The latest
time of signals to arrive at the output of any vertex v € V' —1 is
given recursively by a(v) = mazyecpr)d(v) + a(u), where
a(v) is the arrival time of the signal at node v, and FI(v) is
the set of immediate fan-ins of v. The design is required to
meet a given timing constraint 7', i.e., a(v) < T has to hold
for all primary outputs.

A path v — v is a sequence of connected directed edges
that form a trail along which, the signal from « can reach v.
The delay of a path is defined as the sum total of the delay
of the nodes on that path. Path delay is an abstract notion
and does not necessarily correlate with signal traveling delay
in digital circuitry. The definition, however, will assist us in
our forthcoming discussion. To simplify the timing analysis
in our discussion, we insert a special node, called the super
primary output SO (the super primary input SI), in the graph
to form a graph with a single output (input) node. SO (SI)
is an abstract node with zero delay. All primary outputs are
connected to SO, and it has no other fanins. Similarly, ST is
connected to all primary inputs and it has no other fanouts.
The delay of all SI — SO paths must be smaller than or
equal to the specified critical path constraint for the design
to meet its timing constraint. If the network already has one
primary output (input), it is treated as the SO (SI).

A. Component Implementation Selection Problem

There are usually a number of implementations available in
the library to implement components of a design. Different im-
plementations come at different costs. Faster implementations
of components incur higher “cost” in terms of typical design
quality metrics, such as energy dissipation, area or dollar cost.
For example, a complex gate can be implemented in several
ways by trading off energy for delay. In our discussion, we use
the terms cost of a component to refer to such quality metrics
without loss of generality. For simplicity, we temporarily
assume that the cost of implementing any component is a
linear function of its delay. In Section VI, we extend our
discussion to address a larger class of cost functions.

An essential task in design flow is to select the proper
implementation for components of the design such that its
timing constraint is met, and overall design cost is minimized.
The overall design cost is sum total of the cost of selected
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Fig. 2. Three cases of discrete implementation delay choices: a) Integral
delay choices. b)Integral delay choices with weights and bounds. c¢) Arbitrary
delay choices. Cases a and b are handled optimally.

component implementations. We refer to this problem as
component implementation selection problem (CISP), which
is known to be NP-Hard in the general case [10].

B. Continuous, Integral and Arbitrary Delay Choices

An important property of the problem that fundamentally
impacts its hardness, is the richness of delay choices available
for implementing nodes. Ideally, one would like to be able to
implement a node with any desired delay value. This is equiv-
alent to assuming that possible implementation choices of a
node offer continuous delay values, which is not feasible from
a practical viewpoint. In reality, implementation choices of a
node exhibit discrete delay values. We use the term integral
delay choices to denote the case, where implementations with
consecutive integer delays are available to realize a component.
Figure 2.a illustrates this case. Black dots on the cost-delay
plane denote possible implementations for a component. Note
that integral delay choices implies that a unit relaxation in
timing of a node would incur unit reduction in its cost.

A practical extension is to consider a specific cost-delay
relation for each specific node type (weight), and consider
bounds on minimum and maximum delay of possible imple-
mentations. We refer to this case as weighted and bounded
integral delay choices (Figure 2.b). Finally, we use the term
arbitrary delay choices to refer to implementations whose
delays are not consecutive integers, and cannot be transformed
into consecutive integers with scaling (Figure 2.c).

Throughout of this paper we assume that delay choices are
integers. Note that proper scaling and rounding, according to
the desired accuracy, can be used to represent delay numbers
of implementation choices as integers (not necessarily con-
secutive). We temporarily focus on properties of the problem
under the assumption of weighted and bounded integral de-
lay choices, and later discuss extensions to handle real life
component libraries.

C. CISP under Weighted and Bounded Integral Delays

We have previously studied CISP under weighted and
bounded integral delay choices. We showed that a CISP
instance can be transformed to a min-cost flow instance,
and solved optimally using existing min-cost flow techniques.
Specifically, we showed that when CISP is cast as an integer
linear programming (ILP) problem, its dual problem formu-
lates a classic min-cost flow problem [8], [11].

Figure 3.a illustrates the idea using the graph G of our
working example introduced in Section II. Figure 3.b shows
graph G, which is constructed by splitting nodes in G into two
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Critical path <6
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Fig. 3. a)Example implementation selection problem of Section II (G).
b)Transformation to delay budgeting on edges of the graph G’ c) Corre-
sponding min-cost flow instance (H).

nodes with — and + signs. The edge connecting the split nodes
in G' is called a split edge. For an arbitrary node v in G, we use
the terms corresponding nodes in G' and corresponding edge
in G' to refer to both nodes v~ and v, and the edge v~ — v+
in G', respectively. Non-split edges in G’ have zero weight,
i.e., their delay relaxation would not contribute to the overall
cost function. The original CISP problem is transformed to
selecting implementations for split edges of G'.

Graph H, shown in Figure 3.c, illustrates the corresponding
dual min-cost flow instance. H has the same set of nodes as
G'. Tt contains all edges of G, plus reverse edges added to
split-edges and a reverse edge from the super primary output
to the super primary input. Split and reverse edges refer to
v~ — vt and vt — v~ edges, respectively. Parameters of
the min-cost flow in Graph H are determined according to
Table 1. Nodes with + superscript in H supply flow, i.e. they
are flow sources, and nodes with — superscript demand flow,
i.e. they are flow sinks. In our working example, all of flow
supply nodes inject one unit of flow into H, and all of flow
demand nodes sink one unit of flow from H. Edges of H are
annotated with their cost for unit flow in the figure.

