
Implementation-Aware Buffer-Throughput Tradeoff
in Embedded Stream Applications

Kamyar Mirzazad∗, Matin Hashemi∗, Volodymyr Khibin†, and Soheil Ghiasi†

∗Sharif University of Technology †University of California, Davis
{kammirzazad,matin}@sharif.edu {vykhibin,ghiasi}@ucdavis.edu

Abstract. We study the tradeoff between throughput and interprocessor buffer
size of streaming applications specified as SDF graphs that are to be imple-
mented on MPSoC platforms. We demonstrate the inaccuracy of the analysis
when implementation constraints are not taken into consideration, and propose
a rigorous SDF graph transformation which brings implementation awareness
into the state of the art tradeoff analysis technique. Cycle accurate simulations
show that our approach results in significantly more accurate estimates.

1 Introduction

A streaming application modeled in SDF graph is represented as a set of concur-
rent actors that communicate by sending and receiving messages (a.k.a. tokens) via
point-to-point FIFO buffers [6, 12]. According to SDF operational semantics, every
actor consumes (produces) its input (output) tokens upon start (completion) of its
execution. An implementation-oblivious analysis would have to honor model execu-
tion according to the operational semantics. In real implementations, however, not
all of actor’s input (output) tokens are consumed (produced) at exactly the same
time. For example, if actors are implemented as software modules running on em-
bedded single-issue processor cores, a sequential order is implicitly imposed on the
consumption (production) of input (output) tokens. We utilize the state of the art
implementation-oblivious buffer-throughput tradeoff analysis developed by Stuijk et
al [11], and demonstrate that its tradeoff characterization is conservative.

To address the resulting inaccuracy, we propose to take target implementation
into account during analysis. The implementation information that we expose to the
analysis engine is quite limited in nature. Thus, the analysis is not tied to any spe-
cific architecture. We propose SDF graph transformations to capture the sequential
nature of software execution in MPSoC implementations, and to rigorously embed
implementation awareness into the model. Experiments with a number of streaming
applications show that the implementation-awareness yields significantly more accu-
rate and smaller buffer sizes (9X on average) for the same throughput.

Compared to cycle accurate simulation of a specific MPSoC implementation, the
error of the proposed method in throughput estimation is 19%, while it runs over
100X faster. Thus, the proposed implementation-aware analysis offers a favorable
tradeoff between analysis solely based on SDF operational semantics (implementation-
oblivious), and cycle-accurate simulation. The high degree of throughput estimation
accuracy and substantial savings in runtime are due to the fact that the proposed
approach considers only key pieces of information from target implementation, as
opposed to over-emphasizing or ignoring implementation-specific information.

2 Preliminaries

2.1 Synchronous Dataflow (SDF) Model

SDF applications are modeled as a directed graph G(V,E), where vertex v ∈ V
represents an actor, and edge uv ∈ E represents a point-to-point FIFO channel from
actor u to v. Actors communicate by sending/receiving data items, called tokens, via
the channels. Actor v is a tuple (In,Out, ε) and channel uv is a tuple (u, v, rp, rc).
In(v) ⊂ E and Out(v) ⊂ E are input and output channels of v, and ε(v) is its
execution time, i.e., the average time actor v takes to perform its computation in an
implied implementation (Figure 1.A). For a channel uv ∈ E, the number of tokens
produced by u for channel uv, on every firing of u, is called the production rate of uv
and is denoted by rp(uv). Consumption rate rc(uv) is defined similarly. Data rates
are constant and actor execution is meant to continue infinitely [6, 11].

2 Implementation-Aware Buffer-Throughput Tradeoff

a
100

b
300 c

200

20
1050

20(A)

10 50

(B) P2

P3P1

// task a on P1
token ab[20];
token ac[10];

while(){
a(ab,ac);
write(ab,20,P2);
write(ac,10,P3);

}

// task b on P2
token ab[50];
token bc[10];

while(){
read(ab,50,P1);
b(ab,bc);
write(bc,10,P3);

}

// task c on P3
token bc[20];
token ac[50];

while(){
read(bc,20,P2);
read(ac,50,P1);
c(bc,ac);

}

void write (token x [],
int n,
int dst){

for i=[0,n)
for j=[0,s)
writePacket(x[i],j,dst);

}

void read (token x [],
int n,
int src){

for i=[0,n)
for j=[0,s)
readPacket(x[i],j,src);

}

(B)

(A)

// task ‘a’ on P1
token ab[20];
token ac[10];

while(){
a(ab,ac);
write(ab,20,P2);
write(ac,10,P3);

}

// task ‘b’ on P2
token ab[50];
token bc[10];

while(){
read(ab,50,P1);
b(ab,bc);
write(bc,10,P3);

}

// task ‘c’ on P3
token bc[20];
token ac[50];

while(){
read(bc,20,P2);
read(ac,50,P1);
c(bc,ac);

}

void write (token* x, int n, int dst){
for i=[0,n)
for j=[0,s)
writePacket(x[i],j,dst);

}

void read (token* x, int n, int src){
for i=[0,n)
for j=[0,s)
readPacket(x[i],j,src);

}

(B)

(A)

Fig. 1. A) Example SDF graph (actors and channels are annotated with execution times
and data rates, respectively.) B) An implied implementation of self-timed execution.

SDF Operational Semantics: Upon firing of actor v ∈ V , it simultaneously con-
sumes rc(uv) tokens from all of its input channels uv ∈ In(v), then carries out its
computation in ε(v) time units, and finally it simultaneously produces rp(vw) tokens
on all of its output channels vw ∈ Out(v).

