
An Optimal Algorithm for Minimizing Runtime
Reconfiguration Delay

Soheil Ghiasi
Ani Nahapetian
and
Majid Sarrafzadeh
University of California, Los Angeles

���������	
��� ��
	� �� ��� ��
�� �	��� �	������ ��
�� �	� �� ���	���	

� 	�	�
��� 	 ���
��

� �
� 	��
��	
��� ����������
�� ��� ���
��� ���������	
��� ��
	� �� ���
� ����	�	�
�
�
��
	��
��	
���
	
���� ��� �	�� �
	���� �� 	��
��	
���� 	�� ����
 ���� �����	
�
�� 	��
��	
���
���
���� ��
��� �	���� �� ������
 	� �Æ����
 ��
��	
 	
����
�� ��� ����������
�� ���
���
���������	
��� ����
��
 ���
����� ��
	� �� �����
��� 	� 	��
��	
��� �� 	 ���	���	

� 	�	�
	�
�
���
��� ��� ���
�� �� �������� �� 	 ������ �� �	���	� ��
� �������� ���������	�
� ���������
��

	���	
��� �� �����
�
�	�! 	� �����
� ��� ����	
���� ��������
� �����
� �� �����
�
�	�!
��
�����
 	�� ����	
��
�
�� ���
�� 	
 ���
��� 	�� �	� ��	��� 	��������
� 	 ������ �� �	�	��
����
���� 	�
��
	���
 ��	�� 	�� �������
�� "���
	�
�� �� �	� 	�����
�	

�� 	��
��	
���#� ����������

	�!� 	�� 	
��	�� ������
�� 	�� �	�� ��
��� �	�
� �� ��	
���� ��
�� ���������	�
� �	���� ��
�����
� �� �����
���

��� ����
��� 	��
�� 	
����
�� 	�� ��
� 	��
��	�
�
� �	�
�	

� ���������	�
� �
	
����� 	�
��

 	� $�

�%&'() ���
���� ��� 	
����
�� �	� �� �����

� 	��
���
� ��������
�� 	��
��	
���
���
��� ���
��
����	
 �
	���� �� 	��
��	
����� �����
�� 	�
�	
 �����
��� ��
	� ��
�� �	���
����	
���� �� ���
����
� ����	���
�
�� ���������	
��� ��
	�� *� �����
�� ��
��	
�
� 	��
��
�Æ������ �� ��� 	
����
��� *� �����

�� ���������
	
 ����

�� ����� ������
�	
� 	 2�5%
� 40%
����������
 ��
��
�
	
 ���
��� ���������	
��� ��
	� 	� ����	���
� �
��� ������
����

Categories and Subject Descriptors: B.8.2 [Hardware Performance]: Performance Analysis and Design Aids

(����	
 �����+ '������	����)
����
���

)���
���	
 ,�� *���� 	�� '��	���+ ���������	�
� �����
���� ���������	
��� ��
	�� ���
	�
�	%

��� ��������

1. INTRODUCTION

Many applications contain computationally intensive blocks, and hence they demand hard-
ware implementation to exhibit real-time performance. Dedicated hardware solutions are
capable of running many operations in parallel and thus can speedup the application run-
time significantly. While dedicated hardware implementations address the application la-
tency problem, they are not flexible.New version of the application has to go through all

Author’s address: S. Ghiasi, Computer Science Dept, UCLA, Los Angeles, CA, 90095.
Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use
provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server
notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.
c� 20YY ACM 1529-3785/20YY/0700-0001 $5.00

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY, Pages 1–20.

2 � Soheil Ghiasi et al.

of the implementation steps in order to be realized in dedicated hardware [DeHon 1994;
Burns et al. 1997; Adario et al. 1999; Hauser and Wawrzynek 1997].

Reconfigurable systems, however, provide flexibility and the ability to reuse hardware
for multiple applications. Also, reconfigurable hardware resources can be used to execute
applications that are too large to fit on them completely. In such cases, each part of the large
application is executed on the hardware at a time. Namely, by reusing the reconfigurable
hardware, all of the parts of the application can be loaded and executed on the hardware
at runtime. This technique, known as runtime reconfiguration, has been used by many
researchers for realizing large designs [Compton and Hauck 2002; Maestre et al. 2001;
Trimberger 1998; Chang and Marek-Sadowska 1997; Liu and Wong 1998].

Runtime reconfiguration, in particular, is suitable for realizing intensive applications that
take different paths at runtime. Consider the target tracking application. Based on available
information from a scene, such as the number of targets, their distance from the camera
and their resolution, different algorithms should be executed in order to track the targets
efficiently in realtime. Hence, runtime reconfigurable hardware resources are utilized for
implementing this application.

A major drawback of using runtime reconfiguration is the significant delay of reprogram-
ming the hardware. The total runtime of an application includes the actual computation
delay of each task on the hardware along with the total time spent on hardware reconfig-
uration between computations. The latter may dominate the total runtime, especially for
classes of applications with a small amount of computation between two consecutive re-
configurations. Much of the previous work has tried to tackle the reconfiguration delay
problem using different approaches [Li and Hauck 2002; 2001; Li et al. 2000].

In many applications, only a small portion of the design changes at a time, and so there
is no need to reconfigure the entire hardware for instantiating a new design. This has led
the industry to add the capability for partial reconfiguration to most of its recent products.
FPGAs are an example of such reconfigurable hardware, and most of the recent FPGA
devices have the capability of partial runtime reconfiguration [Xilinx ; Altera].

Some earlier work has used partial reconfiguration to realize and execute an application.
For example, Taylor et al. present a partially reconfigurable system in which there are a
limited number of identical locations on the FPGA to plug in and run a module [Taylor
et al. 2002; Horta et al.]. Figure 1 shows the basic idea of such a reconfigurable platform.
Each module (operation) is instantiated on one of the identical places on the chip through
partial reconfiguration, and hence the instantiation of each operation will not affect other
existing modules.

For example, in Figure 1, operation g can be instantiated by reconfiguring the physical
resources currently executing operation d. This will not affect the configuration of re-
sources executing operations a, c, and e. Note that Multi-FPGA systems, such as the target
tracking system described above, are another example of a partially reconfigurable system
in which there is more than one FPGA on the system. Each FPGA realizes a part of the
design, which can be reconfigured independent of the state of the other FPGAs.

