
Copyright © 2009 American Scientific Publishers
All rights reserved
Printed in the United States of America

Journal of
Low Power Electronics

Vol. 5, 1–15, 2009

Energy-Aware Compilation for Embedded Processors
with Technology Scaling Considerations

Po-Kuan Huang and Soheil Ghiasi∗

Department of Electrical and Computer Engineering, University of California, Davis, CA 95616, USA

(Received: xx Xxxx Xxxx; Accepted: xx Xxxx Xxxx)

With scaling of technology feature sizes, the share of leakage in total energy consumption of digital
systems is on the rise. Conventional dynamic voltage scaling (DVS) techniques fail to accurately
address the impact of scaling on system energy consumption breakdown, and hence, are incapable
of achieving energy efficient solutions in all technology nodes. To overcome this problem, we pro-
pose utilizing adaptive body biasing (ABB) to adjust transistors’ threshold voltage at runtime. While
ABB has intrinsic limitations with deep sub-micron scaling, we demonstrate that it can be favorably
combined with DVS to reduce overall energy consumption down to 45 nm technology node. We
develop a leakage-aware compilation methodology for embedded applications under hard or soft
timing constraint. Our technique targets embedded processors with both DVS and ABB capabilities,
and has the unique advantage of jointly optimizing active and leakage energy dissipation. Consid-
ering the delay and energy overhead of switching between operating modes of the processor and
execution deadline constraints, our compiler improves the energy consumption of the generated
code by average of 21�66% at 90 nm. While our technique’s improvement in energy dissipation
over conventional DVS is small (6�43%) at 130 nm, the average improvement continues to grow to
12�23%, 18�63% and 22�16% for 90 nm, 65 nm and 45 technology nodes, respectively. Extensive
experiments validate the effectiveness of our approach, explore the involved trade-offs, and offer
insights into future trends with respect to technology scaling.

Keywords: Embedded and Realtime Systems, Compilation, Leakage, Energy Optimization,
Dynamic Voltage Scaling.

1. INTRODUCTION

Due to its significant impact on battery life, system density,
cooling costs and reliable operation, energy consumption
has become one of the most important design concerns
for digital systems. In previous technology nodes, active
power was the primary contributor to total power dis-
sipation of a CMOS design. Quadratic dependence of
active power on supply voltage, along with the lower
order impact of supply voltage on clock frequency moti-
vated the idea of frequency and supply voltage scal-
ing for processors.35 In this scheme, supply voltage and
hence, operating frequency of processors are reduced to
save energy whenever full performance is not required.
However, the leakage power, whose share in total power
increases with the scaling of CMOS technology, is not
explicitly addressed using this technique. Consequently,

∗Author to whom correspondence should be addressed.
Email: ghiasi@ucdavis.edu

the effectiveness of traditional voltage and frequency
scaling is limited with advancement of technology.10

Figure 1(a) illustrates typical share of active and leakage
power consumption in total system power across several
technology nodes.

Adaptive body biasing (ABB) is a well-known CMOS
design technique that allows runtime adjustment of tran-
sistors’ threshold voltage. Threshold voltage affects both
leakage and delay of the transistors. Hence, its effect
can be combined with supply voltage scaling to mini-
mize overall power consumption for a given frequency.33

Unlike traditional dynamic voltage scaling (DVS), com-
bined dynamic voltage scaling and adaptive body biasing
(DVS+ABB) has the potential of holistically optimizing
system power consumption by considering both active and
leakage power. Exploiting the energy savings potentials of
this technique, greatly depends on mode switching policies
that dynamically adjust both supply and body bias voltage
of the processor.

J. Low Power Electronics 2009, Vol. 5, No. 4 1546-1998/2009/5/001/015 doi:10.1166/jolpe.2009.1043 1

Energy-Aware Compilation for Embedded Processors with Technology Scaling Considerations Huang and Ghiasi

(a)

130 90 65
0

Po
w

er
 r

at
io

 (
%

)

10
20
30
40
50
60
70
80
90

100

45

Technology (nm)

130 130-Imp. 65
0

N
or

m
al

iz
ed

 p
ow

er
 (

%
)

10
20
30
40
50
60
70
80
90

100

45-Imp.

Leakage power

Active power

Technology (nm)

(b)

Fig. 1. (a) Normalized share of active and leakage in overall power for
typical designs across the technologies. (b) Combined DVS and ABB
optimizes both leakage and active power.

Figure 1(b) shows the breakdown of energy savings at
130 nm and 65 nm technologies by utilizing both DVS and
ABB under deadline constraint. The labels with “-Imp”
postfix refer to energy improvement with DVS+ABB. In
this figure, the power consumption of a typical processor,
assumed to have six million logic gates and peak operat-
ing frequency of 600 MHz with 10% acceptable perfor-
mance loss, is estimated before and after application of
DVS+ABB (Section 3). As the figure suggests, combined
DVS and ABB decreases both active and leakage energy.
More importantly with advance of technology, it optimizes
leakage component of overall power consumption more
aggressively.

Although ABB is known to have limitations with
aggressive scaling, its effectiveness is demonstrated in fea-
ture sizes as small as 50 nm.28 In Section 3, we review the
background information and discuss diminishing energy
return of ABB with scaling. Based on transistor mod-
els derived from Berkeley predictive technology model,1

we argue that ABB remains beneficial in 45 nm technol-
ogy node. Subsequently, we restrict ourselves to study the
impact of ABB+DVS in technology nodes that are not
beyond 45 nm.

In this paper, we present a compilation methodology
that targets embedded processors with joint DVS and ABB
capabilities. The idea is to statically analyze the applica-
tion and integrate mode switching policy into the generated
code by inserting mode switch instructions. By judiciously
placing mode switch instructions between selected basic

blocks of the code, our compiler generates code that is
optimized for overall energy consumption.

We target embedded realtime applications that demand
responsiveness. We formulate static frequency assignment
problem as an MILP instance. The parameters and con-
stants of MILP are derived by profiling the application
using the input data associated with worst-case execu-
tion time (WCET). As a result, frequency assignment is
directly dependent on WCET input. Our approach can
readily handle soft realtime applications, when worst-case
profiling is replaced with average-case analysis.

Switching between processor modes can also be dynam-
ically performed by the operating system. However, many
embedded systems have constrained hardware resources,
and hence, demand a light-weight operating system. Static
integration of frequency scaling into the code mainly
serves such systems, because it frees the operating system
from having to perform periodic frequency scaling. As we
will show later, static integration of frequency scaling poli-
cies into the generated code incurs negligible cost in terms
of code size, and energy and delay overhead.

In addition, we argue that compilers can obtain infor-
mation about the code, e.g., program taking a particular
execution path or waiting on a definite cache miss, that the
operating system cannot access. As a result, compilers can
exploit a different type of execution slack, which would
not be utilized by operating systems. Utilizing this type of
slack, it has been shown that collaborative voltage scal-
ing, enabled by synergy between compiler and operating
systems, is superior to conventional OS-enabled voltage
scaling schemes.26

We have integrated our static analysis and static fre-
quency scaling algorithms into SUIF compilation frame-
work. We generate executable code for a number of
embedded applications using the developed compiler. We
report extensive experimental results to demonstrate effec-
tiveness and tradeoffs of using our method. Compared to
baseline compilation, our compiler improves the energy
consumption of the processor by 14�45%, 21�66%, 32�65%
and 40�64% for 130 nm, 90 nm, 65 nm and 45 nm tech-
nologies, respectively. Compared to traditional DVS-only
optimization, we improve the average energy consumption
by 6�43%, 12�23%, 18�63% and 22�16% for the four afore-
mentioned technologies.

2. RELATED WORK

Many different circuit techniques have been proposed to
reduce energy dissipation of a digital system. Dynamic
voltage scaling (DVS) and adaptive body biasing (ABB)
are two such techniques that have been widely used in
designs. Extensive research has been carried out to min-
imize dynamic power consumption of a CMOS design.
In microprocessor-based systems, DVS is used to regulate
the supply voltage and the clock frequency under timing

2 J. Low Power Electronics 5, 1–15, 2009

Huang and Ghiasi Energy-Aware Compilation for Embedded Processors with Technology Scaling Considerations

constraints. DVS has been utilized in several fabricated
academic and commercial processors. In Ref. [35], an
ARM V4 processor is implemented and demonstrated to
be energy efficient. Intel XScale2 and Transmeta Lon-
gRun2 technology3 offer commercial embedded processors
that utilize DVS.

