
FORMLESS: Scalable Utilization of Embedded
Manycores in Streaming Applications

Matin Hashemi
Sharif University of Technology

mhashemi@ee.sharif.edu

Mohammad H. Foroozannejad
Soheil Ghiasi

University of California, Davis
{mhforoozan,ghiasi}@ucdavis.edu

Christoph Etzel
University of Augsburg

christoph.martin.etzel@student.uni-
augsburg.de

Abstract
Variants of dataflow specification models are widely used to syn-
thesize streaming applications for distributed-memory parallel pro-
cessors. We argue that current practice of specifying streaming ap-
plications using rigid dataflow models, implicitly prohibits a num-
ber of platform oriented optimizations and hence limits portability
and scalability with respect to number of processors. We motivate
Functionally-cOnsistent stRucturally-MalLEabe Streaming Speci-
fication, dubbed FORMLESS, which refers to raising the abstrac-
tion level beyond fixed-structure dataflow to address its portability
and scalability limitations. To demonstrate the potential of the idea,
we develop a design space exploration scheme to customize the ap-
plication specification to better fit the target platform. Experiments
with several common streaming case studies demonstrate improved
portability and scalability over conventional dataflow specification
models, and confirm the effectiveness of our approach.

Keywords DataflowGraph, StreamApplication, Embedded Many-
core Processor

1. Introduction
Actor-oriented specification models, such as task graphs and other
dataflow-based representations, have yielded promising results for
synthesis and optimization of streaming applications on distributed
memory parallel processors [1–4]. Parallel software synthesis from
such models is especially favorable due to the explicit specification
of concurrency, which allows straight-forward synthesis of parallel
implementations by proper allocation and scheduling of computa-
tion and communication.
In principle, specifying the application as a set of tasks and their

dependencies is meant to only model the functional aspects of an
application, which should enable seamless portability to new plat-
forms by fresh platform-driven allocation and scheduling of tasks
and their executions. However, such specifications are rather rigid
in that some non-behavioral aspects of the application are implic-
itly hard coded into the model at design time. Consequently, alloca-
tion and scheduling processes are likely to generate poor 1 imple-

1We focus on throughput as the quality metric.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
LCTES 2012 June 12–13, 2012, Beijing, China
Copyright c© 2012 ACM 978-1-4503-1212-7. . . $10.00

mentations when one tries either to port the application to different
platforms, or to explore implementation design space on a range
of platform choices [5]. The limitations of conventional dataflow-
based models with portability, scalability and subsequently the abil-
ity to explore implementation tradeoffs (e.g., with respect to num-
ber of cores) have become especially critical with availability of
platforms with a large number of processor cores, which can dedi-
cate a wide range of resources to an application [6, 7].
As an example, consider merge sort dataflow network, which is

composed of actors for splitting the data into segments, sorting of
segments using a given algorithm (e.g., quicksort), and merging of
the sorted segments into a unified output stream. A specific instance
of the sort network would have rigid structural properties, such as
number of sort actors or fanin degree of merge actors. The choice
of structure, although implicitly hard coded into the specification, is
orthogonal to application’s end-to-end functionality. It is intuitively
clear that the optimal network structure would depend on the tar-
get platform, and automatic software synthesis from a rigid speci-
fication is bound to generate poor implementations over a range of
platforms.
Our driving observation is that the scalability limitation of soft-

ware synthesis from rigid dataflowmodels could be addressed if the
specifications were sufficiently malleable at compile time, while
maintaining functional consistency. We present an example mani-
festation of the idea, dubbed FORMLESS, which extends the clas-
sic notion of dataflow by abstracting away some of the unnecessary
structural rigidity in the model. In particular, malleable aspects of
the dataflow structure are modeled using a set of parameters, re-
ferred to as the forming vector. Assignment of values to the pa-
rameters instantiates a particular structure of the model, while all
such assignments lead to the same end-to-end functional behavior.
A simple example of a forming set parameter is the fanin degree of
merge actors in the sort example.
Our approach opens the door to design space exploration

