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Abstract— Excess delay that each component of a design can
tolerate under a given timing constraint is referred to as delay
budget. Delay budgeting has been widely exploited to improve
the design quality in VLSI CAD flow. The objective of the delay
budgeting problem investigated in this paper is to maximize the
total delay budget assigned to each node in a directed acyclic
graph under a given timing constraint. Due to discreteness of the
timing of the components in the libraries during design optimiza-
tion flow, discrete solution for delay budgeting is essential. We
present an optimal integer delay budgeting algorithm. We prove
that the problem can be solved optimally in polynomial time. In
addition, we look at different extensions of the delay budgeting
problem, such as maximization of weighted summation of delay
budgets assigned to the nodes with constraints on lower bound
and upper bound on the delay budget allocated to each node.
We prove that for both aforementioned extensions, our algorithm
can produce an optimal integer solution in polynomial time.
Our algorithm is generic and can be applied in different design
tasks at different levels of abstraction. We applied our proposed
optimal delay budgeting algorithm in library mapping during
datapath synthesis on an FPGA platform ,using pre-optimized
cores of FPGA libraries. For each application, we go through
synthesis and place and route stages in order to obtain accurate
results. Our optimal algorithm outperforms ZSA algorithm [4]
in terms of area by ��� on average for all applications. In some
applications, optimal delay budgeting can speedup runtime of
place and route up to � times.

Index Terms— delay budgeting, timing constraint, core-based
design implementations,integer programming.

I. INTRODUCTION

Due to the complexity of system design and high uncertainty
of timing issues and quality metrics, it is not effective to
optimize performance intensively in earlier stages of VLSI
CAD flow. Instead, the optimization should aim at ensuring
correctness and convergence of the design. In order to abstract
away the design complexity, each design is decomposed into
a set of sub-designs.

The essential constraint during the design optimization flow
is the timing constraint. Along with timing, there are other
constraints such as size, power dissipation, etc. In order to
manage the timing constraint, a percentage of the total delay
in a complex design is dedicated to each sub-design. The
sub-designs along the critical paths are the most constrained
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Fig. 1. Delay budgeting problem on a directed acyclic graph.

components during the optimization process in CAD flow.
However, timing constraint is loose on the other sub-designs.
Hence, the delay allocated to each sub-design can be greater
than actual/intrinsic delay of the sub-design. This excess delay
is referred to as delay budget (or timing budget). In other
words, delay budget assignment is the problem of assigning
the upper bound on the delay (or latency) of all the sub-designs
under the given timing constraint. Delay assignment is applied
at all levels of abstraction in VLSI CAD flow.

There is usually a trade-off between timing and some other
design metrics such as size, power consumption, throughput,
etc. Hence, delay budgeting can be exploited through the
whole CAD design flow to improve the other design metrics
such as area, power consumption, etc. The more delay budget
assigned to the design, the more flexibility would be given
for further optimization on other design constraints. From
another point of view, larger upper bound on delay relaxes
the optimization, hence resulting faster compilation and design
time.

Each design is represented by a directed acyclic graph
(DAG), � � �����. There is a delay associated with each
node. Let the timing constraint be the maximum latency (or
delay) at the output nodes. Delay or latency at the output is
computed as the longest path delay in the graph from input to
output. The delay along each path is the total delay associated
with the nodes and/or edges along the path. Under a given
timing constraint, delay budget at each node is the extra delay
the component can tolerate such that no timing constraint
is violated. Similar definition can be applied for the budget
of an edge. Budget of each node/edge is related to timing
slack of the node/edge. If there is any node or an edge with
negative slack, timing constraint is violated. However, due to
dependency between the nodes, the total timing slack of the
nodes/edges is not the total budgets nodes/edges can tolerate.
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In Figure 1, two different methods of delay budgeting (� and
�) are applied on a DAG. Columns “Budget A” and “Budget
B” of the table correspond to excess delay (delay budget)
assigned to each node under timing constraint (�����	) in
approach � and approach �. After applying any of budgeting
� or � on the graph, no other node can tolerate any excess
delay. Total delay budget after budgeting � is �� while the
total delay budget after budgeting � is ��.

In this paper, we study the problem of the assignment of
maximum total budget in a graph. The budgeting problem in a
graph is well studied in theory and practice and is widely used
in today’s industry and research. Delay budgeting has several
applications in design optimization as follows:

� Timing-driven placement and floor planning- Delay bud-
geting during placement and floor planning has been ex-
tensively studied by several researchers [7], [8], [9], [10].
In timing-driven placement, the goal is to optimize the
path delays with fewer numbers of iterations. Delay bud-
get is assigned to edges in the graph. Per-net delay bounds
are considered in order to have a better distribution of
delay budgets in the graph. In [6], [7], placement and
re-budgeting are combined. The optimization problem of
budgeting on the edges in a graph is formulated as a
piece-wise linear objective function and solved using a
modified graph-based Simplex algorithm ([1]).

� Gate/wire sizing and power optimization- Under tim-
ing constraint, gate sizing problem is to find a set of
nodes/edges in the graph such that their physical size
can be reduced by mapping to smaller cell instances with
larger delays from a target library [17], [18]. In general,
delay budgeting can be applied during library mapping
stage. Delay budget at each node can be exploited to
map the node to a smaller cell (or with a lower power
consumption) with a larger delay [10].

� VLSI layout compaction- The main objective is to mini-
mize the physical area of the layout. In addition, minimiz-
ing wirelength cannot be ignored during the optimization.
Concept of budget in such problems is exploited to reduce
wirelength [14]. An important constraint in analog IC
design is the symmetry constraint in layout. With multiple
symmetry constraints, layout compaction is solved using
LP solver[15]. In [16], a graph-based simplex method is
applied to improve the runtime of linear programming
algorithm. LP formulation of compaction is similar to
formulation of the delay budgeting problem. The space
budget is assigned along the x-axis or y-axis to leave a
sufficient space for wiring.

� Exploiting slack in high-level synthesis- There exists
several related work in the area of high-level synthesis
where timing slack of the nodes in the data flow graphs
are considered for better optimization in area and power.
Examples are the algorithms and techniques developed
for area minimization in pipelined datapath [21], power
minimization under timing constraint [19], [20], etc.
In [21], the design entry is a pipelined datapath. In
the problem formulation, there are a set of constraints
regarding the number of registers and depth of pipeline

stages, which are not considered in budgeting on directed
acyclic graphs. All the proposed algorithms are heuristic
sub-optimal algorithms.

There are heuristic algorithms in literature and industry to
solve the delay budgeting problem such as MISA [3] and ZSA
[4] algorithms. In maximum delay budgeting, the objective is
to maximize the value of an expression, which is a function of
budgets associated with the nodes/edges in a graph. The most
popular and efficient algorithm for delay budgeting is zero-
slack algorithm (ZSA)[4], [5]. The solution is not optimal
and can be far away from optimal result. MISA algorithm
proposed in [3] finds the total budget in the graph with a
more sophisticated and intuitive technique using maximum
independent set in the graph. MISA algorithm finds a potential
slack, which correlates strongly with the total budget in the
graph. However, both ZSA and MISA algorithms cannot solve
the budgeting problem optimally.

In this paper, we focus on theoretical study of integer
delay budgeting problem on the nodes in a directed acyclic
graph. Objective function in our delay budgeting problem is
to maximize the total delay budget of the nodes under a given
timing constraint. The general problem can be formulated as
a linear programming problem. However, the solution can
have fractional value and need to be normalized. According
to the following reasons optimal integer solution is preferred:
First, the space/timing budget is mostly a discrete value
especially at higher levels of abstraction. For example, delay
on interconnect is discrete in grid-based global routing. At
datapath level, latency of each component is given in terms
of number of clock cycles under a given frequency. Delay of
gates can be scaled to integer values. In VLSI compaction, grid
constraints require integer solution [12]. Secondly, the budget
at each node is mostly used to map the sub-design to another
component in a target library which inherently is discrete
rather than continuous. Hence, in the formulation of the delay
budgeting problem, we assume the variables associated with
the budgets are all integer. ZSA and MISA algorithms can be
modified to generate integer budgets, but with no guarantee
on the optimality of the solutions.

