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An Effective Combinatorial Algorithm for Gate-Level
Threshold Voltage Assignment
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Abstract — We study the problem of sub-threshold leakage current optimization using dual
threshold voltages under timing constraints. We present time budgeting as a methodology to per-
form implementation selection through which, we assign design components to specific threshold
voltages to maximize leakage savings. We discuss several well-known formulations of time bud-
geting, and present a theoretical approach that can optimally and in polynomial time solve those
problems under consecutive integer delay choices. This technique is further extended to perform
very efficient implementation selection from a library of components with arbitrary integer delay
choices. Experimental results show that our algorithm reduces the leakage current by close to an
order of magnitude, with no or negligible delay penalty. Our algorithm outperforms the leakage
savings of a recent LP-based competitor by 33%. More importantly, our results approach the
theoretical limits of leakage savings using dual and multiple threshold voltages that are derived
using Mized Integer Linear Programming (MILP) formulation of the problem. On average, our
results are only 0.74% worse than the optimal solutions, while our algorithm runs about 73 times
faster than GNU MILP solver.

Keywords — Algorithm, Logic Synthesis, Leakage, Delay Budgeting, Implementation Se-
lection, Slack Distribution, Threshold Voltage Assignment.



1 INTRODUCTION

Power consumption is one of the most important design metrics for digital systems due to its
significant impact on density, battery life, robust operation and cooling costs. Traditionally,
designers have been less concerned with leakage power due to its negligible effect on total power
consumption in previous technology nodes. However, as transistor sizes continue to shrink, the
share of leakage current in total power consumption increases. Figure 1 illustrates the growing
impact of sub-threshold leakage ! in future technology nodes [9].

Exponential dependence of transistor leakage on its threshold voltage has motivated the
idea of manufacturing the designs with two threshold voltages. In this approach, transistors (or
standard cells) on the critical path of the design will have low threshold voltage to maintain
their high performance operation, while some of non-critical transistors (or standard cells) are
assigned high threshold voltage to improve design leakage under timing constraints [29]. The
impact of this approach heavily relies on the efficiency of the threshold voltage assignment
algorithm. Existing algorithms often employ path-based heuristics to select a subset of non-
critical components. However, there has been no study of bounds on power savings using dual
V; technology, and hence, it is hard to know if existing algorithms fully exploit the potentials.

In this paper, we study the problem of threshold voltage assignment as a special case of
the general implementation selection problem [40, 1]. We utilize the existing results in time
budgeting to perform optimal implementation selection from a library of components with con-
secutive integer delay choices [33]. We show that arbitrary integer delay choices can make the
problem NP-Complete. However, under reasonable assumptions time budgeting for arbitrary
integer library choices can be solved efficiently, and in some cases optimally. We present a
generic implementation selection algorithm, based on an intuitive extension of the implementa-
tion selection for consecutive integral delay choices, and apply it to gate-level threshold voltage
assignment problem in dual V; technology.

Experimental results show 76.6% and 82.4% reduction in leakage current of several MCNC
benchmarks, with no or 5% delay penalty, respectively. Our algorithm outperforms a simul-
taneous V; selection and assignment competitor by 33%, while we are only 0.74% away from
the optimal solution obtained by exhaustively solving the corresponding mixed integer linear
programming (MILP) instances. Furthermore, our algorithms runs about 99 times faster than
GNU Linear Programming Kit (GLPK) software that was used to solve the MILP instances.
Our algorithm is also extensible to V; assignment in multi threshold voltage technologies. Al-

though such technologies are not presently economical, they might be practical in future. We

!Sub-threshold leakage is the dominant leakage mechanism. Consequently, throughout this paper we focus
on sub-threshold leakage, and we will use the terms leakage and sub-threshold leakage interchangeably.



100.00% -
90.00% -
20.00%
T0.00% -
60.00%
50.00%
40.00%
30.00% -
20.00%
10.00% -

0.00% 4

m Leakage Power
oA ctive P ower

Power ration

ENNNNRRNN

013 n.ar 0,034
Technology (umj

Figure 1: Estimation of active and leakage power variation across the technologies [9].

show that our technique is theoretically extensible to multi threshold technologies, and it can
deliver very efficient solutions for such future technologies as well.

We proceed to present the execution model, assumptions and some background on time
budgeting problem in Section 2. Section 3 reviews the existing results on the problem and
discusses several applications of time budgeting in different areas of hardware and software
design. Section 4 presents the background information and problem of leakage optimization in
dual V; technology. We discuss our algorithm and experiments for assigning threshold voltage

to gates of a design in Sections 5 and 6, respectively. Section 7 concludes the paper.

2 BACKGROUND

In this section, we explain the definitions, application model, and other necessary background
information that are used throughout the paper. We proceed by momentarily departing from
gate-level netlists, and focusing on the generic implementation selection problem for application
task graphs. In future sections, we will apply the developed model to gate-level threshold voltage
assignment.

The left part of figure 2 illustrates an example of the application model used in this paper.
We use the standard task graph model that can be represented as a directed acyclic graph
(DAG). The nodes denote computations (or gates at the gate-level) and edges model the de-
pendency among them. Each task starts when all its input data are available, i.e, all of its
predecessors have finished their computations, and takes a specific amount of time to perform
its computation and broadcast the result to all of its fanouts.

We assume that all primary inputs arrive at time zero, and all primary outputs must be ready



by a given timing constraint, denoted by 1. Edges are considered to have zero delay, however,
this model can indeed account for edge delays by insertion of dummy data communication
nodes on edges. The problem of timing budget management is to determine a local timing
constraint for implementing each of the computations, such that the local constraint is feasible
(not smaller than the minimum possible computation delay), the application timing constraint
is met, and some objective function is optimized.