Partial reconfiguration allows the user to change only the part of the design that needs
to be updated and hence decrease the reconfiguration delay [Sezer et al. 1998]. The partial
reconfiguration overhead, however, is still significant, and it dominates the computation de-
lay for many applications. Reconfiguration delay is usually on the order of tens to hundreds
of milliseconds for today’s FPGAs [Xilinx ; Altera]. While the partial reconfiguration ap-

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

An Optimal Algorithm for Minimizing Runtime Reconfiguration Delay � 3

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

a

a

b

c

c

d

e

e

f

g

g

controller

dc

a e

Fig. 1. Executing an application on a partially reconfigurable hardware.

proach is very effective and many different applications can be executed using the existing
basic operations, the partial reconfiguration delay is still a barrier. Therefore, minimizing
it can lead to faster execution of applications [Li et al. 2000].

In this paper, we formally state the problem of minimizing the runtime reconfiguration
delay. We present a provably optimal algorithm to minimize the total delay incurred by
partial reconfiguration. The input to the algorithm is an application, which is modeled as
a set of scheduled high-level operations (or simply operations). The data dependencies
among the operations constitute a directed acyclic graph (DAG). Our algorithm outputs an
execution order for the operations on the hardware resources such that the total runtime
reconfiguration is minimized.

The model and the algorithm developed in this paper are directly applicable to current
FPGA devices, multi-FPGA systems, as well as the aforementioned partially reconfig-
urable systems. A special case of our algorithm applies to traditional non-partially recon-
figurable FPGA platforms also. We have conducted simulation-based experiments on some
real applications. In terms of total runtime reconfiguration delay, our method outperforms
other existing heuristics with a significant margin, as high as 40%.

The rest of this paper is organized as follows: In Section 2 the problem of partial re-
configuration delay minimization is formally stated. Section 3 describes our algorithm
and proves its correctness and its optimality. Some experimental results obtained through
simulation are presented in Section 4. Section 5 will conclude the paper along with some
future directions and possible extensions.

1.1 Object Tracking System

A system consisting of a number of cameras and a controller is depicted in Figure 2. The
figure demonstrates a collaborative intruder detection and object tracking system that has
been implemented as part of this work [Kumar et al. 2003; Nguyen et al. 2002; Ghiasi
et al. 2003a; 2003b; 2003c]. The system consists of multiple IQeye3 cameras [IQinVision
]. The cameras communicate with the control unit in order to collaborate, distribute their

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

4 � Soheil Ghiasi et al.

information and execute controller’s commands.

Camera 1

Camera 3

Camera 2

Controller

Fig. 2. The implemented target tracking system.

As shown in Figure 2, each of the cameras has a number of embedded computational
resources. These resources can be utilized to implement any application that takes the
streaming scene data as input. The processing power embedded in the cameras elimi-
nates the need to transfer the scene data to a remote processing station, and hence reduces
the load of system communications. For cases where data communication is slow or ex-
pensive, the aforementioned embedded processing scheme improves system performance.
Furthermore, co-locating the processing and the data acquisition improves system’s scal-
ability. The issue of partitioning a given application among different available resources
has been studied by many researchers with different objectives. A general technique which
is applicable to many objective functions is called budgeting-based resource management
[Bozorgzadeh et al. 2003; Ghiasi et al. 2003a; 2003b; Chen et al. 2002; M.Sarrafzadeh
et al. 1997]. Throughout this paper, we assume that the application partitioning has already
been performed. Thus, the portion of the application that has to run on the reconfigurable
device is known. The task of partitioning the given application onto system resources shall
not be discussed, since it is out of the scope of this paper.

Figure 3 demonstrates the abstract model of the computational resources existing in the
system. A general-purpose processor (IBM PowerPC) and a Xilinx Virtex1000E FPGA
[Xilinx] are embedded in each of the cameras. The processor communicates with a main
controller which sends commands to the cameras in order to instantiate the proper design
on their FPGAs. Then, each camera reconfigures its FPGA to realize a particular design.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

An Optimal Algorithm for Minimizing Runtime Reconfiguration Delay � 5

Finally the instantiated design is executed on the FPGA using the realtime streaming scene
data as input. The computation results are either sent back to the controller or stored locally
in the memory blocks embedded in the camera. Note that the control unit schedules the
application processes on the system resources through runtime reconfiguration [Nahapetian
et al. 2003].

C
ontroller/Scheduler

µPC

FPG
A

µPC

FPG
A

µPC

FPG
A

C
ontroller’s

com
putational resources

Fig. 3. The abstract model of the system resources. The controller has to schedule the tasks on reconfigurable
hardware resources. Each camera has an FPGA embedded in it. There are several of cameras in the system (three
in this picture).

In order to highlight the effect of hardware implementation on system performance,
the underlying tracking algorithms are implemented in C. These algorithms, namely KLT
feature selection and feature tracking [Tomasi and Kanade 1991], perform intensive com-
putations and cannot process the realtime streaming data when executed on the camera’s
processor (PowerPC). To speedup the algorithms various simplifications have been made,
which have resulted in five different versions of each algorithm [Ghiasi et al. 2003]. Each
version contains a new simplification in addition to all changes made to previous version
numbers, e.g. the version 4 of each algorithm contains all simplifications made to version
3 plus some further adaptation of the algorithm to the constrained camera platform. Figure
4 demonstrates the latency of each implementation when executed on camera PowerPC.

Furthermore, a non-embedded computing scheme is considered. In non-embedded pro-
cessing, each image is first transmitted to a powerful processing unit and the computation
is performed on it. Since the communication overhead dominates the computation latency,
all the different versions of the algorithms perform similarly in this scheme. Figure 4 sup-
ports the fact that the image processing algorithms are computationally intensive and do
not show realtime performance if they are implemented in software.

Fortunately most of the image processing algorithms, including feature selection and
tracking, perform similar computations on all pixels of the image. Therefore, hardware
implementations can take advantage of the intrinsic parallelism of these algorithms and
boost their performance. For instance, Benedetti et al. report realtime performance for
feature selection algorithm when implemented on a reconfigurable system [Benedetti and
Perona 1998].

On the other hand, implementing the tracking application on a reconfigurable hardware
requires the instantiation of different algorithms at different points of the application life-

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

6 � Soheil Ghiasi et al.

time. Therefore, it becomes necessary to reduce the reconfiguration delay to further im-
prove its performance. This problem, motivated by our reconfigurable object tracking
system, is the focus of this paper.