Firing Condition: Actor v can fire at time t, if and only if (I) previous firing of v
is completed , and (II) enough tokens are available on all its input channels, that is
∀uv ∈ In(v) : γ(uv, t) ≥ rc(uv), where γ(uv, t) quantifies the number of tokens stored
in uv. In Figure 1.A we have ε(b) = 300, rc(ab) = 50 and rp(bc) = 10. Thus, upon
availability of at least 50 tokens on ab, actor b can fire. In every firing of b, 50 tokens
are simultaneously consumed from ab, then the computation of actor b is carried out
in 300 time units, and finally 10 tokens are simultaneously produced on channel bc.

2.2 Target Platform Model

We target MPSoC platforms whose abstract model for SDF execution can be viewed
as a distributed-memory message-passing system with point-to-point interprocessor
FIFO buffers (Figure 1.B). This abstract view is directly implemented in some plat-
forms such as AsAP [13] and TILE64 static network [3]. Some other platforms are
programmed to implement virtual buffers with software assistance (e.g., in shared-
memory systems, via shared arrays in memory along with proper locking).

We focus on self-timed execution which implicitly assumes allocation of dedicated
core to every actor (Figure 1.B). Under self-timed execution, an actor fires as soon
as its firing conditions are satisfied [11]. In many cases, an embedded application is
developed on an MPSoC target by splitting the application into many actors and
placing each actor on one core (e.g., 1080p H.264 encoder on AsAP [14]). Otherwise,
the collection of actors allocated to the same processor under static schedule can be
viewed as a coarse-grain actor in an up-scaled graph that conforms to our model.

2.3 Buffer-Throughput Tradeoff

Throughput is one of the most important quality metrics in streaming applications. A
number of factors, such as actor execution times, interprocessor buffer capacities and
SDF graph cycles, impact steady-state throughput1 [4]. In practice, the FIFO channels
are implemented with limited buffering capacity, which can limit the throughput
[11]. Characterizing the tradeoff between interprocessor buffer sizes and application
throughput is quite important, as typical design scenarios require the implementation
to meet performance requirement at minimum buffer size allocation.

Throughput: Throughput of an actor v is defined as the average number of v
firings per unit time [4], i.e., τ(v) = limT→∞

1
T ×

(
of v firings from t = 0 to t = T

)
.

Since SDF data rates are constant, in the steady state, the number of times different
actors fire are a constant factor of one another. Hence, normalized throughput, which
decouples the choice of actor from SDF throughput, is defined as τ = τ(v)÷ q(v) for
an arbitrary actor v ∈ V , where, q(v) is the number of times v fires in one iteration
of the simplest periodic schedule [4, 6]. In our example, q(a, b, c) = (5, 2, 1).

Buffer size: Buffer size β(uv) is defined as capacity of the interprocessor FIFO
buffer which implements channel uv ∈ E. In other words, β(uv) is the maximum
number of tokens that channel uv can hold at any time during execution. Formally,
γ(uv, t) ≤ β(uv). Total buffer size is defined as |β| =

∑
∀uv∈E β(uv).

2.4 Tradeoff Analysis Based on SDF Operational Semantics

According to SDF operational semantics, after actor u fires and completes its compu-
tation, at least rp(uv) empty spaces are required on every output channel uv ∈ Out(u)
in order to write tokens produced by u. Otherwise, since sufficient space is not avail-
able, the actor is stalled at the end of its firing. The actor will resume execution to
complete its previously stalled firing only after enough space becomes available.

1
We use the terms “throughput” and “steady-state throughput” interchangeably.

Implementation-Aware Buffer-Throughput Tradeoff 3

a a a a a a a a a
b b b

c

0 100 200 300 400 500 600 700 800 900 1000 1100 1200
time

buffers are empty thus
γ=γ(ab,ac,bc)=(0,0,0)
a fires

a ends
γ=(40,20,0)
a fires

a ends (which puts
20 tokens on ab &
10 tokens on ac)
γ=(20,10,0)
a fires a ends

γ=(60,30,0)
a fires
b fires (which consumes
50 tokens from ab)
γ=(10,30,0)

a ends
γ=(30,40,0)
a fires

b ends
γ=(50,50,10)
b fires
γ=(0,50,10)
a stalls (not enough
empty space in ac)

a ends
γ=(50,50,0)
a fires

b ends
γ=(0,50,20)
c fires (which consumes 20
tokens from bc and 50 from ac)
γ=(0,0,0)
a resumes (ac has enough space)
a ends
γ=(20,10,0)
a fires

a ends
γ=(40,20,0)
a fires

a ends
γ=(60,30,0)
c ends
a fires
b fires
γ=(10,30,0)

Fig. 2. Throughput Analysis based on SDF operational semantics when β(ab, ac, bc) =
(60, 50, 20). At t = 1100, states of actors and channels are the same as t = 300.

Stall and Resume Conditions: Under self-timed execution assumption, a running
actor u ∈ V fired at time t1 stalls at time t2 > t1 if and only if ∃uv ∈ Out(u) :
β(uv) − γ(uv, t2) < rp(uv) and resumes operation at a time t3 > t2 if and only if
∀uv ∈ Out(u) : β(uv)− γ(uv, t3) ≥ rp(uv).

Throughput is degraded if actors stall due to unavailable space. For a given set
of buffer sizes β, throughput can be obtained by considering the firing, stall and
resume conditions. Stuijk et al. developed a Pareto point exploration algorithm to
find throughput vs. total buffer size of an SDF graph [11]. The algorithm works by
executing the SDF graph, for a judiciously selected subset of buffer size allocations,
while maintaining the state of actors and channels. Each step of application execution
is modeled as a transition in the augmented state space of actors and channels. When
a state is revisited for the first time, the execution arrives its steady-state, as a cycle in
the state space is formed. Subsequently, throughput τ(v) is calculated as the number
of v firings during the cycle, divided by the amount of time lapsed in the cycle. The
above procedure is repeated for different buffer sizes in order to evaluate all Pareto
points [11]. We later utilize this algorithm in our experimentation in Section 4.