Example objective functions are power, area, optimization runtime, application quality (for
example accuracy in object tracking or distortion in image compression), and testability. Most
of such design quality metrics are difficult, if possible, to be estimated accurately at the ap-
plication level. One reasonable solution is to characterize or estimate the utility improvement
of each component with its delay relaxation. For example, the area of a component might
be estimated to semi-linearly decrease with increase of its delay within some range. Figure
3 illustrates the relation of area vs. delay for 16-bit sequential multipliers of Xilinx CoreGen
library [19] that justifies an example of such estimations. The estimation process transforms
the problem of time budgeting to maximizing a simple function of local delays, under global

timing constraint.
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Figure 2: An example of the execution model and some timing budget management policies.
The table shows the optimal solution for maximum, bounded and min-max delay budgeting.

For many practical applications, design variables are either integers (such as delays in terms
of number of clock cycles) or can be transformed into integer numbers with problem scaling.
Therefore, it is reasonable to assume that the problem arises in integral domain, i.e, initial
component delays, possible lower and upper bounds on local delays, and local and global timing
constraints are non-negative integers.

Depending on the application domain, different time budgeting objectives are appropriate.
An intuitive budget assignment policy tries to maximize the total delay budget assigned to

the graph nodes, assuming that larger total budget correlates to larger improvements in the



design utility. Another popular policy is to distribute the budget values fairly (minimizing
the maximum budget value), while trying to maximize the total delay relaxation. Other com-
mon objectives include maximum total delay relaxation under weighted, bounded, or min-skew
constraints.

Figure 2 illustrates an example of these delay budget assignment policies in action. All of
the nodes in the example have unit intrinsic delay, and therefore, the critical path of the graph
has length 4. Delay budgets are assigned to the nodes and we assume that the timing constraint
for the application is 8 time units. Hence, delay budget assignment should not create any path
that takes longer than 8 units of time. For each cost function (policy), an optimal solution is
depicted in the table. The additional delay budget (timing relaxation) assigned to each node
is shown in each cell of the table. Note that the delay budget should be added to the unit
intrinsic delay of the node to calculate its local timing constraint.

First column of the table in Figure 2, maximum budgeting, represents the result of applying
this cost function. A useful extension of this policy considers weights for the nodes and tries to
maximize the total weighted budget assignment. Second column of the table (bounded maxi-
mum budgeting) illustrates the node delay budgets when the cost function tries to maximize
the total budget while maintaining some lower/upper bounds on the amount of delay budget
assigned to nodes. In this example, node a has a lower bound of 1, and nodes b and ¢ have an
upper bound of 3 on their delay budgets. Lower/upper bounds are useful for many application

domains, due to the limited local implementation choices in practice.
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Figure 3: The relation of area and delay of 16-bit sequential multipliers of Xilinx CoreGen
library

Another popular policy is to distribute the budget values fairly (minimizing the maximum
budget value), while still trying to maximize the total budget. The last two columns of the table
(min-max) represent the result of applying this policy to the sample graph, where 25% and 40%



degradation compared to maximum budget is allowed for each case. Note that minimizing the
maximum budget value has trivial solution of zero-relaxation if there is no constraint on the
total budget.

For some application domains, however, the variations in local delay constraint do not
continuously correlate with the utility. In other words, each node might have a number of
arbitrary (as opposed to consecutive) integer delay choices, each of which, correspond to some
savings in the utility. In this paper, we discuss the problem of delay budgeting under arbitrary
delay choices. We leverage the existing techniques to establish analytical bounds, and apply

our results to V; assignment for gate-level netlists in dual V; technology.

3 RELATED WORK

Time budgeting relates to the conventional slack distribution problem, which has been studied
extensively in the synthesis community. However, almost all of the techniques developed in
previous research efforts, and employed in industrial tools utilize sub-optimal heuristics with
no guarantee of the solution quality. The majority of previous work have used Zero Slack
Algorithm (ZSA) [31] or an extension of it, to assign timing constraints to components of a
design. ZSA selects a path of the graph, assigns delay budget to the nodes on this path according
to some criteria, and repeats this procedure until no further delay relaxation is possible. Such
an approach is shown to be sub-optimal. Recent results have showed that the delay budgeting
problem with consecutive integer delay choices is optimally solvable in polynomial time, and
have proved its superiority over ZSA through experimentation [12, 13].

In our previous work, we presented a unified theoretical framework that optimally and
in polynomial time solves several widely-used formulations of integral time budgeting [33].
However, the framework is incapable of addressing the problem under arbitrarily discrete (non-
consecutive integer) delay choices. The problem under arbitrary delay choices has been investi-
gated by several researchers. However, they mainly considered the problem from a particular ap-
plication’s point of view and have not presented any analytical results on their algorithm quality.
We showed that the solution can be approximated within any given bound (e-approximation)
when the application graph is a rooted tree [34].

The problem of threshold voltage assignment for leakage optimization has been known as
a complex CAD problem [23]. Wang et al. [29] present an intuitive heuristic algorithm for V;
assignment. Researchers in [35] present a technique for leakage optimization via simultaneous
V; selection and circuit sizing. Khandelwal et al. focus on simultaneous V; selection and
assignment [38]. However, to the best of our knowledge all of the previous efforts utilize sub-

optimal heuristics and do not analyze the optimality of their results. Our technique comes



very close to the theoretical limits of leakage savings using dual threshold voltages. We also
significantly improve the previous results reported in [38].

From the application point of view, local delay relaxation has been utilized to improve the
utility function in different applications. For example, design timing closure during different
levels of VLSI CAD [22, 7, 27], energy savings via voltage and frequency adjustment [36, 3],
timing-driven placement and floor planning [2, 6, 25, 24, 8|, wire and gate sizing [6, 5, 18, 28|,
High-level synthesis [32, 20, 39], and software optimization to improve the power efficiency or
computation quality of a software program [16, 34] are a few such application domains.