Feature Selection/Tracking on/off
camera

0

5000

10000

15000

20000

25000

0 2 4 6

Algorithms With Simplifications

T
im

e
 (

m
s
)

Feature Selection on
PC +FTP
Feature Selection on
Camera
Feature Tracking on PC
+FTP
Feature Tracking on
Camera

Fig. 4. None of the simplified versions of the algorithms or non-embedded computing scheme exhibit realtime
performance.

1.2 An Example

Figure 5 is an example where different execution orders of nodes lead to different number
of hardware reconfigurations. Tasks (nodes) 1 and 3 have the same type a and Task 2
has another type b. The reconfigurable hardware is capable of fitting one operation at a
time in this example. Executing such an application in � 1�2�3 � order, requires loading
of a, b, and a into the hardware respectively. Thus the hardware has to be reconfigured
three times, which incurs a cost of 3 units, whereas execution of the same application in
� 2�1�3 � order requires loading of b, and a respectively, which costs 2 units. Therefore,
the execution order of basic tasks can impact the number of required reconfigurations and
hence the total reconfiguration delay.

2. PROBLEM STATEMENT

In this section, we present some preliminaries and definitions that will be used throughout
the paper. Then, we formalize the problem of minimizing the reconfiguration delay when
executing a given application on a system with multiple fully or partially reconfigurable
resources.

2.1 Preliminaries and Assumptions

Let G�V�E� be a directed acyclic graph (DAG) representing the given application, where V
is a set of vertices that represent operations, and E is a set of directed edges that correspond

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

An Optimal Algorithm for Minimizing Runtime Reconfiguration Delay � 7

Task 1 Task 2

Task 3

a

a

b

Reconfigurable Fabric

Fig. 5. Instantiation order of the blocks on the FPGA affects the number of required reconfigurations

to the dependencies among the operations (Figure 1). We assume that at each time step,
one or multiple tasks are revealed to the system for execution. The arriving tasks have to
be executed before the next set of upcoming tasks to maintain the precedence constraints
among tasks. Equivalently, we can assume that vertices of G have already been scheduled
to execute at the time step at which they are revealed to the system. Furthermore, we as-
sume that the entire DAG is known a priori. This assumption holds both for applications
whose structure is fixed, and for dynamic applications that have been extensively profiled.
As a result, our technique’s applicability is restricted to these two classes of applications,
namely, scheduled fixed structure applications or applications with known profiling infor-
mation. Note that profiling information can serve as a guideline, probably with provable
error rates and approximation bounds, for determining the control-data flow graph (CDFG)
structure of the application.

We assume that a partially reconfigurable hardware (PRH) is selected as the target plat-
form to execute the application. The functional units corresponding to each operation
should exist on the hardware before its execution. Due to area constraints, all of the com-
prising operations of an application might not fit into the PRH at the same time. In this
case, a subset of the operations can be instantiated in the PRH, and it can be partially re-
configured to realize the remaining operations when needed. In such cases, partial recon-
figuration for instantiating operations in the PRH, imposes a delay on the total application
runtime. Reconfiguration delay is one of the major barriers when using PRH for real-time
systems, and it is the main focus of this paper.

Reconfiguration delay is roughly proportional to the number of bits that need to be trans-
mitted to the PRH in order for it to change its state. Partial reconfiguration bits contain
both data and control information for altering the logic and the interconnect of a particular
block on the chip [Xilinx ; Altera]. Hence, the length of the sequence of reconfiguration
bits is proportional to the reprogrammed area on the chip. Therefore, the reconfiguration
delay for instantiation of different operations is the same for a number of platforms. These
platforms include multi-FPGA systems with identical FGPAs and architectures in which
there are a number of identical places on the chip to plug in an operation (Figure 1) [Taylor
et al. 2002; Horta et al.].

Our system presented in Section 1 uses similar FPGAs in all of its cameras. Hence,
the reconfiguration delays for all types of tasks are identical. Therefore, the number of
required partial reconfigurations (RPR) accurately represents the total reconfiguration de-
lay. It follows that our technique’s effectiveness is limited to multi-FPGA platforms with

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

8 � Soheil Ghiasi et al.

identical FPGAs and/or architectures based on dynamic hardware plug-in idea presented
in [Taylor et al. 2002; Horta et al.]. There are many issues such as connection to chip pins
and heterogeneous routing and logic resources that do not allow easy relocation of tasks
for other reconfigurable architectures.

Finally, we assume the target reconfigurable hardware can accommodate at most K dif-
ferent operations at a time. Namely, there are K identical plug in locations in the target
PRH, or the target reconfigurable hardware is composed of K identical fully-reconfigurable
devices. This implies that an upcoming new operation that does not currently exist in the
PRH has to overwrite one of the K existing operations in PRH. Loading a new operation
requires the PRH to be partially reconfigured. Therefore, it incurs a unit cost and increases
the total number of RPR by one.

2.2 Problem Formulation

The partial reconfiguration delay minimization problem can be formally stated as:

—Given are the scheduled task graph G�V�E� representing an application, and K the num-
ber of identical plug in locations in the PRH (or similarly the number of fully pro-
grammable FPGAs in the system. This is the case for the system shown in Figure 2).

—The objective is to find the order in which the tasks in V have to be instantiated in the
PRH to execute the entire application, such that the number of required partial reconfig-
urations is minimized. Moreover, for instantiating each task v � V , the existing task in
PRH that has to be overwritten has to be determined.

—The constraints are that the entire application has to be executed using the K existing
plug in locations in the PRH. This implies that each node has to be instantiated in the
PRH at some point after all of its inputs have been executed. Furthermore, at most K
different type of operations can exist in the PRH at each time.

The problem, as formulated above, is somewhat similar to the standard paging problem
that has been formulated and extensively studied in the domain of Online Algorithms.
Specifically, reconfigurable hardware corresponds to a cache unit with capacity K, and
each partial reconfiguration request is similar to a page fault (miss) that has a unit cost.
However, to the best of our knowledge, the problem presented in this paper has not been
studied, and the current formulation is novel for modeling partial reconfiguration cost.
Throughout this paper, we may use terms from our formulation and the standard paging
formulation interchangeably.

3. MINIMIZING THE NUMBER OF REQUIRED PARTIAL RECONFIGURATIONS

In this section, we present an optimal algorithm for solving the problem defined in Section
2, and we prove its optimality. First in this section, we define the notations. Then, we
model the problem using sequences and permutations and prove some theorems using this
model. Finally, we present the algorithm. Its optimality will follow from the theorems.