The complexity of integer delay budgeting problem on
DAGs has been an open problem since budgeting problem was
first formulated by Wong, et. al. in [11]. Applying rounding
techniques to LP optimal solution of budgeting problem cannot
preserve the optimality of the integer solution. In this paper,
we propose our novel efficient graph-based transformation
technique to produce optimal integer solution from the optimal
LP solution. We prove that integer budgeting problem can
be solved optimally by transformation from LP relaxation
solution to an integer solution in polynomial time (
�� ��).
The preliminary version of this work is published in DAC’03.
In this paper, we describe the detailed analysis of our delay
budgeting algorithm. In addition, we look at different exten-
sions of the delay budgeting problem, such as maximization of
weighted summation of delay budgets assigned to the nodes
and additional constraints on lower bound and upper bound
on the delay budget allocated to each node. We prove that in
both aforementioned extensions, our algorithm can produce an
optimal integer solution in polynomial time.
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We apply delay budgeting technique in library mapping
stage. Mapping sub-designs to already existing pre-optimized
and synthesized components is an unavoidable scheme to
abstract away the complexity of the given design to be opti-
mized. For faster compilation and exploiting the architectural
features of FPGAs, FPGA vendors provide a relatively rich
IP (Intellectual Property) library of arithmetic functions and
application-specific operations such as MAC, FFT, and DCT
in DSP domain. Along with this growth, design automation
and synthesis flows need to be able to exploit the existing
libraries with a better design planning. We apply our method-
ology and technique for timing budget management during
library mapping at datapath level. The datapath of a given
application at behavioral level is mapped to the components in
a library customized for the target programmable architecture
(e.g. FPGA libraries). We applied timing budgeting algorithm
in selecting the components of the library and mapping to
different components of the application such that the design
complexity is reduced without violation of timing constraints.
Using IP library of FPGAs, we show that the delay budgeting
resolves the trade-off between latency of a datapath and area
of hardware resources. Our empirical results show that delay
budgeting yields a solution with smaller area and faster design
time compared to the case in which no delay budgeting is
applied. We compare our proposed optimal delay budgeting
algorithm with ZSA, the well-known sub-optimal heuristic
algorithm. The decrease in complexity of datapath improves
the runtime of place and route stage, which is the most
time-consuming stage in mapping an application on FPGA
platforms. Our experimental results show the effectiveness of
budgeting in library mapping.

The rest of the paper is organized as follows: In Section
II, the problem is formally defined. In Section III, the budget
re-assignment is proposed. Applying budget re-assignment on
LP solution of budgeting problem is described in Section IV
and it is proven that the final solution is integer and optimal.
In Section V, two different extensions to the formulation of
integer delay budgeting problem are presented on which our
algorithm can be applied to produce optimal integer solution.
In Section VI, the experimental results on trade-off between
latency and area by budgeting technique in FPGA platform
are presented. In Section VII, conclusions and some possible
future directions are outlined.

II. LP FORMULATION OF DELAY BUDGETING PROBLEM

In a directed graph � � �����, edge ��� is incident to node
�� and incident from node ��. ����� is the set of incoming
edges to node ��. ����� is the set of outgoing edges from
node ��. Primary inputs (PIs) are the nodes with no incoming
edges. Primary outputs (POs) are the nodes with no outgoing
edges. Associated with each node ��, there is a delay variable
� � �. Assume node �� drives node �� , i.e., there is an edge
��� in graph �. If data or signal at the output of node � � is
ready at time �, the output of node �� is ready at least at time
�� �. Let �� be the extra potential delay assigned to node �� .
Hence, the output at �� will not be ready before �� � � �� .

arrival time of ��: Arrival time at node �� is defined as the
maximum total path delay among all the paths from PI nodes

to node ��. If input to primary input of graph is ready at time
�, the output of node �� is ready at ��. �� is computed as

�� � 	
�
��������

�� � �� � ���� (1)

Arrival time at a primary output is maximum summation of
the delay budget and the intrinsic delay associated with each
node along the path from primary input to primary output.
Arrival time at each primary output cannot exceed a fixed
value, � . This is referred to as required time at primary
outputs. Although requited time at primary outputs and arrival
time at primary inputs can be different, for simplicity, we
assume that arrival time at each primary input is zero and
required time at primary outputs is � .

Delay Budgeting Formulation: On a directed acyclic graph
� � ����� with delay � associated with each node �� and
required time � :

���
�

����
�� (2)

�� � �� � �� � � ���� � � (3)

�� � � ��� � �
 (4)

�� � � ��� � �� (5)

�� ��� � � �� ��� � � � (6)

General LP formulation of budgeting problem is
����

��� �
��� ����� � ��. Constraint matrix � corresponding

to abovementioned LP formulation of budgeting problem
is as follows. Variable �� corresponds to �� if � � � � �
and corresponds to �� if � � � � ��. Each row index
corresponds to an edge in graph �. Assume � � �� ������.
For � � � � �, ��� � � if edge �� is incident from node �
and ��� � �� if edge � is incident to node � (��� is incoming
edge to node ��). Otherwise, it is set to zero. For � � � � ��,
��� � � is edge � is incident to node � � �.

In the area of linear programming theory, there has been a
deep study on the linear programs that have optimal integer so-
lutions. In particular, it is the case for network flow problems.
If matrix � is totally unimodular, the linear programming
relaxation can solve the ILP, proposed by Heller and Tompkins
[2].

Totally Unimodular Matrix (TU): A matrix � is totally
unimodular (TU) if every square sub-matrix of � has deter-
minant ��, ��, or � [2].

Lemma 1: If matrix � is �� , the linear programming
relaxation can solve the ILP [2].

A set of sufficient conditions for matrix � � �������� to
be totally unimodular is proposed by Heller and Tompkins [2]
as follows:

Lemma 2: A matrix ���� � �������� is TU if

� ��� � ������� ��, ���� � � � � � �� � � � � �.
� Each column contains at most two non-zero coefficients,

i.e.
��

��� ���� � � ��.
� There exists a partition ������� of the set � of

rows such that each column � containing two nonzero
coefficients satisfies

�
����

��� �
�

����
��� � � [2].
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By total unimodularity (TU) of coefficient matrix every ex-
treme point of LP relaxation is integral regardless of objective
function.

Theorem 1: The linear programming relaxation of integer
budgeting problem gives optimal integer solution if the input
graph is a directed path.

The aforementioned sufficient condition does not necessar-
ily hold for general directed acyclic graph other than a directed
path. In the following sections, we prove that the integral
budgeting problem can be solved optimally in polynomial
time, using the solution of the linear programming relaxation
problem.

III. DELAY BUDGET RE-ASSIGNMENT

In this section, we first define the maximal budgeting on
a given directed graph � � ����� with required time � at
primary outputs. Arrival time of any node cannot exceed � .
Otherwise the dependency constraints in Equation 6 are not
satisfied. Some basic definitions used in this section are as
follow:

Definitions:required time at ��, ��, is computed as
	������������ � �� � ����. �� � � for �� � �
. � is
required time at primary outputs in graph �. Slack at node � �
is �� � �����. The value of a-slack for edge ��� is computed
as �	�� � ��� � �� � ���� � ��, ��� � �. Similarly, r-slack
of ��� , is computed as �
�� � ��� � �� � ���� � ��, ��� � �.
Edge ��� is said to be 	����	�� if the a-slack value and r-slack
value associated with edge ��� are zero. A path in a graph that
includes only critical edges is called critical path.In a directed
graph �, if the slack of the nodes at the two ends of the edge
��� are equal, i.e., �� � �� , then �	�� � �
�� . ��� is used to
refer to this value as the slack of edge ��� .