In addition, time budgeting closely relates to spatial budgeting, which has applications
in layout compaction [42, 21, 14]. The concept of budgeting (in VLSI CAD context) was
first proposed by C.K. Wong et al. [42], for spatial budgeting in layout compaction to relax
the physical constraints of design components under global layout geometry constraints. The

relaxation in physical constraints results in faster convergence to an improved solution.

4 LEAKAGE AND DELAY MODELS

In this section, we briefly explain the gate leakage and delay models that are used in this paper.
The leakage and delay numbers are utilized in subsequent sections to address the threshold
voltage assignment problem as an implementation selection instance.

According to the BSIM model [4], leakage current of a MOS transistor can be approximated

as follows:

Tieay = Ae@Vos=VO/MKT (1 _ o=aVas /KT (1)

where A = 11gCo (W/L)(ET/q)?e"® in which, W and L are the effective device geometries
and C,, is the gate oxide capacitance per unit area. The term K7T/q represents the thermal
voltage. o denotes the zero bias mobility and V; is the threshold voltage. Consequently, the
leakage current is exponentially dependent on threshold voltage.

Leakage current of a CMOS circuit is the sum total of the leakage currents of all of the
gates. The leakage of a CMOS gate depends on the number of transistors that are turned off
and hence on the inputs. For example if a NAND gate has both NMOS transistors off (input
= 00). Since these transistors are in a stack, the leakage current will be small, whereas if
both PMOSs are off (input = 11) then the two off transistors are connected in parallel and the
leakage is comparatively large.

In our study, we calculate the gate leakage under each input pattern. The leakage numbers

under different input patterns are used to arrive at a weighted average of leakage numbers.



Subsequently, the leakage of a gate at either low or high threshold voltage is represented with
one number, which is the weighted average of its leakage under various input values.

It is difficult to derive an accurate closed-form gate delay model for dual threshold voltage
technology. Consecutively, we utilize the analysis and simulations performed in [38] that delivers
the delay of basic gates in the library under load-dependent, delay model (LDDM) [26]. In this
scheme, the delay of each gate under a given threshold voltage is composed of two elements: an
intrinsic delay and a slope. The gate delay is simply estimated as intrinsicqelay + Cioaq * slope.
The delay and leakage numbers borrowed from [38] are stored in look-up tables, to enable quick

estimation of circuit delay and leakage under any threshold voltage assignment.

5 LEAKAGE OPTIMIZATION VIA TIME BUDGETING

5.1 Problem Transformation

We formulate the problem of gate-level V; assignment in dual V; technology as discrete delay
budgeting 2 by which, we assign local delay constraints to gates. The delay choices for each
gate are its delay under V., and V} pig, threshold voltages considering its load. If the local
delay constraint of a gate is larger than or equal to its delay under V, 4, it will be assigned
to high threshold. Otherwise, it will be assigned to V} joy-

The objective of the entire process is to maximize the savings in leakage current, through
assignment of selected gates to V; pign. We might refer to this objective as the gain that we try
to maximize. As the optimization constraint, design global timing constraint has to be met.
We explain our methodology using dual threshold voltages, and later show that it is efficiently
extensible to some of the cases where multiple implementations are present, including multi-
threshold voltage technologies.

From a delay budgeting perspective, each gate has exactly two delay choices under dual V;
technology, i.e., there are exactly two possible points in the leakage savings-delay plane for each
gate. Let us temporarily relax the realistic constraint of having only two discrete threshold
voltages. The original two points can be assumed to form a line with a fixed slope. The slope
represents the improvement of the design leakage with assignment of a unit relaxation in the
delay of the gate. Note that neither points on the line are valid implementations of the gate nor
the relation between the gate leakage and its delay is linear, nevertheless, the slope of the line
forms a very intuitive basis for assigning weights to gates (Figure 4). Weights represent relative

improvement of the gain function, with unit delay relaxation at a node, and hence, they enable

2We use the term discrete delay budgeting to refer to case where implementations with arbitrary integer
delays are available. The term integral delay budgeting refers to a special case where arbitrary integers happen
to be consecutive numbers.



us to favor some gates over others when gates compete over relaxation of their local timing
constraint.

The corresponding integral delay budgeting problem is to select the proper delay relax-
ation for each node, with a given upper bound such that the total weighted delay relaxation
is maximized under global timing constraint. In the next subsection, we extend our previous
results to show that this formulation is optimally solvable in polynomial time. Then, we present
properties of the delay choices, under which, a budgeting instance with arbitrary-discrete delay
choices can be transformed to a tractable integral budgeting instance. If a problem transforma-
tion is not possible, we round down the result of integral delay budgeting to arrive at a feasible
arbitrary-discrete implementation selection solution. The proper assignment of weights guides
the algorithm to distribute the timing budget among gates, so that most of them are at their
either lower or upper bound of delay. Therefore, only a small amount of total gain is eliminated

by rounding down the integral solution.
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Figure 4: A weighted node budgeting instance can be transformed to an equivalent weighted
edge budgeting instance.

Figure 4.d visualizes different cases. As the figure suggests, the actual gain-delay variation
for a gate forms a specific exponential relation. This can be seen as a special case of the
arbitrary-discrete integer delay choices (Figure 4.c) with only two delay choices. However,
the temporary relaxation of two delay choices converts the problem into an instance of the
weighted implementation selection from a set of continuous integral delay choices with upper
and/or lower bounds (Figure 4.b). We will extend our previous results [33] for solving the
unit-weight unbounded version of the problem (Figure 4.a) to handle weights and bounds. This

technique is then instrumented to handle discrete delay choices as well.