3.1 Definitions

Any solution to the problem stated in Section 2 will form a sequence of operations. More-
over, the solution must specify which operation to evict from the PRH for loading a new
operation. As we will show in the next subsection, there is a simple optimal algorithm for
evicting the existing operations in PRH in order to minimize RPR for a given sequence of
operations. Therefore, we focus our efforts on finding the optimal sequence.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

An Optimal Algorithm for Minimizing Runtime Reconfiguration Delay � 9

Let Si be the set of operations in cycle i. Also, we define Pi to be a permutation of the
operations in Si. Note that the operations in Si are allowed to be repeated, because there
can exist multiple operations of the same type in a cycle.

Let Cost�P�K� represent the minimum number of RPR for execution (processing) of
sequence P with a PRH with capacity K. It follows that the optimal solution is equal to
the minimum possible value of Cost�P�K� for all P’s. We define PRH�i� as the set of
operations existing in PRH when the LIU starts to process cycle i . Since PRH contains no
operations when the application execution starts PRH�0� � /0.

3.2 Modeling and Theoretical Results

In this section, we present some theoretical results that provide a basis for deriving the
optimal algorithm for solving the problem defined in Section 2. First, we consider a special
case in which the given DAG has only one operation per cycle. Such a DAG is a path, and
there is already an optimal method developed for this special case. We extend this method
for all DAGs.

Consider the case when G is a sequence of operations in which an operation has to
wait for its predecessor to run. Hence, the scheduled version of G has only one operation
in each cycle. Therefore, the algorithm is forced to select the nodes according to their
original order for execution. In other words, there is only a unique P, and the optimal cost
would be equal to Cost�P�K�.

The optimal algorithm has to select an operation to overwrite, if there are K operations
existing in PRH at some cycle. This problem, which is known as the offline paging prob-
lem has been optimally solved by Belady [Belady 1966]. It has been proven that the Least
Imminently Used (LIU) operation existing in the cache is the best candidate for overwrit-
ing. This algorithm (LIU) leads to the minimum number of page faults.

THEOREM 3.1. Given a sequence of operations and a PRH to run the operations on,
LIU is an optimal method to execute the operations in the given order and to minimize the
number of RPR.

PROOF. There is a one to one correspondence between the present problem and the
offline paging problem. The LIU is known to be optimal for the latter problem. Hence, it
is also optimal for the present problem [Belady 1966].

Any solution to the general problem proposed in Section 2, will be a permutation of
operations reflecting their execution order. This permutation has to be in the form of
P �� P1�P2 � � �Pn � to meet the data dependency constraint of the problem formulation.
According to Theorem 3.1, executing P using LIU algorithm will lead to the minimum
number of RPR. Therefore, the generalized optimal algorithm only needs to find the opti-
mal sequence of operations among all possible choices for P.

The following lemmas will aid in generating the optimal sequence:

LEMMA 3.2. Adding an operation to any location in a sequence of operations P cannot
decrease Cost�P�K�.

PROOF. Let Q be the new sequence created by adding an operation to P. We can process
P exactly the way LIU processes Q, namely we can load/evict the same operations the
optimal algorithm loads/evicts for processing Q. This processes P has a cost equal to
Cost�Q�K�, i.e., there is at least one way to process P with cost equal to Cost�Q�K�. Hence
Cost�P�K� cannot be greater than Cost�Q�K�.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

10 � Soheil Ghiasi et al.

COROLLARY 3.3. For any sequence of operations Q and any subsequence P of Q:
Cost�Q�K��Cost�P�K�

LEMMA 3.4. Let P �� P1�P2 � � �Pi � � �Pn � be an optimal solution for a given instance
of the problem. Let Qi be a subsequence of Pi which contains all of the operations in Pi

that are in PRH�i�. Similarly, let Ri be a subsequence of Pi that is composed of all of the
operations in Pi but not in PRH�i�. Then, S �� P1�P2 � � �Pi�1�Qi�Ri�Pi�1 � � �Pn � is also
an optimal solution.

PROOF. The cost of T �� P1�P2 � � �Pi�1�Ri�Pi�1 � � �Pn � is equal to S since operations
in Qi are in PRH�i� when LIU starts to process cycle i. Therefore, they will neither in-
cur any RPR nor alter the PRH configuration. On the other hand, T is a subsequence of
P. Therefore, its cost cannot be greater than Cost�P�K� according to Lemma 3.2. There-
fore, Cost�S�K� � Cost�P�K�. On the other hand, P is an optimal solution. Therefore
Cost�S�K� �Cost�P�K� and S also has the optimal cost.

COROLLARY 3.5. There exists an optimal algorithm, which executes operations al-
ready existing in PRH before other nodes at each cycle.

COROLLARY 3.6. There exists an optimal ordering in which nodes of the same type
appear adjacent to each other in each cycle. Therefore, an optimal algorithm can merge
nodes with the same type in each cycle and assume that nodes occurring in each cycle are
distinct, i.e. they have different types.

Aj= m

Ai= m
Ai+1= n

Ak= n

n
m

n

m

Sequence QSequence P

Fig. 6. Converting sequence P to Q will not increase the cost, provided that m and n are not in PRH�i�.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

An Optimal Algorithm for Minimizing Runtime Reconfiguration Delay � 11

LEMMA 3.7. Let P �� A1�A2 � � �Ai�Ai�1 � � �A j � � �Ak � � �Am � be a solution for a given
instance of the problem in which Ai is the ith operation of P. Let A j and Ak be the next
instances of Ai and Ai�1 respectively (Figure 6). If Ai and Ai�1 both belong to the same
cycle c and neither of them is in PRH�c�, then Q�� A1�A2 � � �Ai�1�Ai � � �A j � � �Ak � � �Am �

is also a solution and Cost�P�K��Cost�Q�K�.

PROOF. We prove that Q is a valid solution and can be processed with cost equal to
Cost�P�K�, i.e., the optimal cost of processing Q is not greater than Cost�P�K�.

Since Ai and Ai�1 both belong to the same cycle, swapping them will produce a valid
permutation. Note that relative positions of Ai and Ai�1, compared to other operations in P
and Q, do not change. Therefore, optimal processing of P and Q up to position i, will lead
to the same cost and PRH configuration.