In any budgeting on graph �, slack of each node/edge must
be non-negative. This is referred to as feasibility in graph. A
graph with budgeting � is not feasible if the timing slack of
any node/edge is negative.

Maximal Budgeting Graph (����): Let �� be the set
of delay budgets assigned to the nodes in graph �. �� is a
feasible solution to budgeting problem on a directed acyclic
graph �. Feasible solution �� is called maximal budgeting
if no more budget can be given to any node while the budget
of any other node does not decrease.

In graph �, if the slack of each node is zero, the corre-
sponding budgeting �� is a maximal budgeting. In a maximal
budgeting, all the non-critical edges have the same a-slack and
r-slack values. The term ��� is used to refer to the slack of
non-critical edge ��� .

The maximum solution �
�

is also a maximal solution.
Maximal budgeting solution �� can be obtained by applying
different algorithms such as MISA algorithm [3] and ZSA
algorithm [4].

Lemma 3: In a maximal budgeting ������, each node
(except PIs and POs) has at least one critical incoming edge
and at least one critical outgoing edge.

Proof: By the way of contradiction, we assume that
there is no critical outgoing edge from � �. �� is not a primary
output. There has to exist at least one outgoing edge from

Maximal Solution
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Fig. 2. Conservative budget re-assignment.

��. If there are  non-critical outgoing edges from node � �
then ��� , � � �� ����  is not zero. The slack of each node
is zero. Therefore, ��������, � � �� ���  can be added to
the budget of node �� while all the arrival time and required
time constraints for the whole graph are met. Hence, more
delay budgets is obtained, and this contradicts the definition
of maximal budgeting. Similar argument can be applied to
prove that at least one incoming edge to each node must be
critical.

Now we propose a budget re-assignment method on a given
maximal budgeting.

Feasible Budget Re-assignment on (����): In a graph
� with maximal budgeting solution ��, the budgets of the
nodes are changed such that the new budgeting � �

� is still a
maximal budgeting ���� �

��. Budget re-assignment on graph
� transforms the budgeting from solution �� to ��

�. Feasible
!-budget re-assignment on (����) is a feasible budget re-
assignment in which the change of budget in each node is
either �! or �.

In Figure 2, example of feasible budget re assignment on
a DAG is shown. After feasible budget re-assignment, the
budgeting is maximal and feasible.

Assume that in a re-assignment of budget of ��!� �� at each
node in graph �, the total amount of change in the budget of
the nodes along each critical path is zero. In this case, arrival
time at each node �� is changed by  �!. Since budget of each
node changes either ! or �!, the change of budget along
each critical path from PI to node �� is multiple of !, say
 �!,  � � �. Theorem 2 presents two sufficient conditions for
feasible !-budget re-assignment.

Theorem 2: The re-assignment of budget of ����!� at
each node in graph ������ is a feasible !-budget re-
assignment if

� the total amount of change in the budget of the nodes
along each critical path from PI to PO is zero, and

� for each �-edge ���, ��� � � � �  �� 	!, where edge ��� is
critical.  �! and  �! are the amount of change in total
budget along any critical path from PI to node � � and �� ,
respectively.
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Fig. 3. Two sufficient conditions for feasible �-budget re-assignment.

Proof: We prove that after the budget re-assignment
of ��!� ��, �����

�� is a feasible maximal budgeting. ��
is arrival time at node �� before budget re-assignment. By
induction, it can be shown that arrival time at �� is �� �  �!
after budget re-assignment.  �! is total budget re-assignment
along the critical paths from PI to node �� . As shown in Figure
3(a), edges ��� and ��� are both critical in graph ������.
After budget re-assignment, arrival time at node � � is ��� �!.
Arrival time at node �� is �� �  �!. Since along the critical
path from PI to PO through edge � �� total change in budget is
zero, the amount of change in budget along any critical path
from node �� until PO is � �!. Since the critical path from PI
through nodes �� and �� until PO is critical, total budget along
this path is zero, that is  �!�!� �!
! � �. Hence  � �  �.
Non-critical edges in the graph need to be considered. There is
a slack of � associated with each non-critical edge. In Figure
3(b), edge ��� is a non-critical edge and ��� � �� � ��. After
budget re-assignment edge ��� has to remain critical. Based
on the second condition in the Theorem � �� � � � �  �� 	 !,
arrival time �� cannot become greater than arrival time �� .
Hence, edge ��� remains critical.

Now assume node �� is a primary output. Arrival time at
node �� is �� �  �!.  �! is the total change of budget along
the critical paths from PIs to node PO. Due to first condition
 � is zero. Hence, arrival time at node �� does not change after
budget re-assignment, i.e. feasibility is satisfied (�� � � ).

The arrival time at node �� is ��� �!. Similar argument can
be applied to show that the amount of change in the required
time at node �� is �� �  ��!, where  ��! is the amount of
change in the total budget along the critical paths from primary
outputs to node �. Slack of node �� after budget change is
�� � �� �  ��! �  �!. We have �� � �� � �� � � since �� is
a maximal budgeting.  �! �  ��! is equivalent to total change
of budget along the critical path through node � � , which is
zero. Hence slack of node �� after budget change is still zero.
Therefore, we have a feasible maximal budgeting.

According to Lemma 2, if the budget of ! is re-assigned
among the nodes under the aforementioned conditions, another
maximal solution on graph � is obtained. We show that the
budget exchange between two sub-graphs under child-parent
relation satisfies the sufficient conditions, hence a feasible !-
budget re-assignment in graph ������.

Parent/Child Relation: In a directed graph �, edge � �� � �

and ��� is critical . Node �� is child of node ��. 	���� is used to
refer to as a child of node ��. Node �� is said to be the parent
of node �� . "���� is used to refer to as a parent of node �� . If
�� and �� have common child, �� �� �� . If �� �� ����� �� ��,
then �� ��

� ��. ��
� is an equivalent relation, called parent

relation. If �� and �� have common parent, �� � �� . If �� �

����� � ��, then �� ��
 ��. Similar to parent relation, ��

 ,
called child relation, is an equivalent relation.

Lemma 4: �� ��
 �� , iff "���� ��

� "����.
Proof: If �� ��

 �� , there exists node �� such that �� � ��
and �� ��

 ��. Hence, nodes �� and �� share a parent, i.e.,
"���� �� "����. According to transitive property in child and
parent relation, it can be shown that "���� ��

� "����.
Lemma 5: In ������, if �� ��

� �� , arrival time at nodes ��
and �� are equal; �� � �� .

Proof: Nodes �� �� �� . Let �� be the child node of nodes
�� and �� . Since �� is a parent of node ��, �� � ��� ��� �.
Similarly �� is equal to �� � �� � �. Hence, �� � �� . If ��
and �� do not share a common child, due to transitive property
in equivalent parent relation, �� �� �� �� ����� �� �� , arrival
time at �� is equal to arrival time at �� .

According to Lemma 3, each node is incident to/from a
critical edge. Consider node �� in graph � � �����. Let
#����� � ��� ��� ��

� ��� be a parent set. Let �� be a child
node of ��. #���� � ��� ��� ��

 ���. According to Lemma
4, sets #����� and #���� are a pair of sets such that all the
child nodes of the nodes in #� are in #. Similarly, all the
parent nodes of the nodes in set # are in #�. The sets #�����
and #���� are called parent-child set (#�� #) associated with
node ��. Parent-child set �#�� #� is shown in Figure 4. The
followings are the propositions regarding the parent-child set
in ������.

Lemma 6: If nodes �� ��
� �� , there is no directed critical

path between �� and �� if ��� � �� � � �. Similarly, if nodes
�� ��

 �� , there is no directed critical path between �� and ��
if ��� � �� � � �.

Proof: Since �� ��
� �� , by Lemma 5, �� � �� . If there is

a critical path between �� and �� , then �� cannot be equal to ��
according to definition of arrival time and critical edges with
assumption of � � �. Hence there cannot exist any critical
path between any two nodes in the parent set.