Figure 2 demonstrates throughput calculation for our running example of Figure
1 when β(ab, ac, bc) = (60, 50, 20). At time t = 1100, the progress and capacities of
all actors and channels are equal to those of time t = 300. Thus, the steady state is

reached, and τ(b) = 2
1100−300 and τ = τ(b)

q(b) = 1
800 . If the buffer size of channel ac is

increased from 50 to 70, throughput improves from 1/800 to 1/600, because channel
ac becomes full 200 time units later, and actor a stalls for 200 fewer time units.

Deadlock: When at least one stalled actor never resumes operation, then deadlock
happens, in which case, overall throughput τ becomes zero. By analyzing SDF oper-
ational semantics, Ade et al. [1] proved the following theorem regarding deadlocks.

Theorem 1. If there exists a channel uv ∈ E with buffer size β(uv) less than
rp(uv) + rc(uv)− gcd(rp(uv), rc(uv))

then deadlock happens between actors u and v 2. We denote the above equation with
βmin(uv). In our example, βmin(ab, ac, bc) = (60, 50, 20). Note that the theorem does
not state if deadlock happens when “for all” channels uv ∈ E, β(uv) ≥ βmin(uv). In
such a case, more thorough deadlock analysis is required [15].

3 Implementation-Aware Buffer-Throughput Analysis

We propose improving the analysis by taking into account very few pieces of infor-
mation on the target MPSoC implementation in form of the following abstract view.

3.1 Abstract View of Implementation

Figure 3.A demonstrates our abstract view of embedded software that implements
the SDF application on a MPSoC. First, the required tokens are read from input
FIFO buffers, next the actor’s transformation computation is executed, and finally,
the generated data is written to output buffers. This sequence is repeated infinitely.
Let’s define “task” as “implementation of actor” according to this abstract view.

Figure 3.B shows the typical implementation of communication API calls. The
SDF model allows tokens of arbitrary size, hence, one may define a large block of

2
Proofs of all theorems are omitted due to space limitation.

4 Implementation-Aware Buffer-Throughput Tradeoff

a
100

b
300 c

200

20
1050

20(A)

10 50

(B) P2

P3P1

// task a on P1
token ab[20];
token ac[10];

while(){
a(ab,ac);
write(ab,20,P2);
write(ac,10,P3);

}

// task b on P2
token ab[50];
token bc[10];

while(){
read(ab,50,P1);
b(ab,bc);
write(bc,10,P3);

}

// task c on P3
token bc[20];
token ac[50];

while(){
read(bc,20,P2);
read(ac,50,P1);
c(bc,ac);

}

void write (token x [],
int n,
int dst){

for i=[0,n)
for j=[0,s)
writePacket(x[i],j,dst);

}

void read (token x [],
int n,
int src){

for i=[0,n)
for j=[0,s)
readPacket(x[i],j,src);

}

(B)

(A)

// task ‘a’ on P1
token ab[20];
token ac[10];

while(){
a(ab,ac);
write(ab,20,P2);
write(ac,10,P3);

}

// task ‘b’ on P2
token ab[50];
token bc[10];

while(){
read(ab,50,P1);
b(ab,bc);
write(bc,10,P3);

}

// task ‘c’ on P3
token bc[20];
token ac[50];

while(){
read(bc,20,P2);
read(ac,50,P1);
c(bc,ac);

}

void write (token* x, int n, int dst){
for i=[0,n)
for j=[0,s)
writePacket(x[i],j,dst);

}

void read (token* x, int n, int src){
for i=[0,n)
for j=[0,s)
readPacket(x[i],j,src);

}

(B)

(A)

Fig. 3. Abstract view of A) software implementation, and B) communication APIs.

data (e.g., a video frame) as a single token. However, interconnect networks have
limited bandwidth and not necessarily capable of transferring one token at a time
(e.g., one video frame takes multiple clock cycles). In practice, each token may need

to be split into s = d sizeof(token)
sizeof(packet)e packets and be transferred sequentially as shown

in the inner loop in Figure 3.B. The outer loop repeats this process for every token
in the array. For brevity, we assume s = 1 in the rest of this paper. Our approach,
however, is readily extensible to other packet sizes.

Note that this abstract view refers to very general implementation guidelines,
rather than a specific platform or software coding style. A number of different con-
crete implementations conform to the abstract view, albeit with different parameters.
For example, many interprocessor API calls, which appear atomic to the programmers,
are implemented by splitting large data into smaller pieces and transferring them se-
quentially. As another example, in software implementations conceptually-concurrent
token transfer would have to be implemented in some order.

3.2 Implications of Implementation-Awareness

The sequential nature of instruction execution on single-issue processor cores implies
that a task can write (read) only one token to (from) only one channel at a time.
This additional information on implementation leads to an operation that is quite
different from the pure SDF model in which actors write to (read from) all channels
simultaneously at arbitrary rates.

As shown in Figure 2, analysis based on SDF model concluded that throughput
for buffer size β(ab, ac, bc) = (60, 50, 20) is τ = 1

800 . Actor c waits for data from actor
b and upon availability of sufficient number of tokens produced by b, actor c fires and
immediately consumes all of them.