Executing Ai and Ai�1 for both P and Q will incur two RPRs, since neither of them is in
PRH�c�. Loading the ith node will overwrite the same operation for both sequences since
they both have the same PRH configuration after processing the ith node. Loading the
�i�1�th operation, however, might replace different existing modules, since ith operations
in P and Q are different.

Suppose loading Ai�1 overwrites operation x when we are processing P optimally. If
x �� Ai then we can overwrite x with the �i� 1�th operation for Q and have the exact cost
and PRH configuration up to position i� 2. Since the rest of Q is exactly same as P, its
total processing cost will be the same.

However, If x � Ai we replace the ith operation with the �i� 1�th operation when pro-
cessing Q. This implies that PRH configuration is identical for P and Q up to position i�2,
except for one operation. In particular, Q has an operation of type m instead of n (Figure
6). We continue processing Q exactly as LIU would process P up to position j. Note that
RPRs for this span are the same, since type of operations between i� 1 and j cannot be
either m or n.

If there is an operation overwriting n for P, we overwrite m with the same operation for
Q. This will make both cost and PRH configuration up to that point equal. Since the rest
of P and Q are the same, they will have the same cost. However, if such a case does not
happen until position j, P has to increase the cost by one to load m and execute A j, while Q
has m on its PRH and does not issue a RPR. If m overwrites n in PRH of P, both sequences
will have the same PRH configuration while Q has a lower cost up to this point. However,
if m does not overwrite n, we can overwrite the same module with n after executing A j for
Q. Again, we will have the same PRH configuration and processing cost up to this point
while the rest of two sequences are the same. This completes the proof.

3.3 Optimal Algorithm

The theorems proved in the previous section imply that an optimal algorithm can order all
nodes appearing in a cycle, according to their next occurrence. According to Corollary
3.5, at each cycle, the optimal algorithm can execute nodes existing in PRH before others.
furthermore, according to Lemma 3.7, the remaining nodes can be executed according to
such ordering without increasing the cost, as compared with any other possible ordering.

Note that next instance of each operation happens in some S i, and all operations in Si

will come before all operations in S j provided that i � j. Hence, comparing the location
of the next instance is trivial when two operations do not have their next occurrence in
the same cycle. If an operation does not have any future occurrence, it will not be needed

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

12 � Soheil Ghiasi et al.

Cycle i

Cycle k

m

m

m

n

n

n

n

x

x

y

y

m

Cycle j

Fig. 7. Tie breaking at cycle i.

in the future cycles. Therefore its next repetition can be thought to happen at infinity,
and the same approach can be applied. For example in Figure 7, either � y�m�n�x � or
� y�n�m�x � would be an optimal ordering for cycle i.

If two operations in cycle i have their next instances in cycle j (Figure 7), their rela-
tive ordering in cycle j determines their ordering in cycle i. However, the same argument
applies to cycle j and operations’ relative ordering in cycle j depends on their next oc-
currence. To tackle this problem, the ordering can be done in the reverse order. Starting
the ordering process from the last cycle, all nodes occurring in cycle j, have their future
occurrences already ordered. Therefore, they can be ordered deterministically using their
next occurrences.

This procedure can be summarized by the min� RPR algorithm shown in Figure 8.
After the initialization step, in which the next occurrence of a node is determined, nodes
are ordered according to their next instance. Cycles are examined in reverse order in this
step. For determining the optimal execution order of nodes, operations already in the PRH
are executed before other operations in each cycle. The remaining operations are executed
according to their calculated ordering. PRH configuration is then updated for next cycle
by processing the partial sequence generated in the current cycle. Lemma 3.4 and 3.7
guarantee that the min�RPR algorithm will find a valid sequence of operations with the
minimum cost.

The time complexity for algorithm min�RPR is O�n�p�log�p��, where n is the number
of operations and p is the number of distinct operation types appearing in the scheduled
DAG. Note that at each cycle, it takes O�p�log�p�� to sort the nodes, and there are O�n�
cycles in the scheduled DAG. For practical applications, p does not grow with n. In realistic
scenarios, the number of distinct operation types occurring in the application DAG are
fixed. Hence, the algorithm’s runtime is expected to scale linearly with respect to the
application size.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

An Optimal Algorithm for Minimizing Runtime Reconfiguration Delay � 13

Input: scheduledG�V�E�, K.
Output: OptimalSequence

let PRH�0� � /0;
let OptimalSequence � /0;
for all v �V do

Find its next occurrence.
end for
for all cycles traversed in reverse order do

Sort nodes in this cycle according to their next occurrence.
end for
for all cycles do

If any of the operations is already in PRH: append it to the OptimalSequence;
Append the remaining operations to OptimalSequence based on their previously known sorting;
Update PRH configuration by processing the ordered list for this cycle using LIU;

end for
Return OptimalSequence;

Fig. 8. Algorithm min�RPR generates the optimal sequence of reconfigurations

3.4 Interesting Extensions

The problem presented in this paper can be extended to model other realistic application
problems. One extension of the problem assumes that tasks occupy different areas on the
chip. Hence, when overwriting a task, one has to consider not only its next occurrence,
but also the amount of area that the task will free up upon removal from the chip. This
problem occurs in web caching, where pages have different sizes and request frequencies.
A complete discussion along with effective algorithms can be found in [Irani 2002].

An assumption of our paper is that complete information about the application DFG is
known. Many real life applications do not conform to this assumption, instead they are an
online version of the problems. For instance, a web caching policy has almost no informa-
tion about the next page that a user might request. However, probabilistic and/or statistical
information, can be taken advantage of to predict the tasks coming after a particular node.
For example a web caching algorithm might realize that in practice a request for a cartoon
website is not likely to follow a request for a news website. In the online algorithm do-
main, this property is referred to as locality of reference. Researchers in [Borodin et al.
1995] and [Irani et al. 1996] have discussed this problem and presented some strongly
competitive algorithms to tackle it.

In the tracking system (Figure 2) implemented as part of this work, the tasks are revealed
to the system as events happen in a scene. Furthermore, each set of revealed tasks has
to be executed before the next upcoming set. Therefore, we assume that the application
DFG has the scheduling information embedded in it. However, scheduling information is
not available for all applications. Examples include signal processing applications whose
DFGs are often known a priori. For such application domains, a scheduling technique has
to be utilized prior to applying our methodology.