Lemma 7: If nodes �� ��
 �� , there is no directed critical

path between �� and �� if ��� � �� � � �.
Proof: Assume that there is a critical path ��� �

���� ������ ��� connecting nodes �� and �� . Since �� is "����,
�� belongs to the parent set according to Lemma 6. Hence
"���� ��

� ��. That is �� � ������. However, since there is
path between �� and �� and delay of each node is non-zero,
������ � ��� � ��� . Therefore, by the way of contradiction,
the path ��� cannot be critical.

Lemma 8: In a parent-child set �#�� #�, #� and # do not
intersect if ��� � �� � � �.

Proof: Assume that the two sets intersect at node ��.
Since node �� is in set #�, node �� has at least a child in set
#, say node ��. Therefore, there is an edge from node �� to
node �� both belonging to #. This contradicts Lemma 7.

Let !-budget exchange in parent-child set �#�� #� be
decreasing the budget of the nodes in #� by ! and increasing



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. XX, MONTH 2004 6

2

4

ε-edge

critical edge

p

S Scp

1

c(S  ,S  )

7

8

6

5

3

Fig. 4. �-edges with respect to parent-child set (��� ���.

budget of nodes in # by !, ! � �.

Lemma 9: In a given �#�� #� in ������, if ! � ��������,
where ��� is the slack of the non-critical �-edge with �� � #
and �� $� �#�� #�� (incoming �-edges to #), the !-budget
exchange is a feasible !-budget re-assignment in ������.

Proof: We show that the sufficient conditions in Theorem
2 are satisfied during budget exchange between a parent-child
set. Since there is no critical path between any two nodes
in # or #�, the critical paths in # � #� consist of two
nodes, one in parent set and the other in child set. At each
parent node ��, the amount of change in arrival time is �!.
At each child node �� , the amount of change in arrival time
is zero. Hence, along each critical path in this subgraph, the
total amount of change in budget is zero. In addition, there
is no change in budget or arrival time at any other nodes
outside the parent-child set in graph �. Therefore the first
sufficient condition in Theorem 2 is satisfied. The �-edges can
be categorized based on where the two ends of the edges are
located. Figure 4 shows all such possible edges with respect
to a given parent-child set. At each child node � � , the amount
of change in arrival time is zero. Therefore, arrival time at a
child node and hence the criticality of the edges connecting
the child nodes to the rest of the graph remains unchanged.
Similarly, the criticality of incoming edges to parent nodes are
unchanged after budget exchange, i.e., �-edges � and � remains
non-critical. The inequality �� � ! is satisfied as well. For �-
edge �, the inequality �� � ! is held since ! � � for all
incoming �-edges to child set. There cannot exist any �-edges
between two parent nodes, two child nodes, or between a child
and a parent node. Hence the second sufficient condition in

Theorem 2 is satisfied.
Similarly, the budget can be increased by ! in parent set

and reduced by ! in child set. This is called ��!�-budget
exchange in �#�� #�. Lemma 9 can be adjusted to be applied
for ��!�-budget exchange on parent-child set as well. In this
paper, we apply !-budget exchange on a given parent-child
set. In the next section, we apply !-budget re-assignment on
LP solution which is a maximal budgeting on � in order to
obtain integer solution.

IV. INTEGER SOLUTION TO DELAY BUDGETING PROBLEM

������ is the optimal solution to linear programming
relaxation of integer budgeting problem. � � is also a max-
imal budgeting. Hence, budget re-assignment is applicable
to ������. In addition, since �� is the optimal solution,
�� � �� for any maximal budgeting ��. We define ! in !-
budget re-assignment on graph ���� �� such that the budget
of all the nodes become integer. We show that during this
transformation from optimal solution to integer solution �� ���,
the objective value of new solution is equal to �� ��.

Integral sequence: A sequence of nodes �#� ��
��� ��� ���� �� � along a critical path in ������ is called an
integral sequence if ��� �� � �� and ��� ���� ���� $� �.

Lemma 10: The total budget of the nodes along any integral
sequence in ������ is integer if �� � � �.

Proof: Since the arrival time of the nodes at the two ends
of an integral sequence �#� is integer,

�
�����

�� � ��� �
��. Since each � is integer,

�
�����

�� � ��.
Corollary 1: The total budgeting on any critical path from

PI (Primary Input) to PO (Primary Output) is integral.
Based on Lemma 10, each node with fractional budget

belongs to an integral sequence. Hence, within an integral
sequence, it is sufficient to re-assign the fractional budgets
only on the nodes in an integral sequence. On the other hand,
in graph �, there are several integral sequences connected
to each other. In re-assigning the budget between the nodes,
the required conditions in Theorem 2 have to be satisfied in
all those sequences. Hence, the goal is to apply budget re-
assignment of the fractional budgets on the nodes in graph
in ������ to obtain integer solution. Since the budget re-
assignment needs to be applied between the nodes with
fractional budget, we reduce the graph ���� �� to graph �� ,
the fractional adjacency graph defined as follows:

Fractional Adjacency Graph: Graph �� is the fractional
adjacency graph corresponding to a given graph ���� ��. The
nodes in graph �� are a subset of nodes in graph � that
have non-integer (fractional) budgets. A critical edge between
two nodes in graph �� represents the existence of a directed
critical path between two nodes in graph � such that there is
no fractional budget along the path and arrival time of each
node along the path is not integer. There is a non-critical �-
edge between two nodes �� and �� , if there is no critical path
between the two nodes but at least a path with �-edges along
the path. Among all different paths between the two nodes,
the minimum of total � value of the �-edges along each path
is the � value of the �-edge in graph �� .

Two adjacent nodes �� and �� in graph �� represents the
two immediate nodes on a directed critical path in graph



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. XX, MONTH 2004 7

2.2

0.4

0.2 3.2

0.6

1.8

0.8

0.7

0.2

1.81.8

1.5

1.8

2.2

0.4

1

0.2

1

3.2

2

11

0.6

1.8

1

1

0.8

0.7

0.2

1.81.8

1.5

1.8

1

=0.2

=0.2

=0.2

=0.6

=0.7

Fig. 5. �����

��
� and corresponding Fractional Adjacency Graph �� .
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Fig. 6. In graph �� , nodes �� and �� share a child (node ��) while there
is a directed path from �� to �� .

� with fractional budget, both belonging to same integral
sequence. Figure 5 demonstrates a budgeted DAG ���� �

�� �
and the corresponding fractional adjacency graph.
!-budget re-assignment is applied on graph �� such that

the budget of all the nodes become integer. Only fractional
value of budgets needs to be re-assigned in order to obtain
integer solution. Hence ! is a fractional value less than unit.
As described in previous section, feasible budget-reassignment
can be applied on a parent-child set on graph �. Similar
argument can be applied to graph �� as follows:

Lemma 11: In graph �� , if node �� ��
� �� , the fractional

values of arrival time at both nodes are equal, i.e., � �� ���� �
�� � ��� �.

Proof: Assume �� �� �� . Let �� be the child node of
both nodes �� and �� . Arrival time at node �� is equal to
fractional value of summation of fractional value of arrival
time at node �� and fractional value of budget at node ��.
Budget of the nodes along the critical path from � � to �� in
graph � are all integer. Similarly, arrival time at node �� is
equal to fractional value of summation of fractional value of
arrival time at node �� and fractional value of budget at node
��. Hence, �� � ���� � �� � ��� �. If �� and �� do not share a
child node, due to transitivity in parent relation, we still have
�� � ���� � �� � ��� �.

Lemma 12: If nodes �� ��
� �� in graph �� and there is a

directed critical path between nodes �� and �� in graph �,
there has to exist at least one node on the path between the
nodes �� and �� in graph �.