methodologies that can hammer out a FORMLESS specification
to form an optimized version of the model for the target platform.
The “formed” model can be subsequently passed onto conventional
allocation and scheduling processes to generate a quality parallel
implementation. We also present such a design space exploration
scheme that determines the forming set using platform-driven pro-
files of application tasks. Experimental results demonstrate that
FORMLESS yields substantially improved portability and scala-
bility over conventional dataflow modeling. Note that the primary
objective in this paper is to demonstrate the merit of malleable spec-
ifications in terms of scalability. Development of a formal higher-
order programming language or a sophisticated design space ex-
ploration are beyond the scope of this paper.

71

2. Background and Preliminaries
The notion of dataflow is a natural fit to modeling of data-intensive
streaming applications [1–4]. Synchronous dataflow (SDF) is a spe-
cial dataflow model of computation in which data rates are spec-
ified statically. SDF-compliant kernels are at the heart of many
streaming applications [8, 9], and form the focus of our work.
In the SDF model, a task (actor) is a tuple (In,Out, F), where
In ⊆ InputPorts is the set of input ports, Out ⊆ Outputports
is the set of output ports, and F denotes the transformation function
of the task. Each port has a statically-defined rate, which is the map-
ping Rate : Ports → N. A streaming application can be modeled
as a directed graph G(V, E), where vertices (V) represent tasks,
and directed edges (E) is a subset of InputPorts×OutputPorts,
which represent data communication channels. Each port is con-
nected to exactly one channel, and each channel is connected to
ports of some task. A task can be fired upon availability of suffi-
cient data on all its input ports. Firing of a task consumes data from
its input ports, and produces data on its output ports. The execu-
tion is meant to continue indefinitely. Figure 2.B shows an example
SDF.

2.1 Software Synthesis
In synthesizing streaming software, we target execution platforms
whose abstract model exposed to the synthesis process can be
viewed as a number of identical distributed-memory parallel pro-
cessors which are arranged in a mesh and communicate via point-
to-point FIFO channels. Many existing manycores conform to this
abstraction [6, 7]. Moreover, the model is reasonably accurate at
high-level for other platforms that implement the abstract view us-
ing different underlying architecture. For instance, network-based
inter-processor communication coupled with proper system soft-
ware can implement virtual inter-processor FIFO channels.
Automated parallel software synthesis for stream applications

normally involves several key steps that are fairly well researched
[1]. Figure 1 shows the most key steps, namely, assignment of tasks
to processors, scheduling of tasks for periodic execution on the
processors, layout of the processors on the manycore chip, and code
generation. As discussed in later sections, we present our method
as an improvement on top of the baseline software synthesis.
Figure 2 illustrates an example. Figure 2.B shows the SDF graph

for an example streaming sort application, which sorts 100 data
tokens per invocation. The split task reads 100 tokens from the
input stream, and divides them into two segments of 50 tokens
that are passed onto the two sort tasks. After the segments are
sorted, the merge task combines them into the final sorted output
stream. Figure 2.C shows an example task assignment, and 2.D the
corresponding generated code.
Task functionalities are provided as sequential computations

that are kept intact throughout the synthesis process. The software
code for each processor is synthesized by stitching together the set
of tasks that are assigned to that processor according to their sched-
ule. For tasks that are assigned to the same processor, inter-task
communication is implemented using arrays. That is, the producer
task writes its data to an array, which is then read by the consumer
task. Inter-processor communication is implemented using read
and write system calls.

3. FORMLESS SDF
3.1 Motivating Example
To motivate the underlying idea of FORMLESS, we consider the
sort example of Figure 2, and investigate the scaling of throughput
when platforms with different number of processors are targeted.
Let us assume that the sort task implements the quicksort algo-

����
�����	
���

�	��
�������

�	�
����������

�������
�	���

��
�����

	
��
�
��

Figure 1. Baseline software synthesis.

void split(int m, ������
��
int* x,x1,x2){...}

void sort(int m,int* x){...}
void merge(int m,

int* x1,x2,y){...}

#include msort.h