On the other hand, ABB has been previously used to
adjust the threshold voltage of the transistors and reduce
the leakage energy of the design. Various techniques for
implementing ABB, and the associated leakage power
reduction have been discussed in the areas of circuit design
and optimization, and semiconductor process technology.
Kao et al. present a combined DVS and ABB architec-
ture to achieve the lowest active power consumption.19

The real-time ABB techniques are also proved effective
to reduce the leakage power consumption.11 Researchers
have shown that an optimum reverse body bias volt-
age can be used to minimize the standby leakage power
consumption.5 The idea is implemented in Intel 80200
processor, designed based on XScale,8 to reduce standby
leakage.9 In contrast, we utilize body biasing adaptively in
active mode to reduce energy during application execution.

DVS regulates the supply voltage of the system and
hence, reduces both dynamic and leakage power con-
sumption of a design. The lower supply voltage positively
impacts the leakage as well as the dynamic energy. Nev-
ertheless, energy savings can be improved by coordinated
DVS and ABB.33 As an example, Yan et al. proposed
an algorithm for execution of a task graph with real-time
constraints on DVS+ABB enabled distributed embedded
systems.37

Software techniques for judicious voltage and frequency
scaling are crucial in delivering low power solutions using
the underlying circuits. In order to reduce the energy con-
sumption of low power processors running realtime work-
load, a controller needs to throttle the operating frequency
with respect to deadline constraints. There has been exten-
sive research on dynamic voltage scaling algorithms and
operating systems. The majority of existing techniques,
however, target only DVS-enabled processors and only
consider frequency regulation using the operating system
(inter-task level). Such techniques adjust the frequency
between task boundaries, and cannot exploit intra-task
slack to throttle supply voltage.

Many task-level voltage scheduling algorithms have
been proposed for such processors. In Ref. [30], for exam-
ple, a DVS technique is integrated into the scheduler and
task manager of the operating system and its efficiency is
demonstrated. Kim et al. propose an on-line slack estima-
tion heuristic and an associated task-level voltage schedul-
ing algorithm.36

Several research efforts have proposed methods
to perform voltage scaling using intra-task execution
information.4�7�13�26 An analytical study of potential power
savings using intra-program DVS is reported in Ref. [13].

In Ref. [4], checkpoints indicating the voltage scaling
points are inserted to program during compilation. Hsu
et al. introduce an algorithm that identifies the program
regions with time slack for processor, and implement it as
a source-to-source transformation.7 In another interesting
work, compiler and operating system level optimization
are coordinated. Compiler instruments the code to inform
the operating system with the number of cycles required
to meet the application deadline at different point of its
execution.26

None of the aforementioned software techniques con-
sider leakage power, and the effect of technology scaling
on the validity of their results. However, with the continu-
ing shrinkage of the device sizes, techniques that only tar-
get dynamic power will be less accurate and inefficient.10

Previously, we developed a fast heuristic algorithm for
compiling large programs onto a DVS+ABB enabled
processor.17�18 We also reported preliminary results for
a MILP-based technique for intra-program supply and
substrate voltage throttling.16 In this paper, we extend16

with elaborations on hardware model, scaling considera-
tions, and MILP-specific discussions such as the tradeoff
between solver runtime and energy savings.

3. CIRCUIT POWER AND PERFORMANCE
UNDER DVS AND ABB

3.1. Background

In this section, we briefly overview the impact of sup-
ply voltage and body bias on processor’s frequency and
power consumption. Referring to related literature, we
derive threshold voltage, power consumption, and the per-
formance of the design as functions of its supply and
bias voltages.27�28�33 Subsequently, we proceed to present
the power and performance parameters of the proposed
embedded processor with DVS and ABB capabilities.

DVS allows the microprocessor to scale its supply volt-
age and operating frequency at runtime. With semi-linear
reduction in supply voltage and frequency, DVS obtains
quadratic saving in dynamic energy. In practice, the
processors often have several distinct voltage–frequency
modes. Modes with higher frequency are implemented
with higher supply voltage, in which, the processor runs
faster and consumes more energy for executing a particular
task. DVS has proved to be effective in reducing system
dynamic energy consumption, and is being used in several
commercial processors such as Intel XScale,2 and Trans-
meta LongRun2 technology.3

ABB controls the voltage level of the chip substrate
using a voltage regulator and hence, adjusts the threshold
voltage of all transistors simultaneously. As the reverse
body bias (RBB) voltage is applied to the chip, the thresh-
old voltage of transistors is increased and their subthresh-
old leakage current is reduced. The voltage regulators can
be controlled via software instructions.35 The bias voltage

J. Low Power Electronics 5, 1–15, 2009 3

Energy-Aware Compilation for Embedded Processors with Technology Scaling Considerations Huang and Ghiasi

DVS
regulator

Supply voltage

ABB
regulator

VBBP

p+ p+ n+ n+

VBBN

N-isolation

N-well P-well

Bias voltage

Fig. 2. Sketch of adaptive body biasing implementation.

for all of transistors on the chip can be set by adjusting
the voltage VBBN of the NMOS and VBBP of the PMOS.

Our work concerns energy-aware compilation for
ABB+DVS enabled processors, and does not deal with
their design and implementation. We should point out,
however, that ABB is simple to implement. Figure 2 shows
a rough sketch of ABB implementation for a die. The
area overhead to support ABB is quite small, assuming an
off-chip voltage regulator. ABB supply transistors can be
provided in the pad ring only, occupying otherwise empty
space within the supply pins. Moreover, the connections
to substrate are routed sparsely because they only provide
low current to change the substrate bias. Thus, their impact
on logic and routing density is minimal.9

Although the reverse body bias technique is proved to
be effective in both 70 nm and 65 nm technologies,27�33

recent research points out that there are limitations with
the scalability of reverse body biasing technique.21�32 In
the nano-scale technology, RBB can significantly increase
drain induced barrier lowering (DIBL) and band-to-band
tunneling (BTBT) leakage currents from source or drain to
highly-doped substrate. Increased BTBT leakage currents
might eliminate the power-saving benefits from RBB.27�28

Figure 3 illustrates the scalability issue of RBB. The
trends are calculated using Berkeley predictive technol-
ogy models for 45 nm technology. The figure shows the
breakdown of normalized leakage power. With increase

–0.4
0N

om
al

iz
ed

 le
ak

ag
e

po
w

er
 (

%
)

20

40

60

80

100

Subthreshold BTBT Total leakage

–0.3 –0.2 –0.1 0

Reverse body bias voltage (V)

Fig. 3. Normalized leakage power breakdown in the 45 nm model.

of reverse body bias, the “subthreshold leakage” compo-
nent of total leakage is reduced. However, the “BTBT
leakage” current increases exponentially with reduction of
RBB voltage. It follows that an optimal bias voltage selec-
tion method has to take into account both subthreshold
leakage current and BTBT leakage current. In our depicted
example, the overall leakage power is minimal around
−0�2 body bias voltage.

The increase in BTBT current limits the overall savings
that one can expect from RBB. The share of BTBT in
total leakage increases with scaling, and hence, potential
gain of RBB is curtailed as technology scales. Previous
research has shown that by careful selection of an opti-
mal RBB voltage which minimizes the overall energy con-
sumption, RBB can still achieve energy saving in 50 nm
technology.28 Consequently, we consider both subthresh-
old leakage and BTBT leakage currents to investigate the
scalability of DVS+ABB optimization in technologies up
to 45 nm (Fig. 3).

3.2. Threshold Voltage

The threshold voltage of a short-channel MOSFET tran-
sistor is given by:

Vth = Vth0
+��

√
�S−Vbs −

√
�S�+	DIBLVdd +
VNW (1)

where Vth0
is the threshold voltage at zero bias voltage,

�, �S , and 	DIBL are constants for a given technology, Vbs

is the body bias voltage between the substrate and source
of the transistor,
VNW is a constant that models narrow
width effects, and Vdd is the supply voltage.29 If �Vbs� ≈�S ,
the threshold voltage can be linearized:

Vth = Vth1
−K1 ·Vdd −K2 ·Vbs (2)

where K1, K2, and Vth1
are constants.33 Equation (2) for-

malizes the impact of supply and body voltage scaling on
the threshold voltage.