5.2 Weighted Bounded Implementation Selection

The application model that we considered so far, assumes that nodes incur delay to perform

their associated computations, and edges have zero delay. More generally, we can assume that



edges incur delay, and nodes have zero delay. An instance of node budgeting can be transformed
to an instance of edge budgeting by 1)splitting each node to two nodes that are connected by
an internal edge, and 2) assigning proper weights to internal, and 3) zero weight to external
edges. Figure 5 depicts the idea. It follows that the problem of node budgeting is a special case
of weighted edge budgeting.

Critical path<T

Critical path<T

Figure 5: A weighted node budgeting instance can be transformed to an equivalent weighted
edge budgeting instance.

A given node budgeting instance on a gate level netlist can be transformed according to
the aforementioned three steps to form an edge budgeting instance. For simplicity, we add a
virtual super input node (ST) to the netlist, that is only connected to all of the primary inputs.
Similarly, we add a virtual super output node (SO) that takes only all of the primary outputs
of the netlist as its fanins (Figure 6). All of the edges connecting ST or SO to any other node
in G have zero delay and zero weight. Remember that an edge weight represents the relative
gate leakage improvement by assigning a unit delay to the gate. The timing constraint implies
that all of the paths from ST to SO must take no longer than 7. The delay of each path is

calculated according to the following definition.

Definition: The delay of a path p from node s to node ¢ is equal to Z@ijep (d;j + bij), where
d;; is the initial delay of the edge, and b;; is its timing relaxation (delay budget). We use
the terms delay of the path, cost of the path and the distance between nodes s and t,

interchangeably.

Note that any possible lower bound can be incorporated in the initial delay (d;;) of the edges

a priori. Hence, we assume that there is no explicit lower bound in the problem instance. The



Figure 6: Sample DFG with edge delay annotations. Nodes SI, SO and additional edges are
shown with dashed lines.

integral weighted, bounded (i.e., upper bounds) edge delay budgeting problem can be stated

as the following ILP formulation:

Maximize MU (e (2)
e;; EE

> (dij+by) <T VST — SO paths (3)

dij + bij < w; Ve;; € E (4)

bij, dij, wij, T € Z+ Vei; € B (5)

The vectors b, d, w and u denote the delay relaxation (delay budget), initial delay including
possible lower bounds, weight and upper bound for each edge, respectively. In case of threshold
voltage assignment, the vector u represents the delay of gates under high threshold voltage.

The following lemma is a crucial observation that allows us to re-formulate the problem.

Lemma 1 In an optimal edge budget assignment for a given DAG, the delay of a path from a
node to SO does not depend on the choice of path, and is only a function of the node.

Proof: We prove the lemma by contradiction: Let us assume that the lemma does not
hold. Hence, in the optimal solution there are some nodes whose distance to SO depend on the
choice of path. Let v be the last node in a given topological ordering of the DAG, which has
this property. According to our assumption, there are at least two v — SO paths that have
different delays. We use the notion of v - u — ... - SO and v -+ w — ... = SO to represent



the two v — SO paths with different delays. Note that u # w, otherwise v would not be the
last node in the topological ordering with that property.

Without the loss of generality, we assume that the delay of the path v - u — ... — SO is
smaller than the delay of path v — w — ... — SO. We slow down the delay of the edge e,, by
unit delay. The new delay of the path v -+ u — ... = SO will not be greater than the delay
of v &> w — ... = SO, because all path delays are integers. Now, we show that unit delay
insertion does not violate the timing constraint of the solution.

We started with a feasible solution, which means that any SI — SO path had delay of
less than or equal to 7. Note that e,, is the only edge whose delay is changed in the new
solution. Therefore, if the timing constraint of the new solution fails, it must be due to some
path going through e,,. However, if the delay of some SI — ... > v - u — ... = SO is
larger than 7', then the delay of the path ST — ... - v = w — ... — SO is also larger
than 7" (Remember than the delay of v — u — ... — SO is not greater than the delay of
v - w — ... = SO). This contradicts with the initial assumption of starting out with a
feasible solution, and hence, the new solution indeed meets the timing constraint. However,
this implies that the total budget of the new solution is larger than the initial solution by one,
which contradicts the optimality of the initial solution. Therefore, in an optimal solution, the
delay of a path from any node to SO is only a function of the node. B

Since the delay from a node to SO is not a function of the path in the optimal solution, we
can assign a variable to each node to represent this delay. Let r; be a variable assigned to node
i that represents the distance of i to SO (i to SO delay). Therefore:

ry—Trj — dij = bz‘j Vez-j € F (6)

Utilizing this relation to rewrite the equations 2-5 leads to the following set of equations.

Mazx Z wijbi]’ (7)
e;; €L

Ti:Tj—Fdij—i—bij VeijGE )

rs; —rso < T )

dij + bz‘j < (2 Vez-j ek (10)

Ti, bz‘j € Z+ Yv; € V and €ij € FE (11)

Note that the number of constraints in equations 2-5 can grow exponentially with respect

to the number of nodes in the graph. However, formulation 7-11 has polynomial number of



constraints with respect to the problem size. Moreover, we can assume that there is a virtual
edge e,;, from SO to SI with —T delay (Figure 6). The constraint rg; — rso < T can be
represented as one of the regular edge constraints and can be safely removed as a separate
constraint. The example shown in Figure 6 assumes that the timing constraint for the netlist
is 4 units of time.