Proof: Assume there is a path between node �� and ��
in graph �. Let node �� be the child node of nodes �� and
�� . There are two paths from node �� to ��, one is the direct
edge ��� and the other is the path ���� ������ � ���. See Figure
6. The fractional value at the node �� from the first path is
�� � ���� and from the other path is �� � ���� � �� � ��� �.
According to Lemma 11, these two values need to be equal.
This is possible iff �� � ��� � � � which contradicts that ��� �
���� �. Therefore there has to exit at least one node say � �

i j k i jm

t

l l

k

t

P

C

Fig. 7. In graph �� , �� ��

� �� while there is a directed path from �� to �� .

Parent Set Sp

Child Set Sc

(Sp, Sc)

Fig. 8. Parent-Child Set (��,��) in graph �� of graph �.

on the path from �� to �� such that �� � ���� � �� � ���� � �.
Similarly if the two nodes �� and �� do not have a same child,
we can prove that the total fractional value on the path from
�� to �� including �� needs to be integral, i.e. there has to
exist at least one node on the path between �� and �� . Figure
7 shows such a case.

The set #����� � ����� �� ��� is the set of nodes in graph
�� such that each node shares at least a common child with
another node in #����. The set #���� � ����� � ��� is the
set of nodes in which each node in the set shares a parent at
least with one another node in the set. In Figure 8, a parent-
child set in �� is shown.

According to Lemma 12, Lemma lemma:int is derived.
Lemma 13: Set #����� and #���� do not intersect (��� �

���� �).
Proof: Assume that the two sets intersect, i.e., there is

a node �� belonging to both sets. Since node �� is in set
#����, it has at least one parent, say �� � #�����. Therefore
there is an edge from node �� to node ���. On the other hand,
�� � #�����. That is there is a direct edge between two nodes
��� �� � #�����. This contradicts Lemma 12.

On a given parent-child set in graph �� , we apply !-budget
exchange. If fractional budget in graph � � are re-assigned by
budget re-assignment on parent-child set, the fractional budget
is removed from each parent node and re-assigned to one of
its successor in the graph. Hence, the fractional budgets are re-
assigned from PIs to POs, in one direction within an integral
sequence. There are �-edges in a given graph �� . In order to
have a feasible budget re-assignment on parent-child set, we
show that the sufficient conditions outlined in Theorem 2 are
satisfied in a given graph �� as well.

Lemma 14: !-budget exchange on a parent-child set in
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Fig. 9. �-edge incident to a child node in ���� ���� .

graph �� is a feasible !-budget re-assignment if ! �
������� � %�, where ��� is �-edge. ��� is an incoming edge to
child set. %� is the fractional value at parent nodes.

Proof: In Figure 8, a set of parent-child set is shown in
a given graph �� . In a budget exchange on the set, there is
an alternative �! budget exchange along each critical edge
in graph �.  �! corresponds to total change of budget along
the critical paths from �� to node ��. At each child node
��, the corresponding  � is zero. At each parent node ��, the
corresponding  � � �� when budget in parent set is decreased
by !. Hence the first sufficient condition in Theorem 2 is
satisfied. We prove that as long as ! � �, the budget exchange
is a feasible !-budget re-assignment on a given graph �. There
are � possible type of �-edges with respect to �#�� #�. At
each edge, we check the inequality defined in Theorem 2 after
budget exchange. �-edges � and � will not change since the
arrival time at the child set and incoming edges to parent
set are not affected by budget exchange. At �-edge �, the
inequality � � ��� � ��! is ��&� for any ! � �. At �-
edge �, the inequality � � ��� � �����! � � is ��&� for
any ! � �. At �-edge �, the slack will not change since the
arrival time at child node does not change. At �-edge �, the
inequality � � ��������! is ��&� for any ! � �. At �-edges
� and �, the arrival time at the nodes incident from �-edges
do not change. � � ��� �����! is satisfied as well. Therefore
both sufficient conditions in Theorem 2 are satisfied.

If ! is less than the fractional value of budget in parent
nodes, after budget re-assignment, arrival time at parent node
is reduced by !. Hence, if ! is equal to fractional value of
the arrival time, arrival time at each parent node is an integer
value after budget re-assignment. On the other hand, ! need to
be at most as large as the minimum available budget in parent
nodes.

In Figure 9, a �-edge incident to a child node is shown. Let
%� and %� be the fractional value of arrival time at nodes � �
and �� , respectively. In !-budget re-assignment, if ! � % � ,
for � � �, � � ! is True. Assume � � �. The value of � is
computed as follows:

��� �

�
%� � %� if %� � %�
� � %� � %� if %� � %�

(7)

When %� � %� , � � %�. Since ! � %�, � � !. Hence the
inequality of Theorem 2 is held. Hence ! value in !-budget re-
assignment can be computed independent of �-edges incident
to child set as follows:

Lemma 15: Let �#�� #� be a parent-child set with %�, the
fractional value at the arrival time at the parent nodes. Assume
that %� is the smallest fractional value of arrival time at all
the nodes in graph �� . !-budget exchange of ! � %� from
parent nodes to child nodes is a feasible budget re-assignment.

Proof: In order to be able to re-assign budget of ! from
parent nodes, each parent node must have at least budget of
!, i.e. ��� � #�� �� � !. Assume that there is a node �� � #�
such that �� � !, hence �� � %�. In this case, arrival time at
parent of node �� is %���� � %� and this contradicts the fact
that fractional value of arrival time at no other nodes other than
parent nodes can be as small as %�. Hence each �� � !. Next,
consider �-edges connected to �#�� #�. According to Lemma
14, only two types of �-edges, �-edges � and � as shown in
Figure 4 are under the condition that � value of such edges
have to be larger than ! for edges with � � �. According to
Equation 7, since parent set has the smallest fractional value
(%� � %� ), ! � �. This ends the proof that the budget re-
assignment is feasible.

After budget re-assignment on parent-child set �#�� #�,
arrival time at each parent node becomes integer with ! � %�.
If budget of any node in parent set or child set becomes integer,
the node is removed from �� . In this budget re-assignment,
an integer budget of any node in graph � never becomes
fractional. Hence no node is added to graph �� after budget
re-assignment. Since arrival time at a parent node becomes
integer, all the edges connecting the parent nodes to the child
nodes are removed from graph �� . Similarly no edge is added
to graph �� after budget re-assignment.

An important fact is that after budget re-assignment, the
parent nodes do not have any outgoing edges in updated graph
�� . Hence, the corresponding nodes cannot become parent
nodes anymore. Therefore, we have the following lemma:

Lemma 16: Each node in graph �� can only be once in a
parent set during sequential parent-child budget re-assignment.

Note that after each !-budget exchanges, the outgoing edges
of parent nodes are removed. No more outgoing edges are
added to parent nodes in �� since arrival time at parent nodes
are integer. On the other hand, integer budget of a node never
becomes fractional after any !-budget exchange. Since each
node can only once appear in a parent set, the number of
parent-child which can be generated followed by budget re-
assignment on each set is 
��� ��, where � is set of nodes in
graph �.

Theorem 3: Sequentially generating parent-child set fol-
lowed by !-budget re-assignment in the order of increasing
fractional value of arrival time at parent nodes of the parent-
sets with ! � %�, �� �  in 
��� �� iterations.

If graph �� � , the budget of all the nodes in graph �
are integer. Hence, Theorem 3 shows that a maximal integer
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Algorithm: Integer Delay Budgeting 

Input: (G,B*LP)

Output: (G, B*Z)

begin

1.Construct Gf from (G,B*)

2.while Gf

3. Start from a parent-child set with p= min

4. Apply budget re-assignment, = p

5. Update Gf and (G,BZ)

end

Fig. 10. Pseudo-code for delay budget re-assignment on �����
��

�.

solution can be obtained from LP solution using !-budget
exchange on graph �� . The following lemma proves that
during budget re-assignment optimality is preserved.

Lemma 17: In graph �� corresponding to ������,
�#������ � �#����� if ��� � �� .

Proof: Assume that there are more number of nodes
in one of the sets, say #����. After budget re-assignment
of minimum budget, say '���, the total budget changes by
�#����� 	'�����#������ 	'���. This contradicts the optimality
of budget in ������.