3.3. Power Consumption

The power consumption of CMOS circuits includes active,
leakage, and short circuit power. The short circuit power
consumption is much smaller than active and leakage
power, and is negligible. The dynamic power Pd is
given by:

Pd = CeffV
2

ddf (3)

where Ceff is the average switched capacitance per cycle,
and f is the clock frequency. The static (leakage) power
consumption Ps can be approximated as:

Ps ≈ VddIsubn
+�Vbs� IBTBT (4)

where Isubn
is the subthreshold leakage current, and IBTBT

is the band-to-band junction tunneling leakage currents in

4 J. Low Power Electronics 5, 1–15, 2009

Huang and Ghiasi Energy-Aware Compilation for Embedded Processors with Technology Scaling Considerations

the NMOS device.24�25�28�31 Subthreshold leakage current
and IBTBT can be modeled as:

Isubn
= K3e

K4VddeK5VbsIBTBT ≈ J1e
−J2Vbs (5)

where Ki’s and Ji’s are technology dependent
constants.27�28�33 Considering the relation between sub-
threshold leakage current, operating conditions (frequency,
supply voltage, and body bias) and process technology,
the overall power consumption can be summarized as:

P = CeffV
2

ddf +VddK3e
k4VddeK5Vbs + J1 �Vbs� e−J2Vbs (6)

3.4. Delay

The frequency of a processor is determined by the delay of
its critical path, which in turn, is determined by the delay
of the constituting gates. Both the power supply and the
threshold voltage of the constituting transistors impact the
gate delay. The delay of complex gates remains propor-
tional to the delay of a standard inverter. As a result, the
path delay can be modeled similarly to the alpha-power
model of an inverter:

tinverter =
LdK6

�Vdd −Vth�
�

(7)

where Ld is the logic depth of the path,20�31 K6 is con-
stant for a given process, and � is a measure of velocity
saturation. Therefore, the frequency of the processor as a
function of its technology and operating conditions can be
approximated as:

f = �LdK6�
−1��1+K1�Vdd +K2Vbs −Vth1

�� (8)

Equation (8) represents clock frequency as a function of
both supply and body bias voltages. If we have no control
over Vbs, as is the case with traditional voltage scaling,
there is a unique minimum supply voltage (energy opti-
mal) that would force the processor to operate at a given
frequency. However, having DVS+ABB capability allows
many potential settings of supply and body bias to force
the processor to operate at a given frequency. For a given
target clock frequency, there is a unique “energy optimal”
pair of supply and body bias voltages that leads to mini-
mum energy consumption for running the processor at that
frequency.

4. DVS+ABB ENABLED PROCESSOR
MODEL

4.1. Operating Modes

We target a single-issue processor that can operate at sev-
eral discrete frequencies. According to Section 3, each
frequency is associated with a corresponding pair of sup-
ply and body bias voltages that allow operation of the
processor at that frequency. The combination of the three

parameters, i.e., frequency, supply voltage and body bias,
constitute an operating mode of the processor. The pro-
cessor is assumed to be able to switch between operating
modes by execution of a specialized instruction, referred
to as mode switch instruction. Given an operating mode,
a mode switch instruction can set both the supply voltage
and body bias of the processors to switch to that operat-
ing mode. Note that the frequency is a function of supply
and body bias voltage, and does not need to be specified
separately.

Execution of the mode switch instruction, or equiva-
lently switching between modes, incurs delay and energy
penalty. Both delay and energy penalty depend on volt-
age difference of the two modes involved in switching.
The deadline requirement and energy optimization will be
handled by our compilation methodology, and hence, the
architecture does not have to utilize a power and deadline
monitoring mechanism.

According to Eq. (8), there are infinitely many (supply
voltage, body bias voltage) pairs that can operate the pro-
cessor at a given frequency. Considering IBTBT in leakage
energy, we derive Eqs. (9) and (10) to find the energy opti-
mal supply and body bias voltages that result in a given
frequency and process technology. Equation (9) illustrates
the relationship between the bias voltage and the deriva-
tive of the energy consumption per cycle. When the energy
consumption derivative is zero, the energy consumption in
that cycle is minimized. Associated with each frequency,
there is a certain bias voltage that sets the derivate to zero
in Eq. (9). Once the bias voltage and frequency are known,
Eq. (10) can be used to derive the corresponding supply
voltage.

�Ecyc

�vbs

=




LgK3f
−1 �K1Vbs +K2� e

K3Vbs +K4

+LgJ1f
−1�J2Vbs −1�e−J2Vbs

+2Ceff�K5Vbs +K6� if Vdd > 0�5

Lg

2f
�K3K5e

K5Vbs +0�5K4

+2�J1�J2Vbs −1�e−J2Vbs�� otherwise

(9)

Vdd = �LdK6f −K2Vbs +Vth1�/�1+K1� (10)

Where Ecyc is the energy consumption per cycle and Lg is
the number of logic gates in the circuit. The selection of
the operating modes is an important issue for both perfor-
mance and energy consumption. The processors with too
few operating modes cannot completely exploit the execu-
tion slack. On the other hand, too many operating modes
would introduce extra complexity for hardware designers
with very little energy improvement.12�15

We assume that our target processor can operate at 5 dif-
ferent clock frequencies, from 200 MHz up to 1 GHz
at 200 MHz steps. We adopt the process technology and
processor parameters from Predictive Technology Models1

J. Low Power Electronics 5, 1–15, 2009 5

Energy-Aware Compilation for Embedded Processors with Technology Scaling Considerations Huang and Ghiasi

and existing DVS-enabled commercial processors,2 respec-
tively. Using Eqs. (9) and (10), we obtain the energy opti-
mal supply and body bias voltages corresponding to each
frequency. Table I demonstrates the characteristics of the
operating modes for our target processor in 90 nm.

We assume that the target processor uses clock gat-
ing to eliminate dynamic energy consumption, whenever
it is waiting for memory on a cache miss. During the
idle cycles, the processor is not clocked and thus, it does
not dissipate any active energy. However, it does dissipate
energy through leakage during the idle cycles.

4.2. Energy and Delay Overhead of Mode Switching

Each operating mode is composed of two distinct supply
and substrate voltages. In order for the processor to switch
between two operating modes, the voltage regulators have
to charge or discharge large substrate and power rail capac-
itances. Ideally, increasing the voltage of a capacitance
stores battery energy on the capacitor, and hence, it does
not “dissipate” energy. Similarly, an ideally-efficient reg-
ulator can reduce a capacitor’s voltage by taking charge
off the capacitor, and storing it in an inductor or another
capacitor.

Realistically however, DC–DC voltage conversion cir-
cuitry such as Buck converters dissipate energy to perform
this function.6 Thus, mode switching incurs both delay
and energy penalty. Voltage regulator circuitry are used
for both increasing and decreasing voltage. Therefore, the
penalty exists for switching between any two modes. The
magnitude of the delay and energy penalty would depend
on the absolute difference between the corresponding volt-
ages (supply or substrate) of the two modes, the corre-
sponding capacitance, and the maximum current of the
voltage regulator.

The energy overhead of mode switching is the sum of
energy dissipated by supply and substrate voltage regula-
tors, and depends on their efficiency. The energy dissipated
by each voltage regulator is proportional to square of the
voltage difference of the two modes times the charged
capacitance.6 Note that both increasing and decreasing
voltage comes with an energy overhead in the regulator.
The following equation formalizes this relation:

Es = �1− dd� ·Cr · �V 2
dd1

−V 2
dd2

�+�1− bs� ·Cs · �V 2
bs1

−V 2
bs2
�

(11)
where Es is the energy overhead of mode switching, Cr

is the capacitance of the power rail and Cs is the capac-
itance of the substrate of the device. Efficiencies of the

Table I. Five processor operating modes at 90 nm.

Operating frequency (MHz) 1000 800 600 400 200
Supply voltage (V) 1.62 1.46 1.27 1.05 0.94
Bias voltage (V) −0.069 −0.155 −0.236 −0.33 −0.44

DC–DC converters for both supply and body voltage reg-
ulators are represented by dd and bs. Vdd and Vbs denote
the supply and body substrate voltages, respectively. Note
that no energy would be lost during DC–DC conversion
by an ideal regulator.

The mode switching delay overhead associated with any
of the two supply and substrate voltage scaling can be
approximated as the time required to charge the corre-
sponding capacitance using voltage regulators.6 The over-
all delay overhead, however, is determined by the slower
process of supply or substrate voltage adjustment, and can
be written as:

Ls = Max
{

2 ·Cr

Ir�max

� Vdd1
−Vdd2

�� 2 ·Cs

Is�max

� Vbs1
−Vbs2

�
}

(12)
where Ir�max and Is�max are the maximum possible current
of the supply and substrate voltage regulators, respectively.
The term Cr · � Vdd1

− Vdd2
� represents the electric charge

difference of the supply regulator between two operating
modes. Dividing Cr · � Vdd1

−Vdd2
� to Ir�max would give the

switching delay caused by supply regulator, if the capacitor
is charged with constant current of Ir�max. The factor of
2 exists in the equation because of regulator’s triangular
current waveform.6

In our study, we model the energy and delay over-
head of mode switching with the aforementioned equa-
tions assuming 90% efficiency for voltage regulators. For
each technology, the capacitances are typical of embed-
ded processors in that technology. For example, switch-
ing from mode 1 to mode 3 in 90 nm technology incurs
12.2 u joules energy overhead, and 80.5 u seconds delay
overhead for our target processor.