An interesting extension of the current work would address the aforementioned issue,
where there is no scheduling information available, and the precedence constraint is the
only constraint that has to be met to guarantee a valid evaluation of the computation. This
problem also arises in other application domains such as compiler optimization. The prob-
lem can be formally states as: Given a DFG with color information for each node, what is

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

14 � Soheil Ghiasi et al.

the best topological order that minimizes the number of color changes among consecutive
nodes?
This problem assumes a PRH of capacity one (a system consisting of only one fully re-
configurable FPGA), if transferred to reconfigurable computing domain. Researchers in
[Kennedy and McKinley 1993; Darte 2000] have studied this problem when applying loop
fusion to code generation in the area of compiler optimization. By reduction from vertex
cover problem, it has been shown that the general formulation of the problem is NP-Hard.

4. EXPERIMENTAL RESULTS

This section describes the experiments carried out to verify our algorithm that tackles the
reconfiguration sequence problem. Subsection 0?? will describe the experimental setup
and the testbenches. subsection 4.2 will follow by a detailed discussion of the experimental
results and their implications.

4.1 Experimental Setup

Six different signal processing applications running on a partially reconfigurable hard-
ware have been used as testbenches. The applications’ data flow graphs (DFG) have been
manually extracted from their MATLAB implementation, available through the signal pro-
cessing tool box of the software [Mathworks]. The testbenches are standard functions
commonly used in many signal-processing applications, such as digital filter design. Each
DFG has been scheduled using a path-based scheduler [Memik et al. 2001] with two dif-
ferent sets of resource constraints. Table I summarizes the application testbenches. It also
depicts the complexity of each DFG using the number of nodes and the number of cycles in
the scheduled version. Note that in Table I, two testbenches with the same name and differ-
ent indices refer to the same DFG, which is scheduled using different resource constraints.
The examples are Firls1 and Firls2.

Each node in these DFGs is a complex matrix manipulation operation such as matrix
inversion, matrix multiplication or a sine of matrix elements. Since the matrix dimensions
can be very large, these operations can be complex enough to be implemented as separate
blocks on the PRH for realtime applications. Therefore, they agree with the assumptions
that we have made throughout this paper.

We have implemented our proposed technique along with three other algorithms using
the C language. These other three algorithms are Left First (LF), Least Recently Used
(LRU) and Most Recently Used (MRU) policies for ordering nodes at each cycle. The first
algorithm, LF, executes the leftmost first at each cycle. The LRU algorithm gives a higher
priority to least-recently-used nodes at each cycle. The MRU, on the other hand, selects
the most recently used node to execute. The last algorithm is min�RPR, whose optimality
we have proven in section 3.

It is assumed that all the aforementioned applications are to be executed on a PRH.
Extensive simulations using the four mentioned algorithms have been performed with three
different PRH capacities. Moreover a number of randomly generated DFGs have been used
to perform another set of simulations. The next subsection will describe our results and
explain our observations.

4.2 Simulation Results

All the scheduled DFGs are executed using the four different algorithms. These algorithms
differ in the manner in which they order nodes in a cycle. Once the order of the nodes

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

An Optimal Algorithm for Minimizing Runtime Reconfiguration Delay � 15

Scheduled DFG Number o f Nodes Number o f Cycles

Fircls1 63 24
Fircls2 63 22
Firls1 64 32
Firls2 64 20
Firrcos1 79 42
Firrcos2 79 42
Invfreq1 41 25
Invfreq2 41 23
Maxflat1 115 51
Maxflat2 115 42
Spectrum1 55 28
Spectrum2 55 21

Table I. List of DFGs extracted from MATLAB and scheduled for experiments.

at each cycle is determined, the generated sequence of nodes will be passed to the LIU
algorithm [Belady 1966] to measure the number of RPR’s. The number of RPR’s for each
algorithm is reported as its cost.

The results for testbench DFGs are shown in Table II. The table contains the number of
RPR for PRH’s with 1, 2 and 3 module capacity (K). The experimental results show that
the optimal algorithm outperforms the other algorithms significantly. For these DFGs, the
overhead penalty that the other algorithms pay ranges from 2�5% to more than 40%.

K � 1 K � 2 K � 3
LF LRU MRU OPT LF LRU MRU OPT LF LRU MRU OPT

Fircls1 59 60 50 46 36 43 35 32 25 30 24 23
Fircls2 60 57 49 44 38 40 34 33 27 29 25 24
Firls1 53 58 45 39 23 28 26 23 13 14 14 13
Firls2 46 46 34 32 23 27 20 19 13 18 13 13
Firrcos1 56 61 50 45 29 32 28 27 15 15 14 14
Firrcos2 47 47 42 36 27 26 23 22 14 14 12 12
Invfreq1 35 39 30 27 22 23 21 20 14 15 14 14
Invfreq2 32 38 30 27 20 24 21 19 14 15 14 14
Maxflat1 102 109 88 80 53 63 52 46 34 36 32 30
Maxflat2 106 94 69 62 46 49 40 37 27 29 24 24
Spectrum1 42 48 35 34 22 26 19 19 14 16 12 12
Spectrum2 47 44 28 28 21 21 15 15 11 11 9 9

Total 685 701 550 500 360 402 334 312 221 242 207 202
Penalty(%) 37 40.2 10 NA 15.4 28.8 7.1 NA 9.4 19.8 2.5 NA

Table II. Number of required partial reconfigurations for different algorithms on real DFGs.

Figure 9 summarizes the results from Table II. It compares the average performance of
the four context switching policies. As it can be seen in the figure, the optimal algorithm
outperforms the other three policies significantly for the single FPGA systems (K � 1).
However, the performance gap among the different algorithms decreases as the capac-
ity of the reconfigurable hardware (K) is increased. The reason is that the applications

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

16 � Soheil Ghiasi et al.

used for this set of experiments do not contain many varieties of tasks. They mainly use
matrix addition, matrix subtraction and matrix multiplication as the basic comprising op-
erations. Other matrix manipulation operations such as matrix inversion and sine of matrix
elements happen infrequently in the application DFGs. Therefore, different reconfigura-
tion sequence management techniques perform similarly for reconfigurable systems with
capacity three (Figure 9).

Algorithms Performance Comparison on Real Applications Extracted from MATLAB

0

100

200

300

400

500

600

700

800

K=1 K=2 K=3

PRH capacity

o

f
re

c
o

n
fi

g
u

ra
it

o
n

s

LF

LRU

MRU

OPT

Fig. 9. Performance comparison of different context switching policies. Testbenches are signal processing appli-
cations.