Utilizing equation 6, we can eliminate the budget variables (b;;) from the objective function
by substituting b;; = r; — r; — d;;. Note that the non negativity constraint of b;; transforms to
Veij € E i1y —r; > d;j. It follows that:

Y wighy = Y wigry =1y = dig) =

ei €E eij€E
Z rilweight pui(v;) — weight;, (v;)] — Z w;;di;
v EV eij€E
where weight;, (v;) and weight,,(v;) are the sum of weights of the incoming and outgoing
edges of vertex v;, respectively. The term Zeije g Wijd;; is constant and can be eliminated from
the objective function. We define p; = weight . (v;) — weight;,(v;), which is a function of the
graph structure and hence, it is constant for a given problem instance. Substituting p; equations

7-11 can be rephrased as:

Maprm (12)

eV
ri—r; < —d;; Ve €FE (13)
ri—r; <uy; Ve, €E (14)
ri€Zy Yy eV (15)

The dual problem to ILP problem (12)-(15) is:

e;; €L
Z (ym - Zkz) - Z (yij - Zij) =p Yy eV (17)
ep €EE e;; €L
Yij, 2ij € Z Vez-j eEFE (18)

The equations 16-18 formulate a conventional min-cost flow problem on an extended DAG,
created by assigning cost —d;; to edge e;;, and adding edge e;; with cost u;; to the original graph

(Figure 7). y;; and z;; variables are the amount of flow along edges e;; and ej;, respectively. p; is



the amount of demand at node 7, which is a simple function of edge weights. Equivalently, —p;
can be interpreted as the amount of flow supply at that node. Note that the flow conservation
constraint () .., p; = 0) is satisfied as required in the min-cost flow problem [30, 11]. The
dual min-cost flow problem can be solved optimally and in polynomial time, using any of the
well-known min-cost flow algorithms [30]. It follows that the optimal solution to the primal
problem (integral delay budgeting for edges of the graph) can be found in polynomial time
[10]. Figure 7 illustrates the dual min-cost flow problem and its solution for the graph shown
in Figure 6.

Once y;; and z;; variables (the amount of flow along edge e;; and e;;) are determined, we
can construct the residual graph. For any edge in the graph with non-zero flow along it, there
are two forward and backward edges in the residual graph. The cost of each backward edge is
equal to the complement of the forward edge cost.

Let ¢; be the shortest distance of node 7 to SO in the residual graph. There is no negative
cost cycles in the residual graph and hence, §; variables are well defined * [30]. §; variables
can be determined by utilizing any well-known shortest path algorithm, such as Bellman-Ford
algorithm [37], that is applicable to graphs with negative edge costs. Figure 7 shows the residual
graph and ¢; variables for the example shown in Figure 6.

Variables r; and b;; of the primal problem can be calculated by substituting r; = —d; and
bij = r; —rj — d;;. The following theorem, which is based on the LP duality theorem and
complementary slackness condition [10, 41] proves that this equation indeed determines the

primal variables correctly.

Theorem 2 r; = —0; is an optimal solution to the equations 12-15, where §; is the shortest

path of node © to SO in the residual graph.

The time complexity of the overall algorithm is determined by the min-cost flow step, which
is the slowest part of the algorithm. The technique requires the min-cost flow calculation on
the augmented graph with O(n) nodes. Therefore, the min-cost flow instance can be solved
in O(m.log(n).(m + n.log(n))) via enhanced capacity scaling algorithm [30], where m is the
number of edges in the graph. For practical CAD problems, the degree of nodes is bound
by a small constant and the graphs are sparse. Hence, the number of edges is O(n) and the
time complexity reduces to O(n?.log?(n)), which is quite affordable for many practical problem

instances.

3If there is a negative cycle, the cost of the flow solution can be reduced by circulating a unit flow along the
negative cycle, which contradicts the fact that we are working with the residual graph of a min-cost flow.



Figure 7: a)The Min-cost flow problem for example in Figure 6. Initial delays and upper
bounds are represented as edge costs. b)Min-cost flow solution. Supply at each node i is
weight, (i) — weight . (i). c¢)Relaxed edge delays resulting in maximum total relaxation.

5.3 Discrete Time Budgeting for Dual V; Technology

In this section, we remove the relaxation assumption of continuous integral delay choices for
each gate, and focus on arbitrary-discrete delay budgeting. We present our results on the
complexity of the problem and conditions, under which, the problem can be solved optimally.

If each node has arbitrary delay choices, the problem of delay budgeting to maximize total
relaxation is NP-complete. Even under very restrictive assumptions of two arbitrary delay
choices for each node, and an application graph in the form of a path, the problem is NP-

complete.

Theorem 3 The problem of discrete delay budgeting for maximization of total relazation is
NP-complete.

Proof: We reduce the NP-Complete subset sum problem to discrete delay budgeting on
a path. In the subset problem, a set of integer numbers (e;) and an integer constant B are
given. The decision problem is to find a subset of the numbers whose sum total is exactly
B. The transformation procedure is as follows: For any number e; in the given subset sum
instance, we create a node with two delay choices of zero and e; on the path. The question of
”is there a subset of the set such that the total value of elements in the subset is equal to B?”
can be answered in polynomial time if the discrete delay budgeting problem on the constructed
path, with timing constraint B, can be solved in polynomial time. Therefore, the discrete delay
budgeting problem for arbitrary delay choices is NP-complete. B

Although the discrete delay budgeting problem is NP-complete in the general case, a special

relation between the delay choices, or the structure of the graph, might allow efficient solution



of the problem. For example, under arbitrary delay choices, the optimal solution can be ap-
proximated to any given accuracy if the graph has the rooted tree structure [34]. We show
that the problem can be efficiently solved for the general graph structure under some special
relation between the node delay choices.