5. LEAKAGE-AWARE COMPILATION

Compilers can minimize the application total energy con-
sumption by statically assigning different execution traces
to different processor operating modes (or simply modes)
subject to meeting the deadline of the application. This can
be viewed as inserting mode-switch instruction on selected
control edges of the application before generating code.
The challenge, however, is to determine the right set of
control edges and operating modes during compilation.
The energy and latency footprint of mode switching are
substantially large. As a result, switching between modes
have to be temporally spaced out to justify their overhead.

We formulate this problem using mixed-integer lin-
ear programming (MILP), considering energy and latency
penalty of switching between modes, and assuming that
each control flow edge will include a mode switching
instruction. This is merely to expose the entire solution
space to the MILP solvers, and not to suggest that every
control edge will switch the processor mode. Realistically,
the solver is forced to execute many temporally-close basic
blocks in the same mode in order to avoid paying the high

6 J. Low Power Electronics 5, 1–15, 2009

Huang and Ghiasi Energy-Aware Compilation for Embedded Processors with Technology Scaling Considerations

penalty of frequent mode switchings. A similar approach
has been used by Xie et al.13 for DVS-enabled processor,
however, their technique neglects the leakage contribution
to total power consumption. We formulate the problem to
consider both dynamic voltage scaling and adaptive body
biasing.

Multiple control edges might lead to the same basic
block. Assignment of mode switch instructions to con-
trol edges implies that different iterations of a basic block
might be executed in different operating modes. However,
subsequent iterations over a particular control flow edge
would always switch the processor to a specific mode.
Figure 4 shows a partial view of a program control flow
structure, which illustrates sample branches, loops, and
self-loops among the basic blocks.

The structure of the application and its typical exe-
cution traces can be extracted via statistical analysis or
simulation-based profiling to determine information such
as the average latency and the average energy consump-
tion for each basic block under a particular mode, and
the frequency of traversing edges. The extracted informa-
tion are utilized to formulate the MILP instance, which
can be solved by application of commercially available
solvers. Once mode assignments for control flow edges of
the application are decided, appropriate mode switching
instructions can be inserted in the code, and executable
binaries can be generated.

We associate a binary decision variable kbcm to represent
the operating mode on the edge �b� c� of the application
CDFG. kbcm is set to 1 if and only if the operating mode
on the edge �b� c� is set to mode m. We use the constant
Ecm to denote the average energy consumption of the basic

A D

B

E C

Fig. 4. Partial CDFG structure of an example program.

block c in mode m. Constant Dabc is used to represent
the number of times basic block b is entered through edge
�a� b� and exits through edge �b� c� (Fig. 4). Dabc repre-
sents the transition into and out of basic block b, which
assists us in determining whether the two edges will incur
a mode switch, or they should run in the same operating
mode. The constant value of Dabc can be determined or
estimated by application profiling. Similarly, Gbc denotes
the number of executions of edge �b� c�. Therefore, the
total energy consumption of the application is given by:

R∑
b=1

R∑
c=1

N∑
m=1

GbckbcmEcm

+
R∑
a=1

R∑
b=1

R∑
c=1

(
Dabc×�1− dd�×

N∑
m=1

��kabmV 2
m�s−kbcmV 2

m�s�Cr�
)

+
R∑
a=1

R∑
b=1

R∑
c=1

(
Dabc×�1− bs�×

N∑
m=1

��kabmV 2
m�b−kbcmV 2

m�b�Cs�
)

�13�

Where Vm�s and Vm�b are constants representing the supply
and bias voltage under operating mode m. R is the number
of the basic blocks in the control-flow graph, and N is the
number of the operating modes of the microprocessor. The
first term of Eq. (13) represents the energy consumption
for execution of the basic blocks at their associated oper-
ating modes. The second and third terms are the switching
energy penalties caused by DVS and ABB, respectively
(Subsection 4.2). Hence, the objective of our optimization
is to minimize Eq. (13) by manipulating the variables kbcm,
which would determine the proper mode for execution of
each basic block.

For realtime applications, the compiled code has to
guarantee an execution deadline. We model this constraint
by inequality (14), which would prevent the MILP solver
to generate solutions that violate the deadline constraint.
The first term of (14) represents the latency for execution
of the basic blocks at their associated operating modes.
The second and third terms are the switching latency
penalties caused by DVS and ABB, respectively (Subsec-
tion 4.2). The constraint forces the execution deadline of
the application to be met:

R∑
b=1

R∑
c=1

N∑
m=1

GbckbcmTcm+
R∑
a=1

R∑
b=1

R∑
c=1

Dabc

×Max
(N∑
m=1

�� kabmVm�s−kbcmVm�s � CR�

N∑
m=1

�� kabmVm�b−kbcmVm�b � CB�
)
≤ deadline (14)

where CR and CB are constants equal to �2 ·Cr�/Ir�max and
�2 ·Cs�/Is�max, respectively. Tcm is the average latency of
basic block c when run in mode m, and Vm�s and Vm�b are

J. Low Power Electronics 5, 1–15, 2009 7

Energy-Aware Compilation for Embedded Processors with Technology Scaling Considerations Huang and Ghiasi

constants representing the supply and body bias voltages
in mode m.

Capturing Gbc and Tcm parameters is somewhat different
for hard realtime as opposed to soft realtime applications.
For hard realtime applications, which demand strict guar-
antees on meeting the deadline, the application has to be
profiled with the input data that incur worst case execu-
tion time (WCET). Soft realtime applications, on the other
hand, are only sensitive to average case execution latency
in which case, the parameters should be captured using
input data that incur average execution latency. The MILP
formulation remains valid for both cases.

To guarantee that each basic block will be executed
in exactly one mode, another MILP constraint is added.
In this constraint, the summation of all kbcm variables is
forced to be equal to 1, which implies that exactly one of
the operating modes is assigned to each control edge.

N∑
m=1

kbcm = 1 (15)

The astute reader notices that the absolute and max func-
tion used in Eqs. (13) and (14) are not linear constraints.
To linearize the max function in Eq. (14), we introduce a
new variable that is greater than both terms inside the max
function. In addition, we introduce variables eabc to lin-
earize the absolute function used in expressing the supply
voltage energy overhead term (Eq. (13)):

−eabc ≤
N∑

m=1

�kabmV
2
m�s−kbcmV

2
m�s�≤ eabc (16)

Note that Vm�s represents the supply voltage in mode m
and is a constant. Three other variables and corresponding
constraints are also added, to linearize the terms associated
with supply voltage in (14), and with body bias voltage in
(13) and (14).

For real life applications, the average basic block has
about 5 to 10 instructions. Therefore, the delay and energy
overhead of switching between two modes is substantially
larger than the delay and energy of executing a basic
block of average complexity. Therefore, it is not practi-
cal to execute mode switch instructions for each edge of
the application CDFG. It is beneficial to point out that
although our formulation starts with assigning a distinct
mode switch instruction to each edge, the MILP solver
ends up assigning many consecutive CDFG edges to the
same mode. Thus, many edges will have redundant mode
switch instructions that can be removed for further opti-
mization. This issue will be discussed at length in the
experiments section.

6. EMPIRICAL VALIDATION

6.1. Setup and Methodology

In order to verify the effectiveness of our intraprogram
combined voltage scaling and body biasing technique,

C CodeC Code

SUIF CompilerSUIF Compiler Power
simulator

Power
simulator

Performance
simulator

Performance
simulator

Compiler Optimization+
Code Generations

Compiler Optimization+
Code Generations

DVS + ABB SimulatorDVS + ABB Simulator

MILP
solver
MILP
solver

Application Profiling and MILP GenerationApplication Profiling and MILP Generation

Execution time and energy dissipationExecution time and energy dissipation

Fig. 5. The setup of experiments for leakage-aware compilation.

we have developed a compilation flow to generate exe-
cutable code for our target processor. Figure 5 illustrates
our experimental setup. We have instrumented widely used
compiler infrastructure, cycle-accurate performance and
energy simulators to obtain the required profiling infor-
mation for each benchmark application. Subsequently, we
generate the MILP problem and invoke a commercial
solver to obtain the optimized operating mode for each
control flow edge of the CDFG. The MILP solution is fed
back to our compiler, which inserts corresponding mode
switch instructions on control flow edges before code gen-
eration. Finally, the generated code is simulated using
cycle-accurate simulators to measure its energy consump-
tion, and to ensure that it meets the deadline constraint.