The implementation, however, behaves differently by allowing tasks to only read
and write one token at a time (Figure 3). Task c (processor P3) stalls when it tries
to read for the first time, since there is no token available on channel bc. Once task b
(processor P2) places the first token on this channel, the stalled readPacket function
in c resumes execution and reads that token. In this setting, therefore, β(bc) = 1 would
be sufficient to achieve the same throughput as shown in Figure 2. This amounts to
a substantial 20X reduction in buffer size of bc without any throughput degradation.
The example underscores the inaccuracy of implementation-oblivious analysis, and
motivates us to consider the implementation in buffer-throughput analysis.

3.3 Implementation-Aware SDF Graph Transformation

Our implementation-aware approach to characterization of buffer-throughput tradeoff
works in two steps. First, we transform the original SDF graph G by embedding lim-
ited information of the nature of target implementation into the graph. Subsequently,
the transformed SDF graph G′ is analyzed by leveraging an implementation-oblivious
analysis technique, described in Section 2.4, to obtain its buffer-throughput tradeoff
points (Figure 6.B).

Based on the abstract view of implementation, tasks can read (write) only one
token at a time (property I), and from (to) only one channel at a time (property II).
Property I is modeled by adding virtual reader and writer actors, and property II is
captured by adding virtual sync actors to the SDF graph.

Reader and Writer Actors: For every channel uv ∈ E, a virtual writer actor W
is added at the output of actor u, and a virtual reader actor R is added at the input of
actor v, such that the output of actor W feeds data into the input of actor R (Figure
4.A). All reader and writer actors have identity data transformation functionality and
thus, do not alter the data.

Implementation-Aware Buffer-Throughput Tradeoff 5

Reader and writer actors have data rates of 1. For every firing of u, W fires
rp(uv) times sequentially (auto-concurrency is not allowed), and consumes the tokens
produced by u one at a time. Similarly, for every rc(uv) firings of R, actor v fires once.
Buffer sizes for virtual channels uW and Rv are set to rp(uv) and rc(uv), respectively.
Buffer size of channel uv in the original graph determines the buffer size of channel
WR in the transformed graph (Figure 4.A).

Writer actor W models behavior of the writePacket function call (Figure 3.B).
rp(uv) firings of W , which produce rp(uv) tokens, model the loop and iterative calls to
writePacket function in the write API call in execution of task u. Intuitively, virtual
channel uW models the local processor memory that temporarily stores the output
tokens of u (e.g., token ab[20] in task a in Figure 3.A). Similarly, actor R models the
readPacket call, and channel Rv models the local memory that temporarily stores
the input tokens of a task v (e.g., token ab[50] in task b in Figure 3.A).

Theorem 2. Addition of reader/writer actors preserves SDF functionality.

As a result of the above transformation, every actor v ∈ V is transformed into a
subgraph Gv (Figure 4.B). Let |In(v)| and |Out(v)| denote the number of input and
output channels of v. Let ci for i ∈ [1, |In(v)|] denote the consumption rates for
input channels of v, and let pj for j ∈ [1, |Out(v)|] denote the production rates for
output channels of v. Subgraph Gv has |In(v)| reader actors R1, R2, . . . R|In(v)|, and
|Out(v)| writer actors W1, W2, . . . W|Out(v)|. Production and consumption rates and
buffer sizes of virtual channels in Gv are set as:

virtual channel rp rc β
Riv 1 ci ci
vWj pj 1 pj

A firing of actor v in G corresponds to the following sequence of events in subgraph
Gv in the transformed graph. Reader actor Ri fires ci times. As a result, it reads ci
tokens from the corresponding input channel of Gv and writes them to virtual channel
Riv. At this point, actor v fires once and consumes these tokens and produces pj
tokens on virtual channels vWj . Next, virtual actor Wj fires pj times, and copies the
tokens to the corresponding output channel of Gv. That is, subgraph Gv models the
execution of task v based on the implementation view discussed in Section 3.1.

Sync Actors: In subgraph Gv developed above, reader actors, writer actors and
actor v can potentially fire simultaneously. In order to correctly model the sequential
nature of task execution based on the abstract implementation view, we need to
eliminate the simultaneity. We add a number of virtual sync actors to every subgraph
Gv in order to enforce the following sequential ordering on the execution of actors.

R1, R2, . . . R|In(v)|, v,W1,W2, . . .W|Out(v)|
This sequential ordering conforms to the implementation of task v, where first the

read API calls, next the computation of actor v, and finally the write API calls are
executed on the processing core (Figure 3.A).

To enforce the above ordering in Gv, we add virtual sync actors SRi,i+1 between Ri
and Ri+1, and virtual sync actors SWj,j+1 between Wj and Wj+1 (e.g., S1, S2 and S3

in Figure 5.A), and set data rates and buffer size of the newly added virtual channels
(marked blue in the figure) as follows:

virtual channel rp rc β virtual channel rp rc β
RiS

R
i,i+1 1 ci ci WjS

W
j,j+1 1 pj pj

SR
i,i+1Ri+1 ci+1 1 ci+1 SW

j,j+1Wj+1 pj+1 1 pj+1

The parameters are carefully selected such that upon ci firings of Ri, S
R
i,i+1 fires

once, and then Ri+1 can fire ci+1 times. Similarly, upon pj firings of Wj , S
W
j,j+1 fires

once, and then Wj+1 can fire pj+1 times. The construction ensures that the desired
ordering is enforced by creating appropriate dependencies.

Lastly, we add a sync actor between W|Out(v)| and R1 (e.g., S4 in Figure 5.B). This
creates a cycle in Gv and prohibits concurrent execution of actors (e.g., a reader actor
and a writer actor). Specifically, it stops R1 from firing until W|Out(v)| fires p|Out(v)|
times. Note that c1 initial tokens are required on this cycle in order to avoid deadlock,
since R1 fires c1 times for every firing of v.