Let us assume that all of the nodes have delay choices that are consecutive multiples of an
integer d. That is, the delay choices for node i are m;.d, (m; +1)d...(m; +n;).d and the global
timing constraint is 7. The following lemma proves that the aforementioned instance of the
problem can be transformed into continuous integral budgeting problem, and hence, can be

optimally solved through the technique explained in Subsection 5.2:

Theorem 4 The budgeting problem instances, and solutions are scalable by an arbitrary posi-
tive integer. That s, an optimal integral solution for a given problem instance, if multiplied by
d, forms an optimal solution for a new discrete budgeting instance. The new instance is created

by multiplying delay choices, lower bounds, upper bounds and timing constraint by d.

It follows that the aforementioned instance can be scaled down by the factor d to create a
consecutive-integral delay budgeting instance with lower and upper bounds of m; and n; for
node i, respectively. The global delay constraint is reduced to |7/d|. Note that the original
delay constraint 7, does not necessarily have to be an integral multiple of d.

For the case of V; assignment, the two delay choices and their relation completely depend on
the choice of threshold voltages. Although threshold voltages might be selected in a way that
allow exact scaling, it should not generally be assumed that they follow this pattern. Therefore,
we solve the threshold voltage assignment problem by relaxing it into consecutive-integral delay
budgeting, solving this version, and rounding down the results to the closest feasible solution
for each gate. This guarantees that we arrive at a legitimate and feasible solution. This scheme
works very effectively in practice. Most of the gates with enough timing slack are assigned
a timing budget equal to their budget upper bound, and hence, can be assigned to the high

threshold voltage. Next section reports our observations during experiments with real circuits.

5.4 FExtension to Multiple Threshold Voltages and Other Convex
Cost Functions

In case of multiple threshold voltages, more than two implementations are available for each
edge. Note that edges in the budgeting instance represent nodes (gates) in the gate level netlist
(Figure 5). Figure 8 illustrates an example, where A, B, and C' are three implementations of
a gate with three different threshold voltages, where V;; < V; 9 < V; 3. The leakage current of

a gate exponentially decreases with increase of its V;. Hence, the slopes of the line segments



connecting consecutive delay-leakage points (A — B and B — C' line segments in Figure 8) is a
decreasing function of the delay, and thus | w; |>| ws |. The slope of each line segment reflects
the relative leakage improvement per unit relaxation of the edge in the corresponding budgeting
problem.

Figure 8 illustrates the required procedure to transform the three threshold version of the
problem to a consecutive-integral budgeting instance. We start by temporarily relaxing the
discreteness of delay choices, and assuming that all points with integral delay on A — B and
B — (' line segments are feasible solutions. We insert an intermediate node v,, on the edge
connecting v; to v,. The v; — v, edge represents the A — B line segment, and the v,, — v, edge
corresponds to the B — C' line segment of the leakage-delay curve. The forward edge v; — v,, is
annotated with the complement of the initial delay of the edge, i.e., the fastest implementation
of the gate. The reverse edges v,, — v; and v, — v, are annotated with the upper bound on
the relaxed delay of each edge, according to Subsection 5.2. As with the dual threshold case,

the integral budgeting results have to be rounded down to arrive at a feasible solution with

Leakage

d, d, ds Elelay
Figure 8: Handling multi threshold voltages by transformation to a budgeting instance.

The condition w; > wy guarantees that the edge v; — v, will be assigned delay relaxation,
before v, — v;. This implies that the delay relaxation will replace the implementation A with
implementation B, before trying to replace it with C'. The upper bound on edge v; — v,
guarantees that after replacing implementation A with B, additional delay relaxation should
be allotted to edge v,, — v, with a smaller gain per unit delay. The transformation does not
work if weight is not a decreasing function of delay. In fact, it is not hard to show that the
integral version of the problem is NP-Complete, in that case.

The discussion and transformation are applicable to piece-wise linear approximation of any
strictly-decreasing convex function. The leakage current of a CMOS gate as a function of

its delay has this property, and therefore, our method is directly applicable. Note that a



concave function, or a convex function that is increasing at some intervals violates the necessary

conditions and hence, cannot be accurately modeled using our technique.

6 EXPERIMENTAL RESULTS

We implemented our budgeting-based threshold assignment (BBTA) algorithm in SIS [15]. In
case the temporary relaxed solution for some gate is not feasible in dual V; technology, we
round down the allocated delay to select the best feasible implementation. This is equivalent
to mapping that gate to lower threshold voltage, in dual V; technology. In other words, the
temporary delay relaxation assigns any delay between delay-under-V, 5, and delay-under-V; j;qp
to a gate. If the relaxed delay is equal to delay-under-V} j;4, the gate will be assigned to V; pign,
otherwise it will be assigned to delay-under-V, ;.

We developed our own timing analyzer and leakage estimator in which, we look up the gate
leakage and delay numbers from tables that Khandelwal et al. [38] graciously provided. Their
study estimates the gate leakage and delay variations with respect to V; for gates in lib2.genlib
library. In their analysis, all leakage and delay curves are normalized with respect to the basic
inverter in the library.

Selected circuits from the MCNC benchmarks are mapped to the lib2.genlib library under
default settings. The global timing constraint is set to the netlists critical path under V} ;5. In
another set of experiments 5% relaxation is allowed to this timing constraint. The threshold
values depend on the benchmark and vary in the range of 0.3 to 0.5 volts. Nevertheless, our
algorithm and approach is quite generic and applicable to other threshold values. After assigning
low and high threshold voltages to gates, another timing analysis is performed to assure the
validity of results. In all cases, our algorithm met the required timing constraint. Our timing
analysis is based on the load dependent delay model in SIS. For each benchmark, the netlists
are mapped using the built-in "map” command with no switches. The choice of benchmarks,
SIS optimization, mapping switches and threshold voltages have been merely duplicated from
[38] to maintain consistency, and create a fair ground for comparison.