The first stage of our compilation methodology is to
profile a given application to obtain the required infor-
mation for our proposed MILP formulation. The required
information include average delay and energy dissipation
of program basic blocks in each operating mode (Ecm and
Tcm in Eqs. (13) and (14)), and execution frequency of con-
trol flow edges with respect to preceding active basic block
(Gbc and Dabc in Eq. (13)). The front end of our compiler
is based on the MachineSUIF compiler framework.23 We
utilized MachineSUIF to generate CDFG representation of
a program, and extract part of the profiling information
that relate to execution frequency of basic blocks.

Furthermore, our method assumes knowledge of the
average latency and energy dissipation of basic blocks
under each operating frequency. Note that the memory is
not synchronous with processor, and has a rather constant
access time. Therefore, frequency scaling leads to a differ-
ent set of cache misses/hits, and hence, different number of
cycles to execute the program. We instrumented the sim-
plescalar simulator34 to report the average latency of each
basic block. Also, we modified XTREM simulator14 to
report average overall energy dissipation of basic blocks.

Capturing program characteristics such as average
latency or energy dissipation of basic blocks, execution
frequency of basic blocks and control flow edges directly

8 J. Low Power Electronics 5, 1–15, 2009

Huang and Ghiasi Energy-Aware Compilation for Embedded Processors with Technology Scaling Considerations

depend on the input data used for profiling. We resort to
the input data associated with the worst case execution
time (WCET), because we must guarantee that the gener-
ated code would meet the execution deadline. If the hard
realtime constraint did not exist, we could have used a
more relaxed input data to explore a larger solution space.
In general, one needs to study sensitivity of MILP instance
to input data, in order to quantitatively analyze the choice
of input data on the quality of generated code. While
absent in the present work, we hope to tackle this issue as
part of our future research agenda.

We defined the mode-switch instruction in the instruc-
tion decoding tree of our XTREM-based simulator. We
also defined the mode switch instruction in our cross-
compiler/assembler. Therefore, we can both generate and
simulate mode switching instructions in the assembly
code. As simulator simulates the mode switch instruction,
it changes the supply voltage, bias voltage, and frequency
parameters of the simulator and calculates the correspond-
ing energy consumption and execution time. Once the nec-
essary profiling information are gathered, we generate the
MILP instance. The CPLEX package is used to solve the
problem instances.

We have selected seven applications of different com-
plexity from MiBench22 embedded application suite as
our testbenches. The selected applications represent sev-
eral application domains of embedded systems, includ-
ing networking, automotive, telecom and security. Table II
reports the characteristics of the selected applications. The
selected application domains justify the need for deadline
constraint and realtime operation of the generated code.

In order to investigate the effect of deadline relaxation
on the quality of different frequency scaling methods, we
have carried out our experiments using five different dead-
lines for each application. Figure 6 visualizes the relative
location of deadlines in comparison to baseline execution
times. For each benchmark application, we executed the
program at all different frequency modes of the processor
(with no DVS or ABB mechanism) to obtain the base-
line execution time of the application at each frequency.
The first four deadlines are determined by averaging the
adjacent execution times. For example, the first deadline is
equal to the average execution time at 1 GHz and 800 MHz
frequencies, with no frequency scaling mechanism. The

Table II. Testbench applications and their characteristics.

Application # Basic Exec. time Exec. time Exec. time Exec. time Exec. time Average MILP
Benchmark domain block @1 GHz @800 MHz @600 MHz @400 MHz @200 MHz solution time

adpcm Telecom 33 12�45 17�27 22.31 33�46 62�77 5.12
sha Security 32 11�57 14�08 20.42 28�72 58�89 5.56
dijkstra Network 36 17�4 21�17 32.54 42�3 84�63 5.25
patricia Network 138 28�43 38�01 52.14 74�61 146�21 184
susan Automotive 203 23�45 31�36 43.14 62�47 121�45 1586
jpeg-dec Consumer 212 25�90 64�25 45.41 64�33 129�39 1614
gsm-dec Telecom 556 31�23 38�86 53.51 78�45 157�73 22455

exec. time
@1GHz

exec. time
@800MHz

exec. time
@600MHz

exec. time
@400MHz

exec. time
@200MHz

Deadline 1 Deadline 2 Deadline 3 Deadline 4 Deadline 5

Fig. 6. Relation of deadlines to baseline execution times.

last (fifth) deadline is set to 95% of the execution time at
the slowest mode, i.e., running the processor at 200 MHz.

After solving the MILP problem instance, the appropri-
ate execution mode for running each control flow edge is
known. The second stage of the experiment is to insert
mode switch instructions to control flow edges of the
application. Our compiler inserts new basic blocks con-
taining the appropriate mode switch instructions to control
flow edges of the CDFGs. Since mode switching delay and
energy penalty is significantly larger than that of the typ-
ical basic block, it is likely that MILP solver assigns two
consecutive basic blocks to the same mode. In that case,
the two consecutive mode switch instructions select the
same operating mode, and hence, the second instruction is
redundant.

Figure 7 shows two examples of redundant operating
mode assignment. In the left example, basic block C will
always be executed under the operating mode of basic
block B. Therefore we can safely remove the mode switch
basic instruction on the edge between basic block B and C.
In the right example, the mode switch basic block on
the edge from E to D is redundant. We found that the
negative impact of redundant mode switch instructions
due to introduction of extra delay and energy penalty,
could be substantial. Furthermore, insertion of new basic
blocks changes the CFG structure of the program. Careless
insertion of basic block introduces redundant jump/branch
instructions and further deteriorates the quality of the gen-
erated code. Redundant mode switches can be optimized
using standard compiler optimization techniques such as
dead-code elimination. We apply copy propagation, con-
stant propagation, and dead code elimination to remove
redundant mode switches, and improve the performance
and energy dissipation of the generated code.

We have modified XTREM,14 a power simulator for
Intel XScale DVS-enabled core, to estimate the energy
dissipation of the generated code on the processor with

J. Low Power Electronics 5, 1–15, 2009 9

Energy-Aware Compilation for Embedded Processors with Technology Scaling Considerations Huang and Ghiasi

Operating
mode 1

Operating
mode 1

redundant

Operating
mode 2

A

B

CF
E

Operating
mode 1

Operation
mode 1

redundant

D

Fig. 7. Examples of the redundant operating mode assignments.

DVS+ABB capabilities. Our simulator recognizes mode
switch instructions and tracks the execution time, leak-
age power and active power under frequency scaling. For
each frequency mode, a particular pair of supply and body
bias voltages is used. For a given frequency, the DVS-
enabled processor has zero body bias, and hence, its sup-
ply voltage is different from (higher than) the DVS+ABB
enabled processor. The optimal supply and bias voltage for
each frequency are obtained using Eqs. (9) and (10). The
developed simulator also considers the energy and delay
penalty of switching between modes. Our simulator takes
into account the impact of cache memory, and measures
the latency and energy impact of cache misses. We do not
consider the energy dissipation of the off-chip memory.

6.2. Energy Savings

We implemented the experimental flow depicted in
Figure 5 and generated code for seven applications listed in
Table II. To examine the impact of execution deadline and
technology scaling, each application testbench is exper-
imented under twenty different settings, i.e., five differ-
ent execution deadlines (Fig. 6) and four different process
technologies. The models and parameters of the process
technology are adopted from Berkeley predictive tech-
nology models.1 The reported execution time and energy
dissipation are the numbers estimated from the gener-
ated code, using cycle-accurate simulation of the processor
under mode parameters.

Table II presents the baseline execution time of the
applications. These execution times are simulated for
the processor running at a particular operating frequency
without the frequency scaling mechanism. For example,
execution time at 800 MHz would be the most energy
efficient setting of the processor to meet deadline 2, with
no frequency scaling. The table also reports the average
(over twenty different settings) MILP solution time for
each application in seconds.

Comprehensive experiments are carried out which, gen-
erate data for all application benchmarks under four tech-
nology nodes (130 nm, 90 nm, 65 nm and 45 nm) and five
possible deadlines. For each setting, the energy consump-
tion of the baseline execution, dynamic voltage scaling,
and combined DVS and ABB are recorded.a

aThe amount of generated data is too large to entirely report in this
manuscript. We would like to seek reviewers’ opinion on most important
views of the data that could be rendered within the page limitation.