Sync actors has no effect on the transfer function of reader/writer actors. In par-
ticular, the reader and writer actors continue to copy application data (black and
green channels in Figure 5.B), and do not mix up the data with dependency channels
of the sync actors (blue channels in Figure 5.B).

6 Implementation-Aware Buffer-Throughput Tradeoff

v

R1

R2

W1

W2

S2

S1

S3

W3

S4

c1

c2

p1

p3

p2

11

1 1

1
1

1 1

11
1

1

1

c1

c2

p1

p2

1

1

p2

p3

1

1

1p3c1

c1 initial tokens

W
11 11

u
rp(uv)

v
rc(uv)(A) rp(uv) rc(uv)

v

R1

R2

W1

W2

W3

v

c1

c2

p1

p3

p2
c1

c2

p1

p3

p2

11

1 1

11

1 1

11(B)

β(uv) β =β(uv)
u vR

Gv

Gv

v

R1

R2

W1

W2

S2

S1

S3

W3

c1

c2

p1

p3

p2

11

1 1

1
1

1 1

11

1

1

c1

c2

p1

p2

1

1

p2

p3

1

1

Gv

(A) (B)

β =rp(uv) β =rc(uv)

Fig. 4. A) Writer and reader actors for channel uv ∈ E. Virtual actors and channels are
shown in green. B) The transformed subgraph Gv for an actor v with 2 incoming and 3
outgoing channels.

v

R1

R2

W1

W2

S2

S1

S3

W3

S4

c1

c2

p1

p3

p2

11

1 1

1
1

1
1

11

1

1

1

c1

c2

p1

p2

1

1

p2

p3

1

1

1
p3c1

c1 initial tokens

W
11 11

u

rp(uv)

v

rc(uv)
(A)

rp(uv) rc(uv)

v

R1

R2

W1

W2

W3

v

c1

c2

p1

p3

p2

c1

c2

p1

p3

p2

11

1 1

11

1 1

11(B)

β(uv) β(uv)
u vR

Gv

Gv

v

R1

R2

W1

W2

S2

S1

S3

W3

c1

c2

p1

p3

p2

11

1 1

1
1

1
1

11

1

1

c1

c2

p1

p2

1

1

p2

p3

1

1

Gv

(A) (B)
Fig. 5. A) Sync actors S1, S2 and S3 enforce the sequential order R1, R2, v,W1,W2,W3 in
subgraph Gv of Figure 4.B. The newly added virtual actors & channels are shown in blue.
B) Sync actor S4 prohibits auto-concurrency.

Theorem 3. Addition of sync actors preserves the original SDF functionality.
It follows that the transformed subgraph Gv in G′ correctly models the execution

of task v according to the abstract view discussed in Section 3.1.

3.4 Throughput Analysis

Since sync actors are added to only enforce a sequential order among read and write
operations, they must not have any impact on the total execution time of Gv. We
conservatively assume that the information regarding platform-dependent latency of
read and write operations are unavailable. Hence, the execution times of read and
write API calls and the data transformation computation of a task are viewed to be
inseparable. To capture this in Gv, we set the execution times of reader and writer
actors to zero (ε = 0), and assign the entire execution time of the original actor to v.
In case of access to specific parameters of the target architecture, one could improve
the model fidelity by separating the latency of read and write operations from data
transformation computation, and assigning more accurate execution times to actors
in Gv.

Theorem 4. Given an SDF graph G and a set of buffer size choices β for channels
in G, throughput of transformed graph G′ is not less than G.

Theorem 5. The maximum throughput of G and G′, which is obtained when all
channels of G have infinite buffer size, are equal.

3.5 Related Work

Many previous analysis algorithms are solely based on SDF operational semantics [2,
4, 8, 11]. To increase accuracy in throughput analysis, Moonen et al. [7] proposed to
construct a cyclo-static dataflow (CSDF) graph from the given SDF graph by splitting
the computation of a SDF task into multiple phases (white box actor model). Our
proposed technique, however, focuses on accurate modeling of token production and
consumption order (black box actor model), and does not require manual decompo-
sition of actor computation.

Oh and Ha [9] proposed a fractional rate model to reduce the buffer size require-
ment. For applications that work on large blocks of data, e.g., video frames, the
dataflow graph is manually transformed into another graph in which, actors operate
on smaller pieces of data, e.g., one row of a video frame. As a result the buffer require-
ment is reduced (white box actor model). Our proposed technique does not require
modification of tasks’ functional behavior, and treats them as unknown black boxes.

Implementation-Aware Buffer-Throughput Tradeoff 7

StreamIt Compiler

Benchmark # of
actors

of
channels Benchmark # of

actors
of

channels

beamformer 26 29 matmul 23 23
bitonicsort 10 10 mergesort 31 37
dct 16 21 mpeg 23 26
des 17 18 serpent 22 23
fft 17 16

Parallel
Code

(.c files)

SDF
Graph G

(C) Cycle-Accurate Simulation

Graphite
Simulator

Measured
Throughput

Implementation-Aware
Graph Transformation

SDF
Graph G’ Tradeoff Analysis

based on SDF
Operational Semantics

Tradeoff Analysis
based on SDF

Operational Semantics

(A) Implementation Oblivious Analysis

(B) Implementation-Aware Analysis

StreamIt
Benchmark
(.str file)

Compile
(gcc -O2)

Binary

Pareto
Points

Pareto
Points

Buffer Size

Extract
SDF

Graphite
Comm.

API

Graphite
CPI

SDF
Graph

G’
(B)

Implementation-Oblivious
Tradeoff Analysis

Tradeoff
Points

SDF
Graph

G

Reader
& Writer
Actors

Sync
Actors

(A)
Implementation-Aware
Graph Transformation

Implementation-Aware Buffer-Throughput Tradeoff Analysis

Implementation
Model

Fig. 6. Experimentation flow: A) Baseline implementation-oblivious buffer-throughput
tradeoff analysis based on SDF operational semantics. B) Proposed implementation-aware
analysis. C) Cycle-accurate simulation of the compiled binary code.