Theorem 4: In any feasible !-budget re-assignment on
parent-child set

(#�� #) in graph ������, the total budget does not change.

Hence after applying the budget re-assignment on ���� ��,
the solution is still optimum. The pseudo-code of budget re-
assignment to produce optimal integer solution is shown in
Figure 10.

Each parent-child set construction takes 
�����, budget re-
assignment takes 
�����. Updating graph �� takes 
�����.
This repeats 
��� �� times. However, by amortized analysis we
see that the complexity of 
����� during the process applies
to a set of edges during the current iteration and then those
edges are removed from graph �� before the next budget re-
assignment. Hence the total complexity is 
����� � 
��� ���.
The result is transformation from solution � � to a new solution
��� ������ in which integer budget is assigned to each node
while objective value does not change, i.e., �� ��.

Theorem 5: The solution to linear programming relaxation
problem of integer delay budgeting problem on graph � �
����� can be transformed to equivalent integer solution in
polynomial time �
��� ��� with same objective value.

V. EXTENSION OF INTEGER DELAY BUDGETING PROBLEM

We proved that the maximum integer delay budgeting prob-
lem as formulated in Section II, is polynomially solvable. In
this formulation, there are two major simplifications. First, the
objective function is simply a summation of the delay budgets
on the nodes. This means that the objective is independent
on the type of the operation on each node. Depending on the
type and complexity of the operation at each node, the extra
budget can have a different impact. We extend the problem
to maximization of weighted summation of delay budgets
assigned to the nodes. We assume that based on the complexity

and type of operation, a non-negative weight is given for
each node. This value determines the rate of relaxation on
the structure of the component and/or synthesis effort on the
component for each extra delay budget assigned to the node.
The second important simplification in the original problem
is that the delay budget assigned to a node can be unlimited.
However, in reality, the delay budget can be exploited within
a certain range and beyond that range, it is more beneficial to
assign the remaining budget to other nodes in the graph. Both
extensions are still integer linear programming problems. The
formulation of the extended integer delay budgeting problem
is:

���
�

����
(��� (8)

�� � �� � �� � � ���� � � (9)

�� � � ��� � �
 (10)

�� � � ��� � �� (11)

�� � &� ��� � � (12)

�� � � (13)

The following propositions prove that in both aforemen-
tioned extensions of integer delay budgeting problem, the
optimal integer solution can be obtained using our algorithm.

Lemma 18: For each parent-child set �#�� #� in fractional
Adjacency graph (�� ) corresponding to ������, the condition�

�����
(� �

�
�����

(� is satisfied.
Proof: Assume that the condition does not hold in

������. Assume
�

�����
(� �

�
�����

(�. After !-budget
re-assignment of minimum budget, say '���, the total budget
changes by '��� 	

�
�����

(��'��� 	
�

�����
(�. Hence, total

value of objective increases and this contradicts the optimality
of budget in ������.

Based on this lemma, applying budget re-assignment itera-
tively on �� does not change the value of objective. Hence,
the integer solution is optimal.

Lemma 19: In budget re-assignment algorithm on � � , the
budget of each node never exceeds the corresponding upper
bound on the budget at each node.

Proof: The order based on which the parent-child set
is constructed and budget re-assignment is applied, depends
on the fractional value of arrival time at the nodes. Due to
this ordering, when budget of a node is increased by ! in the
child set, it is guaranteed that the total budget at the node
cannot exceed the upper bound on this node. When budget re-
assignment is applied on a parent-child set, the fractional value
of arrival time at each child node is either zero or greater than
the fractional value of arrival time at parent set (%�). After
budget re-assignment of !, the summation of fractional value
of the budget at each node and the increase in budget (!) is
at most �. Hence, the total budget at each child node never
exceeds its upper bound.

The lower bound on the budget can be added to the original
delay of each node and if the initial solution remains feasible
under a given timing constraint, we apply the integer delay
budgeting algorithm to assign the extra delay budget to the
nodes. In this paper, we formulated the delay budgeting
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problem as an integer linear programming problem. The main
assumption in this problem and its aforementioned extensions
is that the objective value increases linearly with any unit
of delay budget assigned to each node. However, in several
applications, the gain is obtained only if the budget is a
certain value. We refer to this problem as discrete budgeting
problem that can be formulated as a mixed ��� integer linear
programming problem as follows:

���
�

����
(��� (14)

�� � �� � ���� � � ���� � � (15)

�� � � ��� � �
 (16)

�� � � ��� � �� (17)

�� � ��� �� (18)

In [22], it is proved that this problem is an NP-hard
problem and an approximation algorithm on a rooted tree
has been proposed. This is out of the scope of this paper
and our experiments in this paper are only based on regular
integer delay budgeting. In the next section, we show that the
application on which our technique is applied, the regular unit
change in the budget has almost linear correlation with the
objective function. Hence, delay budgeting as formulated and
solved in this paper can be applied to solve the delay budget
assignment.

VI. APPLICATION

Delay budgeting algorithm is very generic and can be
applied in different design tasks at different stages of CAD
flow such as gate sizing in logic synthesis, timing optimization
in placement, and library mapping in datapath level. In this
section, we apply integer delay budgeting in mapping datapath
of an application on FPGA platform. Delay budgeting is
exploited in library mapping. First, we describe the experi-
mental setup and then we present some experimental results
applied to some DSP benchmarks. The results show that early
management of timing budget on IPs can lead to a faster
compilation in physical implementation level.

A. Delay Budgeting and Core-based Compilation Flow

IP components are pre-designed and pre-verified blocks
realizing a particular functionality. Designers cannot spend a
lot of time regenerating most of standard function for future
designs. Designers try to leverage the existing designs of
components and use it in the current/future development of
new applications. Mapping sub-designs to already existing
pre-optimized and synthesized components is an unavoidable
scheme in design automation flow of today?s complex de-
signs. Especially in programmable systems such as FPGAs,
design and market of soft IPs are growing rapidly, hence
providing a rich library of various functional components. In
a programmable system, realizations of IPs are basically the
predefined program bits for a subset of chip that corresponds
to the functionality of the IPs. Since there is no fabrication
cost, IPs are more cost-effective to be generated. There is
lots of effort and research both in academia and industry to

Application Description (VHDL)

Delay Budgeting

(Optimal)

IP Core mapping

Xilinx

Coregen

Lib

Xilinx Place and Route

Fig. 11. Mapping an application on a FPGA device using library cores.
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Fig. 12. Area vs. latency for a 16-bit Xilinx CoreGen multiplier.

come up with customized functional units for FPGAs. The
CoreGen [23] tool provided by Xilinx [24] is a library of pa-
rameterizable functional cores for Xilinx FPGA devices. Also,
due to highly constrained and finely grained architecture of
FPGAs, efficient implementation of functional units are more
challenging and complicated compared to ASIC IP designs.
The new generations of FPGAs are getting more and more
irregular. There are special architectural features integrated
into the device such as carry chain, etc. The synthesis tool
cannot exploit such features efficiently at the gate level logic
optimization.

In Figure 11, CAD flow of IP-based (or core-based) map-
ping of an application on a FPGA is illustrated. Xilinx
CoreGen tool generates and delivers parameterizable cores
optimized for target architecture. The parameters include data
width, registered output, number of pipeline stages, etc. Core
layout is specified up front. Cores are delivered with op-
timally floorplanned layouts. Since CoreGen cores are pre-
optimized, they are considered as black boxes during the
synthesis. Hence, synthesis is ignored in core-based design.
In a rich core library, there can exist several cores realizing
same functionality with different implementation and latency
(in terms of clock cycle). Figure 12 demonstrates a trade-
off between the latency and the area of a CoreGen 16-bit
multiplier mapped on FPGA VirtexE, Xilinx. Slices are the
logic blocks in VirtexE FPGA series which consist of registers,
LUTs (lookup tables), and other specific features.