D1 D2
D3 D4

D5

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

Deadline

Te
ch

no
lo

gy

45 nm
65 nm

90 nm

130 nm

E
ne

rg
y

sa
vi

ng
s

Te
ch

no
lo

gy

D1 D2 D3 D4 D5

0.00

5.00

10.00

15.00

20.00

25.00

Deadline

65 nm
90 nm

130 nm

45 nm

E
ne

rg
y

sa
vi

ng
s

(a) Compared to baseline execution

(b) Compared to conventional DVS

Fig. 8. Average energy savings of DVS+ABB.

Figure 8(a) summarizes the data using a three dimen-
sional space of average energy savings, deadline, and
process technology. The chart illustrates the DVS+ABB
improvement in energy dissipation over baseline execution
of the code. In baseline execution, processor is constantly
run at the minimum frequency that meets the deadline.
All improvement percentages are calculated with respect
to corresponding baseline case to provide a fair ground for
comparison of different experiments. Note that our notion
of baseline is different from most of previous work that
run the processor at the fastest frequency (1 GHz in our
case) in baseline mode. As a result, the improvement num-
bers might seem relatively small. Similar to Figures 8(a, b)
compares the average energy dissipation of DVS+ABB
with conventional DVS, over various deadline and process
technologies.

As Figures 8(a and b) suggest, the energy savings sig-
nificantly increase with the relaxation of deadline, for a
given process technology. Deadline relaxation increases
the available timing slack and solution space and hence,
it becomes easier for our compilation method to switch
between modes while meeting the deadline. For example
in 65 nm process, gradual relaxation of the timing con-
straint from deadline 1 to deadline 5 leads to 3�9%, 8�41%,

10 J. Low Power Electronics 5, 1–15, 2009

Huang and Ghiasi Energy-Aware Compilation for Embedded Processors with Technology Scaling Considerations

14�31%, 20�95% and 32�65% improvement in energy dis-
sipation over baseline execution.

DVS+ABB is aware of the leakage’s contribution in
total dissipated energy for each technology node. It selects
the operating modes such that the overall energy dis-
sipation, including leakage, is optimized. Consequently,
DVS+ABB consistently outperforms conventional DVS.
It is interesting to note that DVS+ABB performs only
slightly better than DVS for 130 nm, where, leakage
energy is negligible. However with the shrinkage of the
device sizes, the leakage energy increases exponentially.
As a result, our method can exploit more energy saving
in advanced technologies. For example considering dead-
line 4, our approach achieves 4�06%, 6�88%, 15�01% and
18�68% energy improvement over conventional DVS, for
130 nm, 90 nm, 65 m and 45 m, respectively.

6.3. Scaling Limitation of ABB

It is interesting to note the rate of change in improvement
of DVS+ABB over DVS with scaling. This is depicted
visually as the slope of the plane with respect to tech-
nology scaling axis in Figure 8. Scaling from 130 nm to
90 nm and from 90 nm to 65 nm, the rate of improvement
consistently increases. For example under deadline 4, the
improvement of DVS+ABB over DVS going from 130 nm
to 90 nm is increased by about 2�8%. This improvement
grows to over 7% when we scale from 90 nm to 65 nm.
However, the rate is slowed down again after 65 nm. In
the example of deadline 4, the improvement is about 3�6%
when we scale from 65 nm to 45 nm.

This trend reaffirms our earlier discussion in Section 3
on scaling limitations of ABB. Scaling up to 65 nm,
the share of leakage in total energy increases but BTBT
current does not become excessively large. The BTBT
leakage current exponentially increases with technology
scaling and thus, effectiveness of reverse body biasing is
curtailed with scaling beyond 65 nm. This is depicted by
small change in improvement of DVS+ABB over DVS
when we scale from 65 nm to 45 nm. It is expected
that the plane in Figure 3 would plateau, and hence
DVS+ABB would be the same as DVS, with further
scaling.

Note that our DVS+ABB scheme cannot become worse
than DVS. For a given frequency, we calculate body bias
voltage to minimize overall energy consumption in that
frequency. With scaling beyond 65 nm, the share of BTBT
current in total leakage current grows. Furthermore, BTBT
exponentially increases with reverse body voltage. As a
result, our analytical model would reduce the reverse body
bias with further scaling to address the issue. We already
observe the descending rate of body bias with scaling in
existing operating modes. In the extreme case, our method
will eliminate reverse body bias and will become identical
to conventional DVS schemes.

6.4. Mode Switching Overhead

As discussed in Section 4.2, the energy and latency over-
head of mode switching is substantially larger than that
of a typical (5∼10 instructions) basic block. This might
raise concerns about our initial formulation that adds a
mode switch instruction to every edge of the application
CDFG. We would like to emphasize that our ILP formula-
tion considers the energy and latency overhead for switch-
ing between two different modes as a result of which, most
of the consecutive mode switch instructions operate the
processor in the same mode. Hence, they do not incur any
switching energy or latency penalty. The dead-code elim-
ination pass applied before code generation eliminates the
redundant modes and hence, the generated code only has
a few mode switch instructions on selected edges of the
CDFGS.

Table III reports the statistics on mode switches in appli-
cation benchmarks under deadline 4 and in 65 nm tech-
nology. The first, second and third columns of the table
list application benchmarks, and their complexity in terms
of the number of basic blocks and control flow edges in
their CDFG. The forth column reports the number of mode
switch instructions inserted in the generated code. The col-
umn “annotation ratio” is the percentage of the control
flow edges that are assigned a mode switching instruc-
tion in the generated code. Note that annotation ratio is on
the order of a few percent (2%–9�1%), which implies that
only a small number of selected edges will perform mode
switching in the generated code.

More importantly, the selected edges are infrequently
executed. Thus, the dynamic energy and latency overhead
associated with mode switching is small. The sixth and
seventh column of Table III report the dynamic count
of mode switch instructions and application instructions,
respectively. Dynamic count of mode switchings is on
the order of tens to at most two hundred for our test
cases, while several billions of regular instructions are exe-
cuted in the applications. Remember that a mode switch-
ing incurs a large latency (on the order of ten thousands
cycles) and hence, dynamic count of mode switches should
be much smaller than dynamic instruction count.

Finally, the last two columns report the percentage of the
overall energy and latency that is spent in mode switching.
In other words, the columns show the energy and latency
contribution of mode switching overhead in total applica-
tion energy dissipation or execution latency. The energy
contribution of mode switching overhead is only about
0�001% on average. The latency contribution is about
0�73%, which is quite small. In summary, Table III shows
that the generated code is far from invoking a mode switch
on every control flow edge of the application. However,
we had to start with such an assumption to formulated the
problem using MILP.

The main memory is a major contributor to total energy
dissipation of many embedded systems. Although we only

J. Low Power Electronics 5, 1–15, 2009 11

Energy-Aware Compilation for Embedded Processors with Technology Scaling Considerations Huang and Ghiasi

Table III. Mode switching statistics under deadline 4 in 65 nm.

of # of # of mode Annotation Dynamic # Dynamic # Energy Latency
basic control switch ratio of mode of instructions penalty penalty

Benchmark blocks flow edges instructions (%) switches (Billions) (%) (%)

adpcm (coder) 33 44 4 9.1 51 2.58 4�81×10−4 0.34
patricia 138 186 11 5.9 132 5.93 0�98×10−3 0.87
dijstra 36 48 4 8.3 59 3.84 3�91×10−4 0.25
susan (corner) 203 328 13 4.0 162 4.79 3�12×10−3 1.09
sha 32 57 4 7.0 55 2.49 4�14×10−4 0.33
gsm-dec 556 833 17 2.0 221 6.45 2�74×10−3 1.26
jpeg-dec 212 301 14 4.7 181 5.21 1�55×10−3 0.99

focus on energy dissipation of the embedded processor,
we argue that our compiler will have minimal impact on
energy dissipation of the main memory. According to the
data in Table III, our compiler will have negligible affect
on both code size and executed instructions. Table III
implies that no mode switching instruction is left in criti-
cal loops or other frequently-executed blocks that typically
account for 80–90% of program execution runtime. As a
result, static and dynamic behavior of the code is very sim-
ilar to that of code without mode switching instructions.

6.5. Impact of Power Rail and Substrate Capacitance

The mode switching energy and latency overhead is due
to the capacitance of both power rail and substrate of the
microprocessor. For switching to a high-frequency operat-
ing mode, processor voltage regulation circuitry needs to
charge the capacitances, which takes both time and energy.
Mode switching latency and energy overhead are the main
factors in limiting the energy savings of frequency scaling
methods.

It is important to measure the impact of switching
overhead on compiler’s energy savings. This translates to
investigating the effect of power rail and substrate capac-
itance on energy savings. The study can assist in evalua-
tion of the usability of our technique for different kinds
of microprocessor. Since it is not practical to accurately
estimate the capacitances for future processors, we use the
typical values for current embedded processors along with
two scaling factors of 10 and 10−1.