Table I summarizes the relationship between primal instance
and the parameters of the dual min-cost flow instance. To
the best of our knowledge, however, there is no intuitive
relationship between a unit of flow in the dual problem and
the original CISP problem. Interested readers are encouraged
to refer to our previous publications and linear programming
literature for more details [8], [11]-[14].

D. Minimum Cost Flow: Properties and Relation with CISP

We use the term flow solution to refer to any feasible
(meeting flow conservation at all nodes) assignment of flow
values to edges of H. We use the equivalent terms the optimal
or the min-cost flow solution to refer to the flow solution
that incurs the minimum cost. We briefly review the relation
between the dual min-cost flow instance and the primal CISP
instance, and relevant properties of min-cost flow. Readers are
referred to [14] for details.

Any flow solution transforms the flow graph H into a
residual graph H*. In the residual graph, residual reverse edges
(or simply residual edges) are added for any forward edge,
with respect to flow direction. The cost of residual edges in
H* is complement of the cost of their corresponding forward
edges. Residual edges have finite capacity equal to the amount
of flow on the corresponding forward edge, which model flow

primal problem (CISP) dual problem (min-cost flow)

~(cost of split arc v~ — vT)

cost of reverse split arc v+ — v~
cost of reverse arc SOt — ST~
flow supply (demand)

at node vt (v7)

difference in potentials (r or )

of v~ and vt

reduced cost of edge v~ — vt

in the min-cost residual graph
infinite-capacity negative cost cycle

1-min. delay of node v

2-max. delay of node v

3-timing constraint

4-weight (slope of cost-delay line)
of node v

S-optimal delay of node ¢

6-optimal delay relaxation of node ¢

7-infeasible problem instance

TABLE I
THE RELATIONSHIP BETWEEN PRIMAL AND DUAL PROBLEM.

cancellation on the forward edge by pushing flow along a
residual edge [14].

Figure 4.a shows the optimal solution to the min-cost flow
instance depicted in Figure 3.c in which nodes are anno-
tated with their supply or demand, and edges are annotated
with their flow in the min-cost solution. Edges that are not
annotated have zero flow in the solution. Figure 4.b shows
the corresponding residual graph H* in which residual edges
(dashed) exist for edges with non-zero flow. Edges of the
residual graph (H*) are annotated with their cost. The cost of
residual edges is complement of their corresponding forward
edges. For example, the cost of the residual edge b~ — b+
(not to be confused with split-edge b~ — bT) is -2.

The min-cost flow problem closely relates to the shortest
path problem in graphs. To leverage the relation, the cost of
edges in flow network should be interpreted as length, also
known as distance, of edges in shortest path formulation. The
length or distance of a path is defined as sum of length vari-
ables for edges on the path. The cost or length interpretation
of an edge (path) annotation should be clear from the context.
We denote the shortest directed path from SO to any node 4
in the residual graph with 7;, where the subscript ¢ can refer
to any node (with superscript + or —). 7 is well-defined in
the residual graph of the optimal flow solution since it does
not contain any negative cycle. Figure 4.c shows the residual
graph of the optimal flow solution, H*, in which, nodes are
annotated with their shortest directed path from node SO*.

The reduced cost of edge e;j, an arbitrary edge in H*,
is defined as ¢j; = ¢;; + m; — w;, where ¢;; is the cost of
edge e;j. Thus, the summation of edge reduced costs over any
cycle in H* is equal to the summation of edge costs over
that cycle. The vectors 7w and c¢™ represent node potentials
and reduced costs in network flow terminology, respectively.
The complementary slackness conditions for all non-residual
edges of the graph, outlined below, are necessary and sufficient
conditions for optimality of a flow solution [14]:

C;rj>0=>fij:0 (1)
Uij>fij>O:>C,7i;‘:O 2)
cij < 0= fij = ucapi; 3)

where f;; is flow on edge e;;, and ucap;; is the flow capacity
of the edge. Intuitively, reduced edge costs demonstrate suit-
ability of edges for accepting flow. If the reduced cost of an
edge is zero, then no statement can be made about its optimal
flow value. In case of CISP, edges of H have infinite flow
capacity, and hence, the condition f;; = ucap;; cannot hold
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Solution

Fig. 4. a)Flow supply/demand (node annotations) and min-cost flow (edge annotations) solution. b)Residual graph (H *) with edge cost annotations. c)Shortest

path distance labels are assigned to nodes. d)Corresponding CISP solution.

for any edge. Therefore, edges of H cannot have a negative
reduced cost in the residual graph of the optimal flow solution.

Reduced cost of an edge in the optimal flow solution
translates to relaxation in its implementation delay (Figure
4.d) [8], [11]-[14]. For example, a reduced cost of 2 for a
split-edge in H* means that the corresponding node in G will
be implemented with 2 units of delay relaxation. Equivalently,
the difference between 7; and 7; in the residual graph of the
optimal flow, gives the delay of the edge in G' (node in G) that
corresponds to e;; (Table I). The optimal CISP solution might
not be unique, and a given min-cost flow solution translates
to only one optimal CISP solution.

Finding the shortest ST~ to SO path requires visiting
the edges of the graph, excluding reverse split edges, in
topological order.