4 Experiments

To evaluate the proposed technique we employ StreamIt benchmarks. StreamIt is a
programming language and compiler for stream programs [12]. For every benchmark
application, we execute StreamIt compiler (Figure 6, top left) and extract SDF graph
topology, data rates (rp and rc) and estimates of actor execution time (ε). Actor
execution times are estimated by the StreamIt compiler based on rough mapping
between high-level StreamIt language constructs and typical processor instruction
sets. Original cycle per instruction (CPI) estimates of StreamIt compiler are based on
the RAW processor. We have modified StreamIt such that its CPI estimates match
Graphite processor model [5]. Graphite is a cycle-accurate MPSoC simulator, and is
used as the target platform in our experimentation.

The proposed implementation-aware tradeoff analysis involves two steps (Figure
6.B). First, we apply the proposed transformation discussed in Section 3 and transform
the SDF graph G into G′. The transformation is based on our abstract view of target
implementation as discussed in Section 3.1, which includes very limited information
on the target implementation (sequentially-ordered read and write operations) into
graph G′.

Next, we perform buffer-throughput tradeoff analysis on G′ based on SDF oper-
ational semantics, as discussed in Section 2.4. In this part, we utilize SDF3 [10, 11],
which implements the tradeoff analysis algorithm explained in Section 2.4. We have
modified SDF3 to force it to ignore the virtual channels introduced by the transfor-
mation, while exploring the search space. Buffer size of the virtual channels are also
omitted from the reported total buffer size. The analysis yields a set of pareto optimal
points between the total interprocessor buffer size, |β|, and the corresponding overall
throughput, τ . To compare the proposed approach against an established standard,
we also perform the implementation-oblivious tradeoff analysis directly on graph G
(Figure 6.A).

Figure 7 shows the result of tradeoff analysis for both the proposed implementation
aware and the baseline implementation oblivious techniques. The experimental results
show that for all benchmarks the implementation-aware tradeoff analysis yields much
smaller buffer sizes than the implementation-oblivious analysis for the same level of
throughput. This confirms our claim that the analysis solely based on SDF operational
semantics is overly conservative and yields far larger buffer sizes than required. In
addition, it empirically confirms Theorem 5, since both approaches always result
in the same maximum throughput. In case of mpeg application, for example, the
implementation oblivious technique reports that a total buffer size of |β| = 15243
is required to achieve the maximum throughput, while the implementation aware
analysis reduces this to |β| = 326, which is a 46X smaller.

Figure 8 highlights the substantial reduction in total buffer size requirement, using
the data of Figure 7. The horizontal axis is in logarithmic scale (base 3) and compares
the implementation oblivious vs. implementation aware ratio of total buffer size, |β|,
required to achieve the maximum throughput, 80% of the maximum throughput, 50%

8 Implementation-Aware Buffer-Throughput Tradeoff

`

beamformer bitonicsort dct

des fft matmul

mergesort mpeg serpent

7

9

11

13

0 100 200 300

τ

| β |
30

50

70

90

0 70 140 210

τ

| β |
9

11

13

15

0 250 500 750

τ

| β |

0

1.1

2.2

3.3

0 8000 16000 24000

τ

| β |
0.22

0.24

0.26

0.28

0 1600 3200 4800

τ

| β |
0.0

0.1

0.2

0.3

0 2000 4000 6000

τ

| β |

9

11

13

15

0 250 500 750

τ

| β |
0.1

0.2

0.3

0.4

0 5000 10000 15000

τ

| β |
0.2

0.4

0.6

0.8

0 900 1800 2700

τ

| β |

7
9

11
13

0 110 220 330

τ

| β |

Implementation-Oblivious Implementation-Aware

1 3 9 27 81 243

beamformer

bitonicsort

dct

des

fft

matmul

mergesort

mpeg

serpent

Average

max throughput 80% of max 50% of max deadlock

Fig. 7. Pareto points between total interprocessor buffer size, |β|, and the correspond-
ing throughput, τ , for both the baseline implementation-oblivious and the proposed
implementation-aware tradeoff analysis techniques. The proposed method yields substan-
tially improved buffer size estimates under identical throughput constraints.

of the maximum throughput, and to avoid deadlock, respectively. On average (geo-
metric mean), using the proposed implementation aware technique, total buffer size
|β| required to achieve the maximum throughput, 80% of the maximum throughput,
50% of the maximum throughput, and to avoid deadlock is reduced by a factor of
8.5X, 9.0X, 8.5X and 9.3X, respectively.

Figure 9 shows the ratio of the time it takes to run the proposed implementation
aware tradeoff analysis technique over the time it takes to run the baseline implemen-
tation oblivious technique. The ratio heavily depends on the application, e.g., 98X for
mpeg and 0.11X for fft benchmark. On average (geometric mean), the ratio is 7.3X.
The workstation employed in our experiments has 8 GB of memory and 3.4 GHz Core
i7 processor with 8 MB of cache.

To quantify the accuracy of estimates produced by the baseline and proposed
techniques, we set out to generate executable binaries and simulate their performance
under different buffer sizes using the Graphite cycle-accurate simulator [5] (Figure
6.C). Specifically, we utilize StreamIt compiler (RAW processor backend) and generate
parallel software code in form of multiple C files from StreamIt SDF applications3.
We parse the C files and replace generated RAW interprocessor communications with
Graphite interprocessor communication API calls. Next, we compile the generated
code into binary using gcc -O2 command, and pass the binaries to Graphite for
cycle-accurate simulation (Figure 6.C).