Table 1 summarizes our experimental results for dual V; technology. The first column of
the table illustrates the selected benchmarks. Second and third columns show the low and
high threshold voltages for each benchmark. We also repeated the same experiment with
three threshold voltage whose results are reported in Table 2. Although fabrication processes
with three threshold voltages might not be economical today, we performed this experiment
to demonstrate the effectiveness and extensibility of our methodology, in case such processes
become viable in future.

The choice of threshold voltages might be somewhat counter intuitive, since threshold volt-



ages depend on technology rather than benchmarks. We adopted different threshold voltages
for different benchmarks to be able to repeat the experiments in [38] and highlight the improve-
ments. However, our technique is general and does not depend on the technology parameters
such as threshold voltages.

Our study showed that for the choice of threshold voltages in [38], fabrication with three
threshold voltages does not improve the leakage savings significantly over dual V; technology.
Intuitively, this translates to saying that two threshold voltages is the sweet spot for leakage

optimization/cost metric.

Circuit Vi, Vi, Initial | Simul. BBTA-tight timing BBTA-5% relaxed timing
leakage | leakage | MILP leakage vs. init | MILP  leakage vs. init. vs. simul
9symml | 0.40 | 0.50 | 515.70 | 159.24 | 132.3 132.3 74.35 94.86 94.86 81.61 40.43
C1355 0.40 | 0.50 | 2913.40 | 1985.08 | 848.3 883.4 69.68 503.75  521.28 82.11 73.74
apex6 0.41 | 0.50 | 3870.40 | 1720.33 | 746.6 746.6 80.71 692.60  698.41 81.96 59.40
apex7 0.41 | 0.50 | 1235.10 | 1116.24 | 290.0 290.0 76.52 231.19  233.12 81.13 79.12
C2670 0.38 | 0.49 | 6440.30 | 1885.21 | 1008.3 1022.3 84.13 848.84  865.79 86.56 54.07
C499 0.40 | 0.47 | 3062.60 | 1989.22 | 982.6 986.4 67.79 801.23  803.34 73.77 59.62
b9 0.41 | 0.50 | 590.50 | 357.61 142.1 142.1 75.94 110.42 110.42 81.30 69.12
pair 0.41 | 0.50 | 7014.71 | 3954.37 | 1373.5 1387.4 80.22 | 1268.20 1268.20 81.92 67.93
rot 0.39 | 0.50 | 4585.10 | 1692.89 | 686.6 686.6 85.03 585.12  596.07 87.00 64.79
x4 0.40 | 0.50 | 2881.30 | 1267.31 | 999.1 999.1 65.32 423.56  423.56 85.30 66.58
too_large | 0.40 | 0.50 | 2413.50 | 768.16 | 408.5 408.5 83.07 385.38  385.38 84.03 49.83
| Average | | | 3229.33 | 1535.97 | 692.54 698.61 76.61% | 540.47 54549  82.42% 62.24% |

Table 1: The experimental results for design with two threshold voltages

The "Initial leakage” column shows the leakage of benchmarks under V;,, of the dual V;
technology. The next three columns report the result of applying ”simultaneous V; selection
and assignment” [38], our budgeting-based threshold assignment (BBTA) algorithm with tight
timing constraint, and BBTA with 5% relaxation in the timing constraint. In each case, we
report the optimal results obtained by solving the corresponding MILP problem instance. Note
that MILP formulations are NP-Complete in general, and finding the optimal solution by solving
the MILP instance is practically inefficient for large designs. We report the optimal solutions to
show the limits on power savings using dual threshold voltages. Column ”Simul leakages” was
calculated with 5% relaxation in the timing constraint (5% delay penalty). Hence, our algorithm
results with relaxed timing constraint are contrasted against them for fair comparison. The
comparison among normalized leakage current of the three methods is visualized in Figure 9.
For each benchmark, initial leakage, optimized leakage after application of ”simultaneous V;
selection and assignment”, our budgeting-based results and the optimal MILP-based results

are illustrated.
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Figure 9: Comparison of normalized leakage current with 5% delay penalty.

Under no delay penalty, the reduction in leakage current of the selected benchmarks is as
high as 85% and, 76.6% on average. The improvement can be further magnified with extra
relaxation in delay constraint. When 5% relaxation in timing is tolerated, the reduction in
leakage is 82.4% on average, for the selected benchmarks. With the same timing constraint,
simultaneous V; selection and assignment reduces the leakage 49.3%, compared to the initial
configuration of assigning all of the gates to Vjs,. The sub-columns titled as "vs. init” and
”vs. simul.” illustrate the comparison of the corresponding results, with initial leakage, and
leakage after applying simultaneous V; selection and assignment. It shows that our algorithm
significantly outperform Simultaneous V; selection and assignment. More importantly, our
algorithm comes very close to the limits of leakage savings using dual threshold voltages. It
approaches the optimal solution, by generating results that are occasionally optimal, and on

average only 0.74% worse than the optimal solution obtained by solving the MILP instances.