We frequently refer to detection of negative cycles in
graphs and determining shortest paths from a reference node.
In H, any non-trivial negative cycle has to travel over the
reverse timing constraint edge and hence, can be detected in
O(n), where n is the number of nodes. Note that in H, the
number of edges grow linearly with nodes, because in practice
components drive a limited number of fanouts. In the residual
graph H*, residual edges can create negative cycles that might
not include the reverse timing constraint edge. Therefore,
one would have to use a shortest-path algorithm that can
handle negative edge lengths, such as FIFO-implementation
of the label-correcting algorithm [14], which runs in O(n?)
for practical designs.

IV. INCREMENTAL CISP

In order for designers to view the cost implications of ECOs
applied to the design, a new CISP instance has to be solved
for every ECO. Applying the full method requires iterative
solution of min-cost flow on numerous subject graphs, which
is prohibitive due to slow runtime of min-cost flow algorithms.
Since only a small part of the design is typically updated dur-
ing ECO, there is an opportunity to quickly update the existing
CISP solution calculated on the original design graph, without
going through the lengthy process of re-solving CISP from
scratch. Note that having the original problem graph implies
that the dual min-cost graph, containing characterizations of
components library is available.

A. Primitive Incremental Operations

To formalize our notion of incremental modifications, we
present a list of primitive graph manipulation operations. The
primitive operations are selected such that they can be applied
in sequence to transform one subject graph to another. The
basic idea is to break down a designer’s high-level ECO into
a sequence of primitive incremental operations. Application of
the sequence on the original design graph transforms it into
the updated design. Our primitive incremental operations are:

1) Node Delay Increment: Delay of a node is incremented.
The change might render the problem infeasible due to
imperative violation of timing constraint.

2) Node Delay Decrement: Delay of a node is decre-
mented. As a byproduct, node delay increment and
decrement operations can also be used to incrementally
change design timing constraint.

3) Arc Insertion: An edge is inserted between two existing
nodes. The edge might render the problem infeasible if
excessively long critical paths are created.

4) Arc Deletion: An existing edge is deleted from design
graph existing nodes. It is assumed that the graph
remains connected after arc deletion, since the notion
of timing constraint has no practical significance in
disconnected graphs.

5) Node Weight Change: Weight of a selected node is
increased or decreased by w > 0. Weight change in
conjunction with delay adjustment can be used to change
a node in the design.

Primitive incremental operations that modify node informa-
tion, i.e. node delay and weight manipulation, are local in
nature. Edge manipulations, on the other hand, can potentially
have global impacts on the design. An ECO is modeled as
a sequence of unrelated primitive operations. Therefore, an
ECO is not restricted to be local in scope although, locality is
common in practical engineering change orders.

From a functional equivalence viewpoint, an ECO is equiv-
alent to a collection, rather than a sequence, of primitive
operations. That is, all of the necessary primitive operations
have to be applied to make the updated design equivalent to the
updated design under ECO. Sequential one-by-one application
of primitive operations will create a sequence of intermediate
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dummy designs all of which, except the last in the sequence,
are not functionally equivalent to the updated design under
ECO. Since our goal is to incrementally re-implement the
design after every operation, all intermediate designs must be
feasible to finally arrive at an equivalent design.

Our conjecture is that if the updated design under ECO is
feasible, there exists a sequence of primitive operations that
gives a sequence of feasible intermediate dummy designs.
The intuitive guideline for construction of such a sequence
would be to take relaxing operations first, and apply restricting
operations last in the sequence. For example, imagine that a
logic resynthesis ECO replaces a critical gate in the critical
path with a slower gate that is not on the critical path. If the
operation of incrementing the node’s delay is applied first,
the intermediate design would become infeasible. However,
if necessary arcs are deleted, then new arcs are added, and
finally the node’s delay is increased, intermediate designs
would be feasible. We leave “construction of operations’
sequence for a given ECO” to the future work; and proceed
with the assumption that if the updated design under ECO is
feasible, then all intermediate designs for the given sequence
of primitive operations are feasible.

B. Problem Statement

Recall that a CISP instance can be represented with the
corresponding flow network H. The initial full solution to the
problem delivers min-cost flow solution of H and shortest-
path distances from SO in H*. Our target incremental CISP
can be formally stated as follows:

Given the original problem instance G, its initial full
solution and a sequence of primitive incremental operations,
the objective is to update CISP solution in face of incremental
operations such that the timing constraint of the perturbed
design is met, and the updated solution remains optimal for
the updated design. The perturbed design is constructed by
sequential application of primitive operations.

V. INCREMENTAL SOLUTION UPDATE UNDER ECO
A. Basic Idea

Complementary slackness conditions (equations 1-3) pro-
vide the necessary and sufficient optimality conditions for a
given flow solution. Thus, for a flow solution to be optimal,
its node potentials vector 7 has to satisfy the complementary
slackness conditions. We refer to a node potential vector that
satisfies those conditions, and hence refers to an optimal flow
solution, as valid. The initial full solution (‘“from-scratch’)
gives a valid node potential vector, without any negative cost
cycle in its residual graph.

The basic idea of our technique is to utilize complementary
slackness conditions to 1)check optimality of the solution
after application of each incremental primitive operation, and
2)incrementally update a subset of node potentials to revalidate
the conditions in case they are violated after the operation.
That is, if a primitive incremental operation applied to the
subject graph does not violate the validity of the existing
node potentials (i.e., complies with equations 1-3), the existing
solution remains optimal for the perturbed graph. However,

1-2

1

Fig. 5. a) Delay of node a is incremented in the original solution. b)
corresponding change in H* c) subgraph reachable from at using edges
with zero reduced cost, and their updated potentials d) updated solution

if the primitive operation violates the validity conditions, the
flow solution and node potentials need to be updated to comply
with equations 1-3, and to generate a new optimal solution.