For every benchmark, we adjust the buffer size distribution (β(uv) for all chan-
nels uv) to match buffers that result in the maximum throughput according to
implementation-aware model analysis. That is, we select buffer size distribution of
the orange diamond-shaped point with the highest throughput in every pareto chart
in Figure 7. We have slightly modified Graphite to simulate interprocessor channels
with limited buffer size. Since the simulated number of cycles can vary from one ap-
plication iteration to the next (due to control flow variations, cache effects, etc), we
measure throughput by examining its steady-state long term average. That is, we
continue the simulation until no significant change (no more than 1%) in long term
throughput is observed.

Figure 10 compares the throughput esimated by implementation aware and im-
plementation oblivious analysis techniques for the selected buffer size distribution,

3
We also experimented with SDF3 benchmarks. However SDF3 benchmarks merely include graph pa-
rameters and not task implementations. Thus, we could only perform the experiments shown in Figure
6.A and 6.B and not 6.C. Detailed results are omitted due space limitations. For SDF3 benchmarks, on
average, buffer size reduction using impl.-aware analysis is 6X, and runtime ratio of impl.-aware over
impl.-oblivious analysis is 5X.

Implementation-Aware Buffer-Throughput Tradeoff 9

er size savings

beamformbitonicsor dct des fft matmulmergesor mpeg serpent Average
min 76 30 102 835 2014 2014 142 2043 1716

sdf3 50 76 30 102 1035 2014 2014 142 2043 1916
80 156 210 302 7935 3214 4814 342 2143 2016

100 276 210 702 22535 4814 6014 742 15243 2416
min 29 10 21 118 16 23 37 26 223

ours 50 29 10 21 218 16 23 37 26 323
80 29 40 21 318 16 223 137 126 423

100 29 40 521 618 316 323 337 326 423

max through 9.52 5.25 1.35 36.46 15.23 18.62 2.20 46.76 5.71 8.49
80% of ma 5.38 5.25 14.38 24.95 200.88 21.59 2.50 17.01 4.77 9.03

ratio 0% of ma 2.62 3.00 4.86 4.75 125.88 87.57 3.84 78.58 5.93 8.54
avoid deadlo 2.62 3.00 4.86 7.08 125.88 87.57 3.84 78.58 7.70 9.28

accuracyth(bmax)
beamformbitonicsor dct des fft matmulmergesor mpeg serpent Average

sdf3 0 46.45 12.50 0 0 0 10.87 0 0
ours 12.085 87.03 14.29 3.19 0.28 0.21 14.30 0.31 0.74
sim 12.366 64.65 14.75 2.22 0.27 0.18 14.66 0.20 0.89

ratio p. Oblivio 0 0.7184 0.8473 0 0 0 0.7416 0 0
Imp. Awar 0.9772 1.3461 0.9684 1.438 1.0117 1.1431 0.9758 1.5522 0.8322 1.06842

Cycle-Accurate Sim 1 1 1 1 1 1 1 1 1

error sdf3 -100 -28.161 -15.268 -100 -100 -100 -25.84 -100 -100
ours -2.2783 34.613 -3.1638 43.798 1.1717 14.312 -2.4174 55.222 -16.785

abs sdf3 100 28.161 15.268 100 100 100 25.84 100 100 74.3632
ours 2.2783 34.613 3.1638 43.798 1.1717 14.312 2.4174 55.222 16.785 19.3067

23.09

a

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

beamformer
bitonicsort

dct
des

fft
matmul

mergesort
mpeg

serpent
Imp. Oblivious Imp. Aware Cycle-Accurate Simulation

1 3 9 27 81 243

beamformer
bitonicsort

dct
des

fft
matmul

mergesort
mpeg

serpent
Average

max throughput 80% of max 50% of max avoid deadlock
Fig. 8. Reduction in total buffer size estimates using implementation aware analysis. X-axis
is in base 3 logarithmic scale.

7.3

0.1

1

10

100

102

1

10

100

1000

Fig. 9. Runtime of implementation aware over implementation oblivious analysis.

er size savings

beamformbitonicsor dct des fft matmulmergesor mpeg serpent Average
min 76 30 102 835 2014 2014 142 2043 1716

sdf3 50 76 30 102 1035 2014 2014 142 2043 1916
80 156 210 302 7935 3214 4814 342 2143 2016

100 276 210 702 22535 4814 6014 742 15243 2416
min 29 10 21 118 16 23 37 26 223

ours 50 29 10 21 218 16 23 37 26 323
80 29 40 21 318 16 223 137 126 423

100 29 40 521 618 316 323 337 326 423

max through 9.52 5.25 1.35 36.46 15.23 18.62 2.20 46.76 5.71 8.49
80% of ma 5.38 5.25 14.38 24.95 200.88 21.59 2.50 17.01 4.77 9.03

ratio 0% of ma 2.62 3.00 4.86 4.75 125.88 87.57 3.84 78.58 5.93 8.54
avoid deadlo 2.62 3.00 4.86 7.08 125.88 87.57 3.84 78.58 7.70 9.28

accuracyth(bmax)
beamformbitonicsor dct des fft matmulmergesor mpeg serpent Average

sdf3 0 46.45 12.50 0 0 0 10.87 0 0
ours 12.085 87.03 14.29 3.19 0.28 0.21 14.30 0.31 0.74
sim 12.366 64.65 14.75 2.22 0.27 0.18 14.66 0.20 0.89

ratio p. Oblivio 0 0.7184 0.8473 0 0 0 0.7416 0 0
Imp. Awar 0.9772 1.3461 0.9684 1.438 1.0117 1.1431 0.9758 1.5522 0.8322 1.06842