Circuit Vi Vig Vi Initial Simul. BBTA-tight timing BBTA-5% relaxed timing
leakage | leakage | MILP  leakage wvs. init | MILP  leakage vs. init. vs. simul
9symml | 0.40 [ 0.46 | 0.50 | 515.7 13754 | 117.3 1178 77.16 86.4 88.3 82.88 35.80
C1355 0.40 | 0.42 | 0.50 | 2913.4 | 1812.07 | 761.9  783.5 73.11 | 4555  462.8 84.11 74.46
apex6 0.39 | 0.42 | 0.50 | 3870.4 | 1539.98 | 722.6  734.3 81.03 | 693.8  693.8 82.07 54.95
apex7 0.39 | 0.42 | 0.50 | 1235.1 777.9 256.5  258.1 79.10 | 2285  230.1 81.37 70.42
C2670 0.37 | 0.46 | 0.50 | 6440.3 | 1545.1 | 810.5  813.6 87.37 | 668.4  669.3 89.61 56.68
C499 0.37 | 0.47 | 0.48 | 3062.6 | 1595.34 | 778.6  786.1 74.33 | 666.5 667 78.22 58.19
b9 0.40 | 0.42 | 0.50 | 590.5 | 308.72 | 136.9  138.4 76.56 | 109.2  109.2 81.51 64.63
pair 0.39 | 0.41 | 0.50 | 7014.7 | 3236.29 | 1343.2 1363.1  80.57 | 1261.5 12764  81.80 60.56
rot 0.38 | 0.41 | 0.50 | 4585.1 | 1194.89 | 632 632 86.22 | 567.5  569.5 87.58 52.34
x4 0.39 | 0.41 | 0.50 | 2881.3 | 1043.98 | 431.6 4316 85.02 | 423.1  423.1 85.32 59.47
toolarge | 0.38 | 0.41 | 0.50 | 2413.5 | 527.19 408 413 82.89 | 3715 3715 84.61 29.53
[ Average | _ _ | 3229.33 | 1247.18 [ 581.74 588.32  80.30% | 502.90  505.55 83.55 56.09 |

Table 2: The experimental results for design with three threshold voltages

The optimality of MILP solutions comes at the price of excessive optimization effort and



slow runtimes. In order to highlight the runtime advantage and practicality of our technique,
we measured the runtime of our algorithm and MILP solver on the same machine. Since some
of the circuits shown in Tables 1 and 2 are small, different algorithms experimented on those
benchmarks run quite fast and do not allow a fair runtime comparison. In order to address
this problem, we repeated the experiments on a number of large MCNC benchmarks. Table 3
illustrates the results.

The first column of the table shows the selected benchmarks. We ran the experiments with
both two and three threshold voltage technologies. We assumed the values 0.4 and 0.5 volts
for the low and high threshold voltages in dual V;, and 0.4, 0.43 and 0.50 for the three possible
threshold voltages in three V; technologies. The second column illustrates the initial leakage
of the circuit under lowest threshold voltage. The third column illustrates the improvements
gained by applying BBTA with 5% relaxation in timing constraints, and the forth column
compares the sub-optimality of our results compared to the optimal solutions obtained from
MILP solver. The last column reports the runtimes in seconds measured on the same computer
and relative speedup. Some columns are further divided to report the results for both two
and three threshold voltage technologies. We used the GNU Linear Programming Kit (GLPK)
version 4.2 to solve the MILP problem instances [17].

Circuit Initial | improvement(%) | sub-optimality(%) Runtime (sec)
leakage | 2 —V; 3—W 2—-V 33—V MILP-2 MILP-3 BBTA-2 BBTA-3 spdup-2 spdup-3
exbp 10037.2 85.15 85.27 0.05 0.01 10 12 0.25 0.9 40 13.33
alud 7398.2 84.78 85.11 0.10 0.03 11 14 0.26 0.78 42.31 17.95
misex3 8470.6 85.11 85.23 0 0.01 15 17 0.25 0.88 60 19.32
seq 10558.7 85.36 85.36 0 0 18 22 0.34 1.19 52.94 18.49
apex2 10980.8 85.36 85.36 0 0 20 24 0.37 1.34 54.05 17.91
des 18737.2 85.37 85.38 0 0 26 31 0.58 1.83 44.83 16.94
spla 24127.2 85.37 85.37 0 0 119 157 1.15 5.41 103.48 29.02
ex1010 21090.7 85.33 85.36 0 0 149 187 1.49 5.24 100 35.69
pdc 31294.4 85.35 85.37 0.01 0 251 303 1.57 7.54 159.87 40.19
| Average | 15855.0 | 85.24 85.31 | 0.02 0.01 | 68.78 85.22 0.70 2.79 73.05 23.20

Table 3: Leakage Optimization and runtime comparison of optimal (MILP) and BBTA algo-
rithms.

Our algorithm produces results that are optimal for some benchmarks, and very close to
the optimal solutions for some others. On average, our algorithm is only 0.01% and 0.02%
worse than the optimal solution for two and three threshold voltages, respectively. However,
our solutions are obtained in considerably shorter amount of time. On average, BBTA runs 73
times faster than solving the problem instance with GLPK, while the speedup is as high as 160
for pdc. Essentially, the growth in size of circuits considerably slows down the solution of MILP
instances, and highlights the runtime advantage of our technique. In all cases, BBTA provides

solutions that are nearly optimal.



7 CONCLUSIONS

We presented the idea of time budgeting to translate a global timing constraint, to component-
level local constraints. The translation is utilized to optimize some design utility such as power
or area. We showed that integral delay budgeting for maximization of total delay relaxation
can be efficiently and optimally solved via combinatorial techniques. The developed technique
can also be used to solve weighted budgeting under lower and/or upper bounds on timing
requirements.

We investigated the delay budgeting problem under discrete delay choices for components.
Although NP-compete in the general case, the problem can be transformed to integral delay
budgeting and effectively solved through known techniques, when certain relations between de-
lay choices exist. We leveraged the developed theory and applied it to the problem of threshold
voltage assignment in dual V; technology. Our technique reduces the design leakage current
by 76.6% or 82.4%, with no or 5% relaxation in timing constraint, respectively. It outper-
forms a recent simultaneous V; selection and assignment technique by 33%. On another set
of benchmarks, our algorithm improves the leakage by more than 85% with 5% delay penalty.
Compared to the optimal solutions obtained by solving the MILP instances, our algorithm is
only 0.02% off, while it ran 73 times faster than GLPK MILP solver.
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