After application of a primitive operation, our algorithm
checks the validity of affected edges, and if needed, takes
corrective measures to re-validate the node potentials. After
application of the entire sequence of primitive operations and
final revalidation of node potentials, the difference between the
potential of the corresponding nodes in H*, gives the delay of
selected implementation for a node in G' (Subsection III-D).

In CISP settings, all of the edges of graph H have infinite
capacity. Thus, the case of equation 3 cannot happen in an
optimal solution, and only the first two optimality conditions
(equation 1 and equation 2) are applicable. In other words, in
the residual graph of any optimal solution, no edge can have
a negative reduced costs.

B. Delay Increment

Incrementing the minimum possible delay of node v in
the design, decrements the cost of the corresponding split-
edge e,-,+ in H*, and its reduced cost cj_, .. The split-edge
has infinite flow capacity and thus, if the operation creates a
negative cost cycle in the min-cost graph H, then the problem
would be infeasible, i.e., timing constraint will be violated
even if all nodes are implemented with their fastest delay
choices. Detection of such negative cycles can be done in
O(np), where n, is the maximum number of nodes on a
ST~ — SO™ path, since one would only have to track the
impact of the delay change on the shortest ST~ — SO path.

Assuming problem feasibility, If ¢]_ . > 0 before decre-
menting cost of e,-,+, this incremental operation keeps the
reduced cost of the edge non-negative. This does not violate
the validity of node potentials on e,-,+ and no action is
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required. In the design space, it implies that enough slack is
already assigned to the node to tolerate unit delay increment.
However, if ¢7_ , = 0 before the operation (i.e., node has
no slack), post-operation node potentials would change the
updated reduced cost of the edge e,-,+ to —1, which makes
the existing solution invalid. We try to revalidate the solution
by decrementing (incrementing) node potentials for a selected
group of nodes including v (v 7).

Let us only consider edges of the graph H* that have zero
reduced cost before the operation. If there is a path from vT
to v~ that only goes through edges with zero reduced cost,
the cycle formed by this path and wupdated e,-,+ has total
negative cost. Therefore, we can improve the flow solution by
pushing flow along this cycle. Assuming problem feasibility,
such a vT to v~ path has to go through some residual edges
whose capacity is finite.

Pushing flow along this cycle ultimately fills at least one
of the residual edges to capacity, and cancels the cycle.
Continuing the cycle cancellation process, ultimately, a cut in
the subgraph including only zero reduced cost edges will be
created. Then, the solution can be revalidated by decrementing
node potentials, 7, for all nodes in the partition containing
vT. This correction makes Cy—,+ = 0. Furthermore, it gives a
valid node potential because any residual edge with negative
reduced length is filled to its capacity (Equation 3), i.e., the
corresponding forward edge has zero flow and positive reduced
length (Equation 1).

In the worst case, there are O(E) edges with zero reduced
cost, which translates to O(n) for practical design problems.
Detection of a negative cycle requires O(n?), and updating
the potentials in one partition would run in O(n). Making
the practical assumption that the number of required cycle
cancellation is bounded by a constant, the entire process would
have O(n?) time complexity. In practice, however, the edges
with zero reduced cost are considerably smaller in number than
n, and are sparsely distributed in H*. Therefore, the process
would have a much lower complexity in the average case.

Figure 5.a illustrates our working example in which, the
delay of node a is incremented to 2. Figure 5.b illustrates
the corresponding graph H*. Nodes are annotated with their
potentials, and nodes a~ and a™ are incident to the edge whose
reduced cost is decremented. Nodes in H* that are reachable
from at using only edges with zero reduced cost are filled
with dotted pattern in Figure 5.c, in which nodes are annotated
with their updated potentials. Finally, Figure 5.d illustrates the
updated solution to the given CISP instance.

C. Delay Decrement

Decrementing the delay of a node in G by unit, increments
the cost of corresponding edge e,-,+ in H*. Since the
initial solution is valid, ¢j_, . > 0 before the operation. The
primitive operation increments the reduced cost of the edge.
If ¢f_,+ > 0,o0rif ¢f_ , = 0and f,—,+ = 0, before the
operation, the updated node potentials are valid. From a design
point of view, this is equivalent to decreasing the delay of a
node that can favorably utilize slack: additional slack created
by decrementing node delay can be left at that node.

Fig. 6. a)Original CISP solution with inserted edge b)Corresponding residual
graph (H*) with node potential annotations c)Potentials updated with shortest
path from v~ d)Updated CISP solution

However, if ¢J_, . = 0 and f,-,+ # 0 before the primitive
operation, Equation 1 will be violated after applying the
primitive operation. In the design domain, this means that the
slack introduced at the node should be distributed to other
nodes to increase its utilization, and preserve optimality of
the solution. To revalidate the solution, f,-,+ units of flow
have to be rerouted from v~ to v+ along other edges to cancel
the flow on e, —,+. If flow rerouting only uses edges with zero
reduced cost, total cost of flow would not be affected.

Similar to the delay increment case, we try to push flow
along zero cost paths from v~ to vt in the residual graph.
If this is possible, the updated node potentials will be valid
without any change to the overall flow cost. Otherwise, push-
ing flow will eliminate some residual zero cost edge, and will
create a cut in the subgraph created by zero edges. Nodes that
are at distance zero from v~ (i.e., accessible via zero reduced
cost edges), including v—, form a partition, whose potential
should be incremented. Similar arguments as delay increment
case apply toward correctness and complexity.