Trade-off between delay and area is one of the most
common relation observed in many library cores. Area and
size of a design is an additive design metrics. Area of a
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design is roughly computed by summation over the size of
its components. However, during synthesis and optimization,
if the design goes under a lot of optimizations across the
boundary between the components, the area of the whole
design cannot be estimated as the summation over the size
of individual components. Such boundary merging often oc-
curs during logic-level synthesis. In datapath level, design is
defined as a control flow graph. A data flow graph is a directed
acyclic graph. Latency at the output is defined as the delay of
the longest path in the graph. Each basic element of a design is
an operation which can take multiple cycles to execute. Hence
they are mapped to registered cores in the library. Since there
are registers between the cores, not much boundary merging
and logic-like optimization can be applied. Hence, we can
roughly estimate the area of the design as the summation over
the size of individual cores the operations map to. Therefore,
the area can be defined as a linear function of the size of each
component.

Due to several cores each operation can be mapped to and
dependency between the operations in a data flow graph under
the given latency (as a timing constraint), it is not efficient and
almost impractical to manually (arbitrarily or ad hoc method)
choose the cores from the library. Instead, we need to develop
a systematic and algorithmic technique for library mapping.
That is where our delay budgeting can be a good guidance
in library mapping for a set of DSP applications in mapping
onto programmable devices.

B. Experimental Setup

We start from a DAG representation of an application. Each
node corresponds to a computation in data path. Benchmark
in our experiments is a set of some standard DSP benchmarks.
The types of the computations are multiplier, adder, subtracter,
division, and shifter. We assume all the datapaths are 16-
bit wide. As shown in Figures 12, there is almost a linear
relation between latency of the cores in CoreGen and their
corresponding sized in terms of the number of CLBs and
LUTs. Hence, based on the delay assigned to each component
in the dataflow graph, it can be mapped to the core which
gives a smaller size.

Delay of each computation is defined by a delay budgeting
algorithm under the given latency at the output. Each com-
putation is assigned to a resource generated from CoreGen
tool based on delay budget allocated to the node. We apply
a delay budgeting algorithm to allocate the delay budget at
each node. After library mapping and synthesis, the whole
circuit is placed and routed on a FPGA device. We used
ISE 4.1 place and route tool provided by )������� . We
conducted two sets of experiments. Once we applied no
delay budgeting algorithm and we mapped the components
to the best latency cores. In the second set, we applied delay
budgeting algorithms once our optimal delay budgeting and
once a heuristic budgeting (ZSA like) to distribute the delay
budget in the graph.

C. Experimental Results

The original latency and other characteristics of the bench-
marks are given in Table I. The latency is the minimum latency

of the data flow graphs with the fastest core in the library plus
one more clock cycle in order to have sufficient delay budget in
the applications. The benchmarks are the typical benchmarks
used in high level synthesis experiments and research.

Benchmark Nodes Latency Slices LUTs
Diffeq 10 18 780 1030
ARF 28 20 1982 2476

FDCT 42 14 2044 1734
EWF 34 25 1138 1472
DCT 33 14 1618 1338

TABLE I

BENCHMARK INFORMATION AND CORE-BASED IMPLEMENTATION

RESULTS.

Table II compares the implemented designs in terms of
area when different delay assignment is used before library
mapping. In this table, the first set of results correspond to
original designs with no delay budgeting applied to them.
Hence, each operation is mapped to the core in the library with
the best delay. Gate count is one of the area metric reported by
Xilinx mapping tool which corresponds to equivalent gate area.
Gate count reflect the logic area of the design. On the other
hand, the number of slices and number of LUTs are the other
area metrics which are real physical area of design on FPGA
devices. Due to optimization techniques during mapping and
merging the sub-designs, the design can get more compact.
Hence, we look at both metrics for area to understand the
correlation between the delay budgeting and area. In this table,
it is observed that in all the benchmarks, the area resulted
from optimal delay budgeting algorithm is smaller than the
area resulted from ZSA algorithm. Also, comparing the results
when no budgeting is applied, we observe that delay budgeting
is a useful technique to reduce the redundant complexity in
the designs. In this table, the amount of total delay budget
inserted into the graphs are also reported. The results show
that solution by ZSA can be far away from optimal solution
in some of the benchmarks such as FDCT. However, in some
cases such as DIFFEQ, the solution is close to optimal.

In Table III, we compare the implemented designs in terms
of other design metrics. The physical size of an implemented
design on FPGA device is defined based on the number
of LUTs and slices. We can observe similar behavior in
terms of number of LUTs and slices as the gate count for
area was reported in Table II in some of the benchmarks.
However, in ARF, the number of slices does not vary much
when ZSA is replaced by optimal algorithm for budgeting. In
all benchmarks, the number of slices decreases when delay
budgeting is applied and also optimal delay budgeting can
minimize the number of slices further than ZSA algorithm.
Another two design metrics evaluated in this experiments are
the total compilation runtime from design entry until the end of
place and route and maximum clock frequency reported at the
end of design flow. Timing is analyzed after place and route.
It is interesting to see that compilation flow can speed up
due to decrease in the complexity of the computations in the
application with delay budgeting. In small applications, this
speed up is not very significant. In benchmarks ARF and DCT,
the speed up is quite significant (up to two times). On average,
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Benchmark Runtime Budgeting
Area No-Budget ZSA Opt

Diffeq area(gates) 19,526 18,612 17,698
Budget - 2 3

ARF area(gates) 47,028 43,596 43,380
Budget - 32 38

FDCT area(gates) 49,722 46,380 43,860
Budget - 14 20

EWF area(gates) 28794 27,990 26,502
Budget - 2 6

DCT area(gates) 32,425 27,991 27,031
Budget - 24 27

Average area(gates) 35499 32913.8 31694.2
Budget - 14.8 18.8

TABLE II

AREA (GATE COUNTS) AND TOTAL DELAY BUDGET ASSIGNED TO EACH BENCHMARK.

the optimal algorithm outperforms ZSA by ��� and �� in
terms of total delay budget and gate count, respectively. On
average, applying proposed optimal delay budgeting during
library mapping can reduce the gate count by ��� compared
to the case where no budgeting is applied.

Maximum clock frequency is another design metric re-
flecting the timing characteristic of the implemented design.
Note that the latency of each design in all the three sets of
experiments is the same in terms of the number of clock
cycles. Hence, faster the clock, in shorter time the results is
available at the output. By reducing the complexity of the
design, the optimization during place and route can get more
relaxed and better performance can be obtained. However, if
timing is affected by the most critical components in design
significantly, the delay budget on non-critical paths may not be
helpful for timing optimization. Although the computational
components with longer latency may operate with faster
clock, they require more number of registers and during
place and route, register allocation can lead to reduction in
the clock frequency. Timing analysis depends on many other
factors. However, in benchmark DCT, the clock frequency
increases by larger delay budgeting algorithm. The topology
and connectivity in the applications affect the distribution of
the delay budget in the graph. If most of the paths in the graph
are critical paths, there is not much timing slack in the graph in
order to be able to compare different delay budget distribution
and its effect on component selection and library mapping.
On average, the clock frequency with no delay budgeting
is ����� MHz. After applying optimal delay budgeting, the
average clock frequency decreases to ����� MHz. However,
In benchmarks DCT and FDCT the clock frequency increases.
By applying ZSA delay budgeting technique, the resulting
clock frequency is ����� MHz which is close to original
implementation. Applying optimal budget management, the
compilation runtime is �� seconds on average, while it is
���� seconds with ZSA delay budgeting and ���� seconds
when no delay budget management is applied. The runtime
of delay budget management added to the compilation flow
is very negligible compared to runtime of the place and route
stage. Applying optimal delay budget management, area of the
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Fig. 13. Area (gate count) vs. delay budget with heuristic delay budgeting
(ZSA) and optimal delay budgeting.

implemented design in terms of the number of LUTs and slices
improves by ��� and ���, respectively, compared to when
no delay budgeting is applied. Based on the reported results,
optimal delay budgeting algorithm always decrease the size of
design in any of the three design metrics on average.