The typical power rail capacitance and substrate capac-
itance values for today’s embedded processors are 20 uF
and 80 uF, respectively. We experiment the impact of the
mode switching overhead by using 2 uF, 20 uF, and 200 uF
for power rail capacitance, and 8 uF, 80 uF, and 800 uF
for substrate capacitance. The simulation results for bench-
marks susan and patricia under deadline 4 are illustrated
in Figures 9(a–c).

The figures demonstrate the average energy savings
of our DVS+ABB compilation technique versus baseline
execution or DVS-only compilation. Figure 9(b) shows the
situation in which, we have low penalty (2 uf) for supply
voltage scaling. Figure 9(c) is the case for today’s typical
embedded processors in which, the power rail capacitance

has its typical value (20 uf). Figure 9(a) depicts the savings
for a processor with large power rail capacitance (200 uf).

Enlarging power rail or substrate capacitance increases
the mode switch energy penalty, and hence, mode switch
instructions become more expensive for the compiler to
use. Consequently, the generated code will contain less
mode switches and part of the energy savings compared
to baseline execution is diminished. In the extreme case,
where capacitances are very large and mode switching is

0

5

10

15

20

25

30

35

40

45

(a) Small power rail capacitance (2uf)

(b) Typical power rail capacitance (20uf)

(c) Large power rail capacitance (200uf)

8uF 80uF 800uF

Substrate capacitance (Power rail capacitance 2uF)

130 nm-Baseline

90 nm-Baseline

65 nm-Baseline

45 nm-Baseline

130 nm-DVS

90 nm-DVS

65 nm-DVS

45 nm-DVS

0

5

10

15

20

25

30

8uF 80uF 800uF

Substrate capacitance (Power rail capacitance 20uF)

8uF 80uF 800uF

Substrate capacitance (Power rail capacitance 20uF)

0

5

10

15

20

25
130 nm-Baseline

90 nm-Baseline

65 nm-Baseline

45 nm-Baseline

130 nm-DVS

90 nm-DVS

65 nm-DVS

45 nm-DVS

130 nm-Baseline

90 nm-Baseline

65 nm-Baseline

45 nm-Baseline

130 nm-DVS

90 nm-DVS

65 nm-DVS

45 nm-DVS

E
ne

rg
y

sa
vi

ng
 (

%
)

E
ne

rg
y

sa
vi

ng
 (

%
)

E
ne

rg
y

sa
vi

ng
 (

%
)

Fig. 9. Variations in energy savings with respect to substrate
capacitance.

12 J. Low Power Electronics 5, 1–15, 2009

Huang and Ghiasi Energy-Aware Compilation for Embedded Processors with Technology Scaling Considerations

substantially expensive, the compiler cannot use any mode
switch instruction and thus, the generated code will dis-
sipate the same amount of energy as baseline execution.
On the other hand, smaller capacitances decrease the mode
switch penalty, which allows the compiler to perform finer
grain assignment of regions of code to operating modes.
Hence, the energy savings are improved.

7. ACCELERATING MILP SOLVING TIME

MILP is a well-known NP-hard problem and thus, it is
unlikely that an algorithm with polynomial time complex-
ity exists to optimally solve arbitrary instances of MILP.
MILP solvers often employ branch and bound heuristics to
explore the solution space more efficiently and accelerate
their runtimes. Nevertheless, the running time of the solver
for some problem instances can be prohibitive. As shown
in Table II, the solving time for problem instances of large
applications such as susan and jpeg-dec, is not reasonable
for integration into a real life compiler. In this section, we
develop heuristics for reducing the MILP solving time at
the price of reasonable loss in energy savings.

The runtime of MILP solver exponentially increases
with growth of the problem instance complexity. The
complexity of a MILP problem instance depends on
the number of both variables and constraints, as well as
the problem structure. An intuitive approach to acceler-
ate the solving time is to eliminate some of the variables
and constraints that have negligible or small effect on
the quality of the overall solution. Elimination of selected
MILP variables will bring an unavoidable energy down-
grade, because the reduced MILP instance with less vari-
ables cannot necessarily deliver the solution to the original
MILP instance. However, judicious elimination of vari-
ables and corresponding constraints will minimize the loss
in energy savings.

Intuitively, basic blocks with small contributions to the
application energy (compared to the average contribution
of basic blocks) do not substantially deteriorate the com-
piler’s energy savings if executed in a different mode.
Hence, a good set of candidate variables for elimination
are the mode select variables (kabm in Section 5) for such
basic blocks. This group of basic blocks includes those
that are very short and infrequently executed.

Our heuristic algorithm for accelerating the MILP solu-
tion time is based on this idea. We find the basic blocks
with small share in energy dissipation of the application.
The energy contribution of each basic block is estimated
using our simulation and profiling framework. If the con-
tribution of the basic block to overall energy consumption
is small, it will be executed in the same operating mode
as its more frequently executed preceding basic block.
That is, its corresponding kbcm variables are set to be equal
to another variable such as kabm. This process eliminates
some of the independent variables in the problem instance,
and reduces its complexity.

DVS+ABB vs. Baseline

5

10

15

20

25

30

100% 80% 60% 40%

(a) vs. Baseline
MILP Variables

Gsmdec-65 Gsmdec-45 Susan-65 Susan-45

E
ne

rg
y

sa
vi

ng
 (

%
)

100% 80%

(b) vs. DVS

60% 40%

Gsmdec-65 Gsmdec-45 Susan-65 Susan-45

DVS+ABB vs. DVS

0

5

10

15

20

MILP variables

E
ne

rg
y

sa
vi

ng
 (

%
)

Fig. 10. Impact of MILP instance complexity reduction on energy
savings.

Figures 10(a and b) illustrate the impact of our MILP
instance complexity reduction algorithm on the energy
savings of our compilation technique. The figure depicts
the energy savings of our ABB+DVS compilation versus
baseline execution and DVS-only compilation for bench-
marks susan and gsm-dec under deadline 4, and in 65 nm
and 45 nm technologies. The numbers on the X axis rep-
resent the percentage of the independent variables that
are maintained in the problem formulation. For exam-
ple, the 60% point on X axis refers to elimination of
40% of independent variables that correspond to 40% of
basic blocks with least contribution to application energy
dissipation.

Figure 11 illustrates the effect of variable elimination
on MILP solver runtime. The X axis in the figure uses the
same notion as Figure 10(a). The solver running time is
demonstrated on the Y axis in Figure 11. For each case, the
running time of the solver is normalized to its running time
when no variable is eliminated, i.e., 100% of the variables
are present in the formulation.

Collective analysis of Figures 10(a, b) and 11 delivers
a practical trade-off between energy savings and optimiza-
tion runtime. For example in case of susan, the figures
suggest that by filtering out 40% of least important inde-
pendent variables (60% point on X axis) the runtime
can be improved by about an order of magnitude, while

J. Low Power Electronics 5, 1–15, 2009 13

Energy-Aware Compilation for Embedded Processors with Technology Scaling Considerations Huang and Ghiasi

Normalized MILP solving time

Gsmdec
100.00%
90.00%
80.00%
70.00%
60.00%
50.00%
40.00%
30.00%
20.00%
10.00%
0.00%

100% 80%

MILP variables
60% 40%

Susan

Fig. 11. Impact of MILP instance complexity reduction on MILP solv-
ing time.

degrading the energy savings by about 10%. This trans-
lates to solver runtime of under 3 minutes, which is quite
affordable for compiling a realtime embedded application.
If faster runtimes are desired, larger sacrifice in energy
savings can be made to accelerate the solver even further.

8. CONCLUSIONS

We present a methodology to combine dynamic voltage
scaling and adaptive body biasing during compilation of
an application targeting a DVS+ABB enabled embedded
processor. Compiler-level analysis is particularly useful
for embedded systems that demand light-weight operating
systems. Moreover, compilers can exploit program exe-
cution trace information that are not visible to the OS.
We develop a compiler framework that generates code
for a DVS+ABB enabled processor. Experimental results
advocating the effectiveness of our approach, show that
our compilation techniques reduce the overall energy con-
sumption significantly. We discuss that reverse body bias-
ing has practical limitations with scaling beyond 45 nm
in which case, our DVS+ABB enabled processor will
look like a conventional DVS enabled processor. We also
develop some heuristics to reduce the MILP solving time
of our proposed methodology. By using our heuristic, our
method can be applied to most of the embedded appli-
cations. Future work includes sensitivity analysis of our
formulation with respect to input data and corresponding
profiling information.