D. Arc Insertion

The primitive operation of inserting an arc between v and
v in G, corresponds to adding an arc with zero cost from
ut to v~ in H*. If this arc creates either a cycle or a path
longer than the timing constraint in G, there will be an infinite-
capacity negative cost cycle in H*, and the problem will be
infeasible. Existence of a cycle or a long-enough path in G
can be detected in O(n) by topological traversal of the design
graph (Subsection III-D).

Otherwise, if m,+ > m,—, the new arc has non-negative
reduced cost and the initial solution remains valid. In the
design domain, this case implies that the new edge does
not create any new critical path and hence, existing imple-
mentation selection solution is still valid and optimal. The
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challenging case occurs if no infinite-capacity negative cost
cycle is created and m,+ < m,-. This would violate the
last optimality condition (equation 3) because edges of H,
including the newly inserted edge, have infinite flow capacity.

In this case, we have to assign a new set of potential
variables to nodes to revalidate optimality conditions. Thus,
one needs to first eliminate finite-capacity negative cycles that
might be created by insertion of the new edge in H *. If shortest
path from v~ to u™ is negative, it points to a cost-reducing
cycle from v~ to u™ and back to v~ using the newly inserted
edge. Assuming that the cycle has finite capacity, pushing flow
along it would improve the min-cost flow solution. Detection
of such a cycle would require a single-source (from v ™) label-
correcting shortest path algorithm that has the complexity of
O(n?) in the worst case (Subsection III-D).

Note that the capacity of such paths cannot be infinite (oth-
erwise the timing constraint is always violated and problem
is infeasible), so they can be eliminated by pushing large-
enough flow. After eliminating each negative cost cycle of
finite capacity, the shortest path distance might have to be
updated because some residual edges might be eliminated after
pushing flow. Injection of flow along finite-capacity negative
cycles has to continue until the shortest path from v~ to ut is
non-negative. In the worst case, each cycle elimination corrects
one unit of flow, and the process has to be repeated W times,
where W = ) w; is the total flow supply of the graph. This
worst case scenario, however, is very unlikely to occur and on
average, cycle elimination converges very quickly.

After eliminating all negative v~ to ut paths, we set the
potential of an arbitrary node i, m;, equal to the shortest path
distance from v~ to ¢. The following lemma proves that the
new node potentials give a valid solution that complies with
equations 1-3 and hence, is optimal:

Lemma 1: Shortest path distances from a reference node
in the residual graph H* of a min-cost flow, give a valid node
potential vector.

Proof: Let dist; denote the shortest path of node 4 from a
reference node in the graph. For any arbitrary edge e;; in H*,
the shortest path property implies that dist; < dist; + c;j.
Assignment of distance labels as node potentials means that
m; < m; + ¢i; or equivalently ¢;; + m; — 7 = c% > 0. In
addition, if there is non-zero flow going over edge e;; in
H™, its reverse edge ej; exists in the graph with complement
cost. Therefore, c% = —c;rz. > 0 and c;ri > 0, which implies
that ¢7; = 0. Therefore, the resulting node potential vector
complies with conditions 1-3 and is optimal. B

Figure 6 illustrates the procedure using the working example
we introduced in Section II. In this example, an edge is
inserted between nodes v and v in graph G. Note that the
inserted edge violates the timing constraint on the current
implementation selection solution. Figure 6.b shows the corre-
sponding residual graph H* with the inserted edge in which,
nodes are annotated with their potentials before edge insertion
operation. In Figure 6.c shortest path distances from v~ are
used to update node potentials. Since the shortest distance
from v~ to ut is zero, there is no need to send flow from v~
to wt. If this would not be the case, we had to send flow and

update shortest paths until the potential of node u® becomes
non-negative. Finally, Figure 6.d shows the updated solution
of the CISP instance.

E. Arc Deletion

Assume that we are to delete arc e;; in the design graph
G, which corresponds to the edge e;+;- in H*. We assume
deleting this arc from H* maintains its connectivity, because
l)disconnected graphs are of limited interest in practice, and
2)connected components of a disconnected graph are subject
to the same analysis for connected graphs. If there is no
flow on e;+;- in the optimal min-cost flow solution, deleting
e;+;- does not violate any flow conservation constraint in H*.
Hence, the existing solution is still valid, and does not need to
be updated. From a design perspective, this case corresponds
to deleting a net that is not critical after slack assignment.

However if f;+;- # 0, edge e;+;- would correspond to a
critical net in the design domain whose deletion, might create
additional slack for distribution. In this case, deletion of e;+ =
will violate flow conservation constraints at nodes ¢+ and 5~
in H*. Before deleting the edge, hence, one has to eliminate
the flow on edge e;+ ;- by rerouting its flow along other edges
of H*, while incurring minimum cost. To accomplish this,
fi+;j- units of flow has to be pushed along the shortest path
from node it to node j~ excluding e;+;-. If the capacity
of the shortest path is less than f;+;-, successive shortest
paths should be found to collectively push f;+;- units of flow.
After rerouting f;+;- units of flow, edge e;+;- can be safely
removed from the graph without violating flow conservation
constraints.

From a complexity viewpoint, handling arc deletion is sub-
ject to the same analysis as arc insertion. That is, determining
shortest paths from i+ to 5~ would run in O(n?) for practical
design graphs, and the process will have to be repeated
fi+j- times, in the worst case. In the average case, however,
rerouting flow converges very quickly without going through
very many iterations.