In the second set of experiments, we assume that the timing
constraint at the output of each application is the original
latency reported in Table I plus the excess latency (�� )
applied to the design. Therefore, depending on �� , more
timing slack is injected to the graph before applying different
delay budgeting algorithms. Figure 13 demonstrate the size
of implemented designs in terms of the number of gates in
both cases when ZSA and optimal delay budgeting algorithms
are used for delay assignment to the computations in the
applications. Axis � is the increase in the latency of the output
�� . It is shown as delay budget in the figure. *-axis is the area
of the design after synthesis in terms of equivalent gate count.
In all the benchmarks, with increasing value of �� the optimal
algorithm outperforms ZSA more significantly. However, the
trade-off is in the latency of the output (increased by �� ).
If �� is a very large value, there may not exist cores in the
library with the large delay budget assigned to the components
in the design. Hence, the area and other design metric cannot
improve in parallel with increase in total budget.

Figure 14 shows the change in clock frequency when
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Benchmark Runtime Budgeting
Area No-Budget ZSA Opt

Diffeq area(slices) 780 740 700
area (LUTs) 1030 958 886
runtime(sec) 13 12 11
clk frequency(MHz) 81.2 78.42 70

ARF area(slices) 1982 1806 1803
area (LUTs) 2476 2188 2224
runtime(sec) 43 40 29
clk frequency(MHz) 72.58 77.45 70

FDCT area(slices) 2044 1867 1734
area(LUTs) 2572 2335 2155
runtime(sec) 43 42 39
clk frequency(MHz) 75.13 75.36 80

EWF area(slices) 1138 1094 1016
area(LUTs) 1472 1418 1291
runtime(sec) 22 20 18
clk frequency(MHz) 81 80 80.2

DCT area(slices) 1338 1091 1032
area(LUTs) 1618 1300 1221
runtime(sec) 38 20 18
clk frequency(MHz) 76.86 77 79

Average area(slices) 1456.4 1319.6 1257
area(LUTs) 1833.6 1639.8 1555.4
runtime(sec) 31.8 26.8 23
clk frequency(MHz) 77.35 77.65 75.84

TABLE III

AREA (NUMBER OF SLICES AND LUTS) AND COMPILATION RUNTIME AND CLOCK FREQUENCY FOR WHEN DIFFERENT DELAY BUDGETING IS APPLIED.

�� increases and compares the clock frequency in both
cases when ZSA and optimal delay budgeting algorithms
are applied. As described before, clock frequency is not an
additive function of components as area and size of design is.
Hence, increasing the delay budget can have different impact
on the clock frequency. For example, for the benchmark DCT
and FDCT the clock frequency resulted by optimal delay
budgeting is greater the the clock frequency resulted from ZSA
delay budget management. However, in benchmark EWF the
clock frequency resulted from optimal budgeting (�� MHz) is
slightly greater than the one resulted by ZSA budgeting (��
MHz). In large �� , the difference of clock frequency resulted
from ZSA and optimal delay budgeting algorithm gets larger
and larger. Hence, the impact of optimal delay budgeting is
more visible.

Table IV shows the area in terms of number of LUTs
and slices in FPGAs and compilation runtime for different
excess delay (�� ) of �, �, and � clk cycles. The larger
�� , the more delay budget is distributed. Although budget
increases significantly by �� , the improvement in area is not
as significant as budget. In FDCT, there are some multipliers
on non-critical path with large delay budget which is not
exploited in library mapping. Although the area of applications
by optimal delay budgeting is always smaller than the area
resulted by heuristic method by ��� on average, runtime of
place and route in some application does not speed up. In
other benchmark such as ARF the runtime of place and route
gets almost two times faster. On average for excess delay
budgeting of � cycles, the runtime of place and route gets
faster by factor of ���. Although speedup in PAR runtime were
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Fig. 14. Clock frequency (MHz) vs. delay budget with heuristic delay
budgeting (ZSA) and optimal delay budgeting.

not significant in smaller applications, due to lesser complexity
and smaller structure, the effect on runtime for place and route
for larger applications.

As a result, delay budgeting gives the flexibility of mapping
the applications to components in the target library with sim-
pler structure and smaller area. Developing complete libraries
facilitates the design CAD tool to exploit the existing delay
budget to improve design quality.

VII. CONCLUSION

General delay budgeting can be solved using linear pro-
gramming solver. However, due to numerical instability and
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Benchmark Runtime �T=2 clk cycle �T=4 clk cycle �T=6 clk cycle
Area ZSA Opt ZSA Opt ZSA Opt

Diffeq area(slices) 708 652 708 652 672 582
area(LUTs) 888 781 886 778 818 641
runtime(sec) 11 9 14 9 11 7
Budget 4 6 8 12 12 18

ARF area(slices) 1670 1665 1662 1553 1518 1290
area(LUTs) 1982 1908 1900 1833 1739 1381
runtime(sec) 43 26 42 25 39 20
Budget 36 48 44 68 52 88

FDCT area(slices) 1728 1491 1718 1474 1574 1222
area(LUTs) 2106 1752 2076 1698 1877 1349
runtime(sec) 38 36 36 36 43 21
Budget 22 34 38 62 54 90

EWF area(slices) 1058 982 1054 942 1018 906
area(LUTs) 1366 1232 1360 1164 1314 1114
runtime(sec) 19 17 20 17 19 15
Budget 4 10 8 18 12 26

DCT area(slices) 1038 996 1031 990 977 918
area(LUTs) 1222 1169 1213 1161 1144 1065
runtime(sec) 20 15 19 14 18 13
Budget 30 34 42 48 54 62

Average area(slices) 1240 1157.2 1234.6 1122.2 1151.8 983.6
area(LUTs) 1512.8 1368.4 1487 1326.8 1378.4 1110
runtime(sec) 26.2 20.6 26.2 20.2 26 15.2
Budget 19.2 26.4 28 41.6 36.8 56.8

TABLE IV

AREA (#SLICES-#LUTS), TOTAL BUDGET, AND RUNTIME VS. DELAY BUDGET (CLK CYC).

discrete behavior of libraries of components, integer solution is
required. In this paper, using optimal solution to LP relaxation
of budgeting problem, we transform the solution to optimal
integer solution. For this purpose, we introduce budget re-
assignment in a directed acyclic graph. We re-assign the
fractional value of budget associated with the nodes in the
graph such that budget of each node becomes integer. We
prove that during this transformation (
��� ���), objective
value from optimal LP solution does not change. Hence, an
optimal integer solution is obtained in polynomial time. In
this paper, we describe the detailed analysis of our delay
budgeting algorithm. In addition, we look at different exten-
sions of the delay budgeting problem, such as maximization of
weighted summation of delay budgets assigned to the nodes
and additional constraints on lower bound and upper bound
on the delay budget allocated to each node. We prove that in
both aforementioned extensions, our algorithm can produce an
optimal integer solution in polynomial time.

We applied our budgeting technique in mapping of applica-
tions on FPGA device. We applied timing budgeting algorithm
in selecting the components of library and mapping to different
components of the application such that the design complexity
is reduced without violation of timing constraints. Using IP
library of different computations, delay budget is exploited to
improve the area and hence, to speedup the runtime of place-
and-route. Our experimental results show the effectiveness
of budgeting on IP-based application mapping. Our optimal
algorithm outperforms ZSA algorithm [4] in terms of area and
compilation runtime significantly.

Our polynomial algorithm is applied to a general optimal LP

solution. Developing a polynomial time graph-based algorithm
for integer delay budgeting is the current problem we are
working on. Discrete budgeting is another challenging problem
that needs to be studied and intuitive heuristic algorithms
need to be developed for variations of this problem. Other
future directions are delay budgeting problem in pipelined
datapaths and resource-shared datapaths in IP-based design
implementation.
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