Cycle-Accurate Sim 1 1 1 1 1 1 1 1 1

error sdf3 -100 -28.161 -15.268 -100 -100 -100 -25.84 -100 -100
ours -2.2783 34.613 -3.1638 43.798 1.1717 14.312 -2.4174 55.222 -16.785

abs sdf3 100 28.161 15.268 100 100 100 25.84 100 100 74.3632
ours 2.2783 34.613 3.1638 43.798 1.1717 14.312 2.4174 55.222 16.785 19.3067

23.09

a

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

beamformer
bitonicsort

dct
des

fft
matmul

mergesort
mpeg

serpent
Imp. Oblivious Imp. Aware Cycle-Accurate Simulation

Fig. 10. Comparison of (normalized) throughput estimated by implementation aware and
implementation oblivious techniques against cycle-accurate simulation. Implementation
oblivious technique inaccurately predicts deadlock in most cases, and is less accurate in
the remaining cases.

7.3

0.1

1

10

100

102

1

10

100

1000

Fig. 11. Runtime of cycle-accurate simulation over the proposed implementation aware anal-
ysis technique.

10 Implementation-Aware Buffer-Throughput Tradeoff

against cycle-accurate simulated throughput. The numbers are normalized with re-
spect to the throughput given by Graphite. Hence, a value of 1.0 means zero error
in estimation of throughput, in comparison with cycle-accurate simulation. The im-
plementation oblivious analysis falsely reports deadlock (τ = 0) in six out of nine
benchmarks. This occurs because the selected buffer sizes are smaller than what im-
plementation oblivious analysis believes to be required for avoiding deadlock. In the
other three benchmarks (bitonicsort, dct and mergesort), the average error is 23%.
The overall average error across all the nine benchmarks using the implementation
oblivious analysis is 74%. The implementation aware analysis, however, estimates the
throughput very closely. Compare the orange and green bars in Figure 10. The error
in estimation of throughput is less than 5% in beamformer, dct, fft and mergesort
benchmarks. On average, the error of implementation aware analysis in estimation of
throughput is 19%, compared to cycle-accurate simulation.

Figure 11 shows runtime of cycle-accurate simulation over runtime of implemen-
tation aware analysis for all benchmarks. The runtime ratio is higher than 100X in
six out of nine benchmarks. In the fft benchmark the ratio is 606X. On average
(geometric mean), it takes about 102X longer to run cycle-accurate simulations than
to run the proposed implementation aware analysis.

Let us highlight the key benefits offered by the proposed approach. In comparison
with implementation oblivious analysis (analysis solely based on SDF operational se-
mantics), it offers substantially more accurate (9X smaller) buffer size esimates for
the same level of throughput. This is achieved by taking into account very limited
information on target implementation. In comparison with cycle-accurate simulation,
the implementation aware analysis offers 102X speedup in runtime and relatively low
error (19%) in estimation of throughput. As such, our porposed technique offers a
very favorable tradeoff point for early design space exploration. Note that the pro-
posed method is performed at a high-level on SDF graphs, while the cycle-accurate
simulation is performed on compiled binary codes and thus, has access to all relevant
implementation details, such as processors’ instruction set, cache, program control
flow, among others.

5 Conclusion

We investigated the tradeoff between buffer size and throughput of streaming appli-
cations modeled as SDF graphs. We demonstrated that the quality of model-based
tradeoff exploration algorithms can be considerably improved if one incorporates very
mild assumptions about the target implementation into analysis.

References

1. M. Ade, R. Lauwereins, and J. Peperstraete. Data memory minimisation for synchronous
data flow graphs emulated on DSP-FPGA targets. Design Automation Conference, 1997.

2. M. A. Bamakhrama and T. P. Stefanov. On the hard-real-time scheduling of embedded
streaming applications. Design Automation for Embedded Systems, 2012.

3. S. Bell et al. Tile64 - processor: A 64-core soc with mesh interconnect. International
Solid-State Circuits Conference, 2008.

4. A. H. Ghamarian et al. Throughput analysis of synchronous data flow graphs. Interna-
tional Conference on Application of Concurrency to System Design, 2006.

5. Graphite. http://graphite.csail.mit.edu.
6. E. A. Lee and D. G. Messerschmitt. Static scheduling of synchronous data flow programs

for digital signal processing. IEEE Transactions on Computers, 1987.
7. A. Moonen et al. Practical and accurate throughput analysis with the cyclo static

dataflow model. International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems, 2007.

8. O. M. Moreira and M. J. Bekooij. Self-timed scheduling analysis for real-time applica-
tions. EURASIP Journal on Advances in Signal Processing, 2007.

9. H. Oh and S. Ha. Fractional rate dataflow model for efficient code synthesis. Journal of
VLSI signal processing systems for signal, image and video technology, 2004.

10. SDF3. http://www.es.ele.tue.nl/sdf3.
11. S. Stuijk et al. Exploring trade-offs in buffer requirements and throughput constraints

for synchronous dataflow graphs. Design Automation Conference, 2006.
12. W. Thies et al. Streamit: A language for streaming applications. International Confer-

ence on Compiler Construction, 2002.
13. D. Truong et al. A 167-processor 65 nm computational platform with per-processor

dynamic supply voltage and dynamic clock frequency scaling. IEEE Symposium on
VLSI Circuits, 2008.

14. Z. Xiao and B. Baas. 1080p h.264/avc baseline residual encoder for a fine-grained many-
core system. IEEE Transactions on Circuits and Systems for Video Tech., 2011.

15. Y. Zhou and E. A. Lee. A causality interface for deadlock analysis in dataflow. Inter-
national Conference on Embedded Software, pages 44–52, 2006.