The process of rerouting f;+ ;- units of flow from it to g~
is likely to change the residual graph. Therefore, node poten-
tials might have to be updated to comply with the optimality
conditions (equations 1-3). Lemma 1 proves that distance from
a reference node makes an optimal node potential vector. Thus,
we update potential of each node to the shortest path from ¢+
to the node, simply because such shortest path vector is already
calculated to push flow from i+ to 5, and it would save on
computation time.

An example is depicted in Figure 7.a in which, the edge
from node ¢ to j is going to be deleted from G. Figure 7.b
shows the change in the corresponding residual graph H*,
where a unit of flow already travels along the edge from it to
7~ . Nodes are annotated with their potential values that was
valid before deleting the edge. To reroute the unit of flow,
shortest path from node ¢+ to j— is calculated, and a unit
flow is pushed along the path. Figure 7.c shows the case in
which, nodes are annotated with their shortest distance from
i*. Note that all primary outputs created after edge deletion
are connected to a new super output node (SO).
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Fig. 7.

a) Original CISP solution with deleted edge b) corresponding residual graph (H*) with node potential annotations. One unit of flow travels along

edge iTj~ c) shortest path from T is used to reroute the flow from i1 to j~ after edge deletion. Nodes are annotated with shortest distance from it d)
updated node potentials in the updated residual graph after pushing flow e) Updated CISP solution

The numbers on edges along the path show the edge costs
(for unit flow) that are assigned according to the transfor-
mation discussed in Subsection III-A. The edges that do not
have any number annotation along the path have zero cost in
flow formulation. Figure 7.d shows the residual graph after
rerouting the unit flow in which, nodes are annotated with
their shortest distance from 4% in the updated graph. Distances
happen to be the same in this example, however, that is not
necessarily the case. Finally, 7. shows the updates CISP
solution after deleting the edge.

F. Weight Change

Node weights represent relative component cost reduction
with unit increase in delay. From a design perspective, changes
to node weights relate to updating cost-delay characterization
of components in the library. Weight of node ¢ in G, de-
termines the supply and demand of nodes i* and ¢~ in H.
Subsequently, increasing weight of node ¢ by w in G, creates
additional w units of flow supply at ¢+, and additional w units
of flow demand at ¢~ in H*. Incremental handling of this
primitive move should send w units of flow along the shortest
path from i+ to ¢~ in H* to update the min-cost flow solution.
If the capacity of the shortest path is less than w, successive
shortest paths need to be found to collectively handle w units
of flow. A path might have finite capacity only if it contains a
residual edge. All non-residual edges in the graph have infinite
capacity.

Similarly, decreasing the weight of node decreases the sup-
ply and demand by w. Since the initial solution is optimal, we
need to send w units of flow from i~ to ¢t to cancel excessive
flow supply and demand. This is achieved by augmenting
w units of flow along the shortest path (or a collection of
successive shortest paths). After updating the flow solution,
node potentials will be updated by reseting them to their new
shortest path to/from a fixed node (Lemma 1). The complexity
analysis arguments of edge insertion/deletion apply here as
well. That is, in the worst case the process would require w
repetitions of O(n?) label-correcting shortest path algorithm.

Similar to previous cases, however, in the average expected
case flow pushing process does not require w steps, and
converges much faster.

Our working example of Subsection II is depicted in Figure
8 in which, all nodes are initially assumed to have equal unit
weight. Nodes are assumed to have two possible implemen-
tations: unit delay that incurs two units of cost, and 2 unit of
delay that incurs unit cost. Thus, the optimal solution of Figure
8.a has total cost of 7. Let us assume that the incremental
operation changes the weight of node ¢ from 1 to 2, which is
equivalent to assigning cost of 3 for its implementation with
unit delay, and cost of 1 for its implementation with two units
of delay. In residual graph H* in Figure 8.b, the increase in
weight increments the flow supply at ¢t and flow demand at
¢~ . Therefore, the existing solution no longer meets the flow
conservation constraint and becomes invalid.

We revalidate the solution by pushing the excess flow (unit
in this case) from ¢t to ¢~ over the shortest path. That
is, shortest distance labels in H* are updated to denote the
distance from node ¢t (Figure 8.c). Subsequently, a unit flow
is pushed along the shortest path, which is shown as a dashed
line in Figure 8.c. The distance labels from ¢t are updated,
which readily give the updated node potentials and CISP
solution (Figure 8.d). Note that the new solution still total
cost of 7, while the original solution after weight change had
total cost of 8.

VI. PRACTICAL EXTENSIONS AND LIMITATIONS

We assumed that component implementations have con-
secutive integer delays, and their cost-delay relation is linear
(Figure 2.b). We proceed to discuss extensions to this basic
model to address practical library constraints. We also discuss
practical limitations of our technique.

A. Arbitrary Delay Choices

It has been shown that implementation selection for nodes
of a DAG under arbitrary delay choices in NP-Hard [15]. Not
only our mathematical analysis is useful from the viewpoint
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Fig. 8. a)The example of Section II, in which weight of node c is increas
to 2. The solution would have total cost of 8 after the incremental operatic
b)The corresponding residual graph with node potential annotations. c)A w
of flow is pushed from ¢t to ¢~ along the shortest path and node potenti:
are updated. d)Updated CISP solution with optimal total cost of 7.
of optimality gap measurement, it also can help to develc
quality heuristics under arbitrary delay choices (Figure 2.c)
We tackle CISP under arbitrary delay choices by temporari
relaxing delay choices to weighted and bounded integral del:
choices. The temporary relaxation will be corrected by a fin
legalization step. We first assume that all consecutive integral
delay choices are available to implement the design (case of
Figure 2.b). After solving the relaxed problem, a heuristic
legalization is carried out to replace non-existent imaginary
implementations with physical implementations in the library.
An example legalization heuristic is delay round down, which
conservatively replaces an imaginary implementation in the
solution, with the closest (in terms of delay) slower physical
implementation. Empirical results show that the procedure
yields near-optimal results, because in practice, a relatively
small number of components end up being mapped to imagi-
nary implementations [16].