References

1. http://www-device.eecs.berkeley.edu/ptm/introduction.html.
2. http://www.intel.com/design/intelxscale.
3. http://www.transmeta.com/longrun2/index.html.
4. A. Azevedo, I. Issenin, R. Cornea, R. Gupta, N. Dutt, and

A. Veidenbaum, Profile-based dynamic voltage scheduling using
program checkpoints. Design Automation and Test in Europe 168
(2002).

5. A. Kesharvarzi, S. Narenda, S. Borkar, C. Hawkins, K. Roy, and
V. De, Technology scaling behavior of optimum reverse body bias
for leakage power reduction in ICs. International Symposium Low
Power Electronics and Design, August (1999), pp. 252–254.

6. T. D. Burd and R. W. Brodersen, Design issues for dynamic volt-
age scaling. International Symposium on Low Power Electronics and
Design (2000), pp. 9–14.

7. C.-H. Hsu and U. Kremer, The design, implementation, and eval-
uation of a compiler algorithm for CPU energy reduction. Confer-
ence on Programming Language Design and Implementation, June
(2003), pp. 38–48.

8. L. T. Clark, E. J. Hoffman, J. Miller, M. Biyani, Y. Liao, S. Strazdus,
M. Morrow, K. E. Velarde, and M. A. Yarch, An embedded 32-b
microprocessor core for low-power and high-performance applica-
tions. IEEE Journal of Solid-State Circuits 36, 1599 (2001).

9. L. T. Clark, M. Morrow, and W. Brown, Reverse-body bias and
supply collapse for low effective standby power. IEEE Transactions
on Very Large Scale Integration Systems 12, 947 (2004).

10. D. Duarte, N. Vijaykrishnan, M. J. Irwin, H.-S. Kim, and
G. McFarland, Impact of scaling on the effectiveness of dynamic
power reduction schemes. Proceeding of International Conference
on Computer Design, September (2002), pp. 382–387.

11. D. Duarte, Y. Tsai, N. Vijaykrishnan, and M. J. Irwin, Evalu-
ating run-time techniques for leakage power reduction. Proceed-
ing of International Conference on VLSI Design, January (2002),
pp. 31–38.

12. D. Lackey, P. Zuchowski, T. Bednar, D. Stout, S. Gould, and J. Cohn,
Managing power and performance for system-on-chip designs using
voltage islands. IEEE/ACM International Conference on Computer
Aided Design (2002), pp. 195–202.

13. F. Xie, M. Martonosi, and S. Malik, Intraprogram dynamic volt-
age scaling: Bounding opportunities with analytic modeling. ACM
Transactions on Architecture and Code Optimization 1, 1 (2004).

14. G. Contreras, M. Martonosi, J. Peng, R. Ju, and G. Y. Lueh,
XTREM: A power simulator for the Intel XScale core. ACM SIG-
PLAN Notices 39, 115 (2004).

15. M. Hamada, Y. Ootaguro, and T. Kuroda, Utilizing surplus timing
for power reduction. IEEE Conference on Custom Integrated Circuits
(2001), pp. 89–92.

16. P.-K. Huang and S. Ghiasi, Leakage-aware intraprogram voltage
scaling for embedded processors. Design Automation Conference
(2006), pp. 364–369.

17. P.-K. Huang and S. Ghiasi, Efficient and scalable compiler-directed
energy optimization for realtime applications. Design Automation
and Test in Europe 785 (2007).

18. P.-K. Huang and S. Ghiasi, Efficient and scalable compiler-directed
energy optimization for realtime applications. ACM Transactions
Design Automation of Electronic Systems 12 (2007).

19. J. T. Kao, M. Miyazaki, and A. P. Chandrakasan, A 175-mv
multiply-accumulate unit using an adaptive supply voltage and body
bias architecture. Journal of Solid-State Circuits 37, 1545 (2002).

20. K. A. Bowman, B. L. Austin, J. C. Eble, X. Tang, and J. D. Meindl,
A physical alpha-power law MOSFET model. IEEE Journal of
Solid-State Circuits 34, 1410 (1999).

21. A. Keshavarzi, C. Hawkins, K. Roy, and V. De. Effectiveness of
reverse body bias for low power cmos circuits. NASA Symposium on
VLSI Design (1999), pp. 2.3.1–2.3.9.

22. M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, and T. Mudge,
Mibench: A free, commercially representative embedded benchmark
suite. Proceeding of the IEEE 4th Annual Workshop on Workload
Characterization, December (2001), pp. 3–14.

23. M. D. Smith and G. Holloway, An introduction to machine SUIF and
its portable libraries for analysis and optimization. Technical report,
Division of Engineering and Applied Sciences, Harvard University
(2002).

24. M. J. Chen, H. T. Huang, C. S. Hou, and K. N. Yang, Back-gate
bias enhanced band-to-band tunneling leakage in scaled MOSFETS.
IEEE Electron Device Letters 19, 134 (1998).

25. M. R. Stan, Optimal voltages and sizing for low power. Intl. VLSI
Design Conf. (1999), p. 428.

14 J. Low Power Electronics 5, 1–15, 2009

Huang and Ghiasi Energy-Aware Compilation for Embedded Processors with Technology Scaling Considerations

26. N. AbouGhazaleh, D. Mossé, B. R. Childers, R. G. Melhem, and
M. Craven, Collaborative operating system and compiler power man-
agement for real-time applications. IEEE Real Time Technology and
Applications Symposium (2003), pp. 133–143.

27. S. Narendra and A. Chandrakasan, Leakage in Nanometer CMOS
Technologies, Springer (2006).

28. C. Neau and K. Roy, Optimal body bias selection for leakage
improvement and process compensation over different technology
generations. International Symposium on Low Power Electronics and
Design (2003), pp. 116–121.

29. P. Ko, J. Huang, Z. Liu, and C. Hu, BSIM3 for analog and digi-
tal circuit simulation. IEEE Symposium on VLSI Technology CAD
(1993), pp. 400–429.

30. P. Pillai and K. G. Shin, Real-time dynamic voltage scaling for low-
power embedded operating systems. ACM Symposium on Operating
System Principles (2001), pp. 89–102.

31. R. Gonzales, B. M. Gordon, and M. A. Horowitz, Supply and thresh-
old voltage scaling for low power CMOS. Journal of Solid-State
Circuits 32, 1210 (1997).

32. S. F. Huang, C. Wann, Y. S. Huang, C. Y. Lin, T. Schafbauer, S. M.
Cheng, Y. C. Cheng, D. Vietzke, M. Eller, C. Lin, Q. Ye, N. Rovedo,

S. Biesemans, P. Nguyen, R. Dennard, and B. Chen, Scalability and
biasing strategy for CMOS with active well bias. Symposium on
VLSI Technology. Digest of Technical Papers (2001), pp. 107–108.

33. S. M. Martin, K. Flautner, T. Mudge, and D. Blaauw, Combined
dynamic voltage scaling and adaptive body biasing for lower power
microprocessors under dynamic workloads. Proceedings of the 2002
IEEE/ACM International Conference on Computer-Aided Design
(2002), pp. 721–725.

34. T. Austin, E. Larson, and D. Ernst, SimpleScalar: An infrastructure
for computer system modeling. Computer 35, 59 (2002).

35. T. D. Burd, T. A. Pering, A. J. Stratakos, and R. W. Brodersen,
A dynamic voltage scaled microprocessor system. IEEE Journal of
Solid-State Circuits 35, 1571 (2000).

36. W. Kim, J. Kim, and S. L. Min, Dynamic voltage scaling algo-
rithm for fixed-priority realtime systems using work-demand analy-
sis. International Symposium on Low Power Electronics and Design
(2003), pp. 396–401.

37. L. Yan, J. Luo, and N. K. Jha, Joint dynamic voltage scaling and
adaptive body biasing for heterogeneous distributed real-time embed-
ded systems. IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems 24, 1030 (2005).

Po-Kuan Huang
Po-Kuan Huang received the B.S. Degree in Electrical Engineering from National Cheng Kung University, Tainan, Taiwan, R.O.C., in
2002. He is currently working toward the Ph.D. degree at the University of California, Davis. His research interests are in the areas
of embedded system design and design automation for electronic system.

Soheil Ghiasi
Soheil Ghiasi received his B.S. from Sharif University of Technology, Tehran, Iran in 1998, and his M.S. and Ph.D. in Computer
Science from University of California, Los Angeles in 2002 and 2004, respectively. He received the Harry M. Showman prize from
UCLA College of Engineering in 2004. Currently, he is an assistant professor in the department of electrical and computer engineering
at the University of California, Davis. His research interests include different aspects of Embedded and Reconfigurable system design.

J. Low Power Electronics 5, 1–15, 2009 15