Intuitively speaking, increasing the PRH capacity reduces the performance gap between
the different algorithms, because the frequent operations are less likely to be evicted from
the PRH. In the extreme case, if K is equal to the number of different operation types
occurring in DFG, referred to as p in section 3, all algorithms would behave in exactly the
same manner. In this case, all the algorithms would have to pay a unit cost for loading
the first occurrence of each operation type. From that point on, future occurrences of the
operations of the DFG will not incur any cost, because all the operations already exist in
the PRH. As mentioned before, the DFGs listed in Table II do not contain many different
types of operations. Therefore, a small performance penalty is incurred with small values
of K. For instance in the case where K � 3, the performance penalty of MRU is 2�5%.

To further investigate this observation, we have randomly generated 12 DFGs with 26
different operation types. Each of the DFGs has 500�10% nodes. These DFGs are solely
used to show that this small performance gap will occur at greater values of K, when there
are many types of operations in DFG. The output of the aforementioned four algorithms on
this set of testbenches is summarized in Table III. The table reports the number of required
reconfigurations for all of the generated DFGs.

The average number of RPR of the four algorithms on the testbenches is summarized
in Figure 10. The figure demonstrates that the performance gap for all of the algorithms
is significant when K � 4. This supports the previous expectation concerning the relation
of PRH capacity and the algorithms’ performance gap. A significant difference can be

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

An Optimal Algorithm for Minimizing Runtime Reconfiguration Delay � 17

K � 4 K � 8 K � 16
LF LRU MRU OPT LF LRU MRU OPT LF LRU MRU OPT

DFG1 315 320 296 278 209 224 200 192 98 101 91 90
DFG2 305 313 282 273 203 216 192 188 93 100 91 89
DFG3 311 315 285 270 207 219 195 186 89 96 87 86
DFG4 314 319 284 272 207 219 195 189 96 97 89 88
DFG5 330 336 304 290 220 233 205 197 97 103 96 94
DFG6 324 329 295 284 218 232 200 195 95 99 87 86
DFG7 306 311 277 266 202 216 185 181 90 97 85 85
DFG8 306 310 279 267 200 211 184 180 93 96 88 86
DFG9 320 326 291 278 213 222 196 191 92 94 87 85
DGF10 308 316 278 266 208 222 189 184 94 98 90 89
DFG11 312 317 283 271 204 217 189 183 87 94 83 83
DFG12 313 327 285 275 205 227 187 186 87 93 83 83

Average 313.7 319.9 286.6 274.2 208 221.5 193.1 187.7 92.6 97.3 88.1 87
Penalty(%) 14.4 16.7 4.5 NA 10.8 18.0 2.9 NA 6.4 11.9 1.2 NA

Table III. Number of required partial reconfigurations for different algorithms on randomly
generated DFGs.

observed for LF and LRU algorithms even when K � 16. MRU, however, performs close
to the optimal in this case.

An interesting observation is that MRU uses a policy similar to min�RPR to order nodes
at each cycle. At each cycle, MRU gives higher priority to executing nodes that have been
most recently executed. This utilizes the same idea in lemma 3.7 and makes MRU perform
more efficiently than the other two suboptimal algorithms. Therefore, one would expect
MRU to exhibit a performance similar to the optimal algorithm. The experimental results
reported in this section support this observation.

Algorithms Performance Comparison on Randomly Generated DFGs

0

50

100

150

200

250

300

350

K=4 K=8 K=16

PRH Capacity

o

f
R

ec
o

n
fi

g
u

ra
ti

o
n

s

LF

LRU

MRU

OPT

Fig. 10. Performance comparison of different context switching policies. Testbenches are generated randomly.

In summary, all of the experiments on real applications and randomly generated DFGs,

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

18 � Soheil Ghiasi et al.

for different values of K, show that our algorithm outperforms all the other candidates. The
improvement ranges from a few percents to tens of percents depending on the DFG, the
algorithm structure and the capacity of the PRH.

5. CONCLUSIONS AND FUTURE DIRECTIONS

We have presented an efficient optimal algorithm for minimizing the number of required
partial reconfigurations (context switches) when a partially reconfigurable or multi-FPGA
system is used to run an application. A special case of the algorithm also solves the problem
for single non-partially reconfigurable FPGA platforms. Since the total application runtime
is dominated by the partial reconfiguration delay for many classes of applications, this
algorithm can directly minimize the total application runtime.

Future research will focus on extensions with operation area and delay considerations.
Currently, all of the operations are assumed to occupy the same area on the chip and are
assumed to have delays negligible compared to the reconfiguration delay. These assump-
tions, however, might not apply to all applications. We will work towards extending our
results to more complicated models by incorporating module delay and area.

The current version of the algorithm finds the best instantiation sequence for a scheduled
DAG, however it does not provide any information about a good scheduling for the given
application. Obviously, different schedules for the same DAG, incur different reconfigura-
tion costs. Therefore, in the future we would like to investigate the effect of scheduling on
the number of reconfiguration.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for their helpful comments,
which improved the quality of the paper.

REFERENCES

ADARIO, A., ROEHE, E., AND BAMPI, S. 1999. Dynamically reconfigurable architecture for image processor
applications. In Design Automation Conference.

ALTERA. Altera products’ online documentation. In http://www.altera.com.
BELADY, L. 1966. A study of replacement algorithms for virtual-storage computer. IBM Systems Journal 5, 2,

78–101.

BENEDETTI, A. AND PERONA, P. 1998. Real-time 2-d feature detection on a reconfigurable computer. In IEEE
Conference on Computer Vision and Pattern Recognition.

BORODIN, A., IRANI, S., RAGHAVAN, P., AND SCHIEBER, B. 1995. Strongly competitive algorithms for
paging with locality of reference. Journal of Computer and System Science 50, 2, 244–258.

BOZORGZADEH, E., GHIASI, S., TAKAHASHI, A., AND SARRAFZADEH, M. 2003. Optimal integer delay
budgeting on directed acyclic graphs. In Design Automation Conference.

BURNS, J., DONLIN, A., HOGG, J., SINGH, S., AND WIT, M. 1997. A dynamic reconfiguration run-time
system. In IEEE Symposium on Field-Programmable Custom Computing Machines.