B. Convex Cost Functions

Many cost functions, such as active and leakage energy
dissipation, do not have linear relationship with component
delay. Our approach can be extended to handle convex cost
functions with no quality loss, in case integral delay choices
are available. If consecutive integral delay choices are not
available, the heuristics explained in Subsection VI-A can be
utilized to handle the situation.

In presence of arbitrary (or integral) delay choices, the
convex cost-delay relationship can be viewed as a collection
of line segments (Figure 9). Note that only the end point of
line segments are available implementations, due to intrinsic
discreteness of the component library. If the original cost
function is convex, the slopes of line segments, which are
negative, do not decrease with growth of delay.

weight = |wy|

Vi

weight = |w,|
Vc
* * > W] 2 |w.
d; dp d, delay twil 2wl
Fig. 9. Extension of basic model to handle convex cost functions and

arbitrarily discrete delay choices.

Figure 9 shows the situation for an example transformation.
In this example, three different implementations, A, B and
C, are available for a node. The cost of each implementation
is a convex function of its delay. The graphs on the right
illustrate the structure corresponding to a component, when
design graph G is transformed to min-cost flow graph H. They
replace the split-edge transformation in case of previously-
discussed linear cost functions. Intuitively, the transformation
models each line segment with a node (with appropriate
delay lower and upper bounds). Convexity of cost function
ensures that delay relaxation is first allocated to the node
corresponding to the first line segment, and so forth. Interested
readers are referred to [16] for more detailed discussion on the
transformation.

C. Complications and Limitations

In our target design model, nodes incur delay but edges
have zero delay. One could insert dummy delay nodes on the
edges, with one or multiple implementation choices, to model
interconnect delay in gate-level netlists. To model hyper-
edges, which are the proper abstraction for modeling gate
interconnects, one would have to decompose the hyper-edge
into shared and dedicated edges. For example a hyper-edge
connecting a gate to its two fanouts, can be modeled with a
shared edge to a dummy node, which is connected to the two
fanouts using dedicated edges.

This abstraction, however, has its own complications and in-
accuracies. For example, the delay of the shared and dedicated
segments would be decoupled. Additionally, one would have to
know physical placement of gates to accurately decompose the
hyper-edge into shared and dedicated segments with specified
delay numbers. Since our framework is designed for handling
ECO before placement, interconnect delays would have to
be estimated at high-level, either without having placement
information or within an iterative design flow.

VII. EMPIRICAL VALIDATION

We applied our technique to problem of gate-level thresh-
old voltage (V;) assignment for leakage optimization. Two
implementations are available for gates that correspond to
fabricating them with either high or low threshold voltage.
Low V; implementation results in a faster but leakier gate
compared to high V;. The relation between leakage and delay
is convex, for which we utilize our practical extensions.

We used Goblin [17], an open source C++ library for
graph optimization and network programming, to implement
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the aforementioned graph data structures, min-cost flow based
full CISP solver, and our incremental algorithm. Goblin of-
fers a variety of graph algorithms, including label correcting
shortest-path and cycle-canceling min-cost flow algorithms
that were used in our study. We integrated Goblin library
routines with the SIS logic optimization framework.

After temporary relaxation of arbitrary delay choices to
consecutive integers and solving using our CISP technique,
we round down gate delays to arrive at the fastest gate
implementation that exists in the library. Gates in gen2.lib
library are characterized for input capacitance, delay and
leakage under 0.4 and 0.5 volts threshold voltage. The values
are normalized with respect to an inverter in the library.
Selected circuits from MCNC benchmark suite are mapped
to gen2.lib library using SIS “map” command. We developed
our own timing analyzer and leakage estimator, which look up
library characterization for gate leakage, input capacitance and
intrinsic delay parameters. For timing analysis, load dependent
delay model is used in which, the delay of a gate is estimated
as its intrinsic delay plus its load dependency factor times load
capacitance: delay, = delayintrinsic + Cload * slopeg

Initially, all gates in the circuit are mapped to low V;
of 0.4 volt to capture initial leakage and timing constraint.
Subsequently, the library was expanded to contain two im-
plementation choices, corresponding to high or low V;, for
each gate. Timing relaxation was not allowed, i.e., the timing
constraint of each circuit is the same as its critical path
when all gates are mapped to low V;. After assigning low
and high threshold voltages to gates, another timing analysis
is performed to assure the validity of results. In all cases,
our algorithm met the required timing constraint. Gate delay,
leakage, and input capacitance data are borrowed from the
study performed by Khandelwal and Srivastava [18].

A. Average ECO Workload

The amount of computation workload that is required to
handle an ECO depends on the amount of perturbation intro-
duced in the netlist by that ECO. Consequently, the amount
of computation for handling incremental updates need to be
matched to expected perturbations [19]. In the extreme case, if
the perturbed netlist is completely different from the original
design, invoking full algorithm might be a better choice than
running the incremental engine.

We define the notion of “average” ECO perturbation in
order to evaluate our algorithm effectiveness. We assume that
alterations imposed by an average ECO can be replicated
by a sequence of 50 primitive incremental operations. It is
practically hard to characterize the amount of perturbation that
an average ECO inflicts on a design. We chose this number
because we observed that 50 incremental operations (e.g.,
delay change, arc insertion, weight change, or arc deletion)
can model substantial design modification.

Figure 10 illustrates the idea using a simple example. Let
us assume that the left netlist undergoes an ECO that yields
the right netlist. That is, gate a is replaced with gate a’,
characterization of the minimum delay possible for gate b is
changed in the library, and finally, edge e is replaced with edge

D T
e _

Fig. 10. Example of transforming one netlist to another.

f. A sequence of five incremental operations models the ex-
ample transformation. Specifically, a weight-change followed
by delay-change operation replaces gate a with a’. Another
delay-change operation updates the minimum delay for gate
b. An arc-removal followed by arc-insertion replaces edge e
with f. Our assumption is that the operations are applied in
a feasible sequence, i.e., all intermediate designs created after
application of primitive operations are feasible, if and only if
the design under ECO is feasible.

We run the full algorithm to measure its runtime on the
original netlist, and to generate an initial optimal solution.
Then, 25 primitive operation types (e.g., delay change or arc
insertion) and their associated parameters (e.g., location to
insert the arc) are generated randomly. Reverse operations are
then applied in reverse order to cancel the impact of initial
25 operations, and to arrive at the initial netlist with known
solution. For example, if operation 20 happens to be weight-
change for a specific randomly chosen node, operation 31
will be weight-change for the same node with negative sign.
The rationale is that if the algorithm yields the same flow
value after many runs, then we can empirically validate that
solution optimality is preserved throughout the process. Also,
the runtime of the full CISP solver for the initial and final
designs are the same. Note that incremental operations are
handled right away ignoring that each operation is going to
be canceled by another operation in the future. Operations
that would render the solution infeasible are not considered.

B. Experimental Results

Table II summarizes our experimental results. For each
circuit, original leakage (all gates assigned to low V;) and
optimized leakage after running both full and incremental al-
gorithms are reported in columns 3— 5. Column 6 (improv%)
shows the leakage improvement of the full algorithm compared
to original leaky circuit. Column 7 (error%) compares the
leakage of the circuits optimized using full algorithm with cir-
cuits after undergoing incremental changes. The difference is
zero in all cases except for C1355, where we have a negligible
0.23% improvement in leakage. Experimental results validate
the effectiveness of our incremental algorithm in maintaining
the quality of full algorithm.

The last three columns report the runtime of 1)one call
to full solver to handle an average ECO, 2) fifty successive
calls to our incremental handling method after each primitive
operation, and 3) the speedup gained by our approach. Recall
that an average ECO is assumed to be equivalent to 50
incremental operations. The runtimes were recorded over 40
runs and the average numbers are reported. Our experiments
show that the incremental algorithm is about 283 times faster
than running the full algorithm, while delivering the same
quality results. The runtime improvement is more significant
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Circuit Cell Leakage (normalized) Runtime (sec)
count | original full incr. improv  error full incr.  speedup
(%) (%)
too_large 456 2413.5 408.5 408.5 83.1 0 4.61 0.11 40.7
C2670 505 4384 808.2 808.2 81.6 0 9.15 0.29 31.9
C1355 510 2913.4 814.7 812.8 72.0 0.23 5.97 0.26 229
pair 948 8502.2 1411.6  1411.6 83.4 0 28.35 0.24 119.7
alu4 1579 7398.2 1164.6  1164.6 84.3 0 64.23 0.48 1329
seq 2016 | 10558.7 1587.8 1587.8 85.0 0 139 0.43 320.6
apex2 2120 | 10980.8 16582  1658.2 84.9 0 16235  0.51 316.6
des 2718 | 18737.2  2803.9 28039 85.0 0 28499  0.57 502.6
spla 4603 | 24127.2 36257 3625.7 85.0 0 824.07 1.52 543.8
ex1010 5045 | 21090.7 31875 31875 84.9 0 937.59  5.03 186.3
pdc 5812 | 312944  4669.7  4669.7 85.1 0 158232 175 901.7
Average 2392 83.1 0.02 283.6
TABLE I

RUNTIME AND LEAKAGE COMPARISON BETWEEN FULL AND INCREMENTAL IMPLEMENTATION SELECTION.

for larger circuits, and hence, the gap is expected to widen for
more complex benchmarks.

Mathematical properties of our method prove that our
incremental technique maintains the optimality of the min-
cost flow solution in subject graph. Under consecutive integral
delay choices assumption, the min-cost flow directly maps to a
component implementation selection and hence, the optimality
of the solution in hardware domain is guaranteed. In case
of practical arbitrary delay choices, min-cost flow solution
delivers high quality, but not necessarily optimal, solutions.

As a result, it is theoretically possible that two different so-
lutions have the same flow cost in subject graph, but incur dif-
ferent leakage when mapped to hardware domain. This occurs
for circuit C1355, which is a highly interconnected circuit
with many critical paths. In this case, successive perturbations
allowed minor improvement of the leakage results, although
both full and incremental algorithms arrive at solutions with
the same amount of flow.

VIII. CONCLUSIONS

We presented an effective methodology for incrementally
updating an implementation selection solution for a netlist
that goes through engineering changes. Utilizing mathematical
properties of min-cost flows, our technique guarantees to meet
the timing constraint, and to maintain the optimality of the
solution. We presented extensions to our technique that enable
its application to practical engineering problems. Experiments
with gate-level threshold voltage assignment show more than
2 orders of magnitude runtime improvement compared to re-
executing an optimal from-scratch solver for each engineering
change, while delivering the same results.
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