CHANG, D. AND MAREK-SADOWSKA, M. 1997. Buffer minimization and time-multiplexed i/o on dynamically
reconfigurable fpgas. In ACM 5th International Symposium on Field-Programmable Gate Arrays. 142–148.

CHEN, C., BOZORGZADEH, E., SRIVASTAVA, A., AND SARRAFZADEH, M. 2002. Budget management with
applications. Algorithmica 34, 3, 261–275.

COMPTON, K. AND HAUCK, S. 2002. Reconfigurable computing: A survey of systems and software. ACM
Computing Surveys 34, 2, 171–210.

DARTE, A. 2000. On the complexity of loop fusion. Parallel Computing 26, 9, 1175–1193.
DEHON, A. 1994. Dpga-coupled microprocessors: Commodity ics for the early 21st century. In IEEE Workshop

on FPGAs for Custom Computing Machines.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

An Optimal Algorithm for Minimizing Runtime Reconfiguration Delay � 19

GHIASI, S., MOON, H., AND SARRAFZADEH, M. 2003a. Collaborative and reconfigurable object tracking. In
International Conference on Engineering of Reconfigurable Systems and Algorithms.

GHIASI, S., MOON, H., AND SARRAFZADEH, M. 2003b. Improving performance and quality thru hardware
reconfiguration: Potentials and adaptive object tracking case study. In Workshop on Embedded Systems for
Real-Time Multimedia (ESTIMedia).

GHIASI, S., MOON, H., AND SARRAFZADEH, M. 2003c. A networked reconfigurable system for collaborative
unsupervised detection of events. In Tehnical Report, Computer Science Dept, UCLA.

GHIASI, S., NGUYEN, K., BOZORGZADEH, E., AND SARRAFZADEH, M. 2003a. On computation and resource
management in an fpga-based computing environment. In International Symposium on Field-Programmable
Gate Arrays (poster).

GHIASI, S., NGUYEN, K., BOZORGZADEH, E., AND SARRAFZADEH, M. 2003b. On computation and resource
management in networked embedded systems. In International Conference on Parallel and Distributed Com-
puting and Systems.

GHIASI, S., NGUYEN, K., AND SARRAFZADEH, M. 2003. Profiling accuracy-latency characteristics of collab-
orative object tracking applications. In International Conference on Parallel and Distributed Computing and
Systems.

HAUSER, J. AND WAWRZYNEK, J. 1997. Garp: A mips processor with a reconfigurable coprocessor. In IEEE
Symposium on Field-Programmable Custom Computing Machines.

HORTA, E., LOCKWOOD, J., TAYLOR, D., AND PARLOUR, D. Dynamic hardware plugins in an fpga with
partial run-time reconfiguration.

IQINVISION. Product manuals and online documentation. In http://www.iqinvision.com.

IRANI, S. 2002. Page replacement with multi-size pages and applications to web caching. Algorithmica 33, 3,
384–409.

IRANI, S., KARLIN, A., AND PHILLIPS, S. 1996. Strongly competitive algorithms for paging with locality of
reference. SIAM Journal on Computing 25, 3, 477–497.

KENNEDY, K. AND MCKINLEY, K. 1993. Typed fusion with applications to parallel and sequential code gen-
eration. In Rice University Dept. of Computer Science Technical Report TR93-208.

KUMAR, R., GHIASI, S., AND SRIVASTAVA, M. 2003. Dynamic adaptation of networked reconfigurable sys-
tems. In Workshop on Software Support for Reconfigurable Systems.

LI, Z., COMPTON, K., AND HAUCK, S. 2000. Configuration caching management techniques for reconfigurable
computing. In IEEE Symposium on FPGAs for Custom Computing Machines. 22–36.

LI, Z. AND HAUCK, S. 2001. Configuration compression for virtex fpgas. In IEEE Symposium on FPGAs for
Custom Computing Machines.

LI, Z. AND HAUCK, S. 2002. Configuration prefetching techniques for partial reconfigurable coprocessor with
relocation and defragmentation. In ACM/SIGDA Symposium on Field-Programmable Gate Arrays.

LIU, H. AND WONG, D. 1998. Network flow based circuit partitioning for time-multiplexed fpgas. In
IEEE/ACM International Conference on Computer-Aided Design. 497–504.

MAESTRE, R., KURDAHI, F., FERNANDEZ, M., HERMIDA, R., BAGHERZADEH, N., AND SINGH, H. 2001.
A framework for reconfigurable computing: Task scheduling and context management. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems 9, 6, 858–873.

MATHWORKS. Matlab product manual and help files. In http://www.mathworks.com.

MEMIK, S. O., BOZORGZADEH, E., KASTNER, R., AND SARRAFZADEH, M. 2001. A super-scheduler for
embedded reconfigurable systems. In International Conference on Computer-Aided Design.

M.SARRAFZADEH, KNOL, D., AND TELLEZ, G. 1997. A delay budgeting algorithm ensuring maximum flexi-
bility in placement. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 1332–
1341.

NAHAPETIAN, A., GHIASI, S., AND SARRAFZADEH, M. 2003. Scheduling on heterogeneous resources with
heterogeneous reconfiguration costs. In International Conference on Parallel and Distributed Computing and
Systems.

NGUYEN, K., YUENG, G., GHIASI, S., AND SARRAFZADEH, M. 2002. A general framework for tracking
objects in a multi-camera environment. In International Workshop on Digital and Computational Video.

SEZER, S., HERON, J., WOODS, R., TURNER, R., AND MARSHALL, A. 1998. Fast partial reconfiguration for
fccms. In IEEE Symposium on Field-Programmable Custom Computing Machines.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

20 � Soheil Ghiasi et al.

TAYLOR, D., TURNER, J., LOCKWOOD, J., AND HORTA, E. 2002. Dynamic hardware plugins (dhp): Exploiting
reconfigurable hardware for high-performance programmable routers. Computer Networks 38, 3, 295–310.

TOMASI, C. AND KANADE, T. 1991. Detection and tracking of point features. In Carnegie Mellon University
Technical Report CMU-CS-91-132.

TRIMBERGER, S. 1998. Scheduling designs into a time-multiplexed fpga. In ACM/SIGDA International Sym-
posium on Field Programmable Gate Arrays. 153–160.

XILINX. Xilinx products’ online documentation. In http://www.xilinx.com.

Received January 2003; July 2003; accepted September 2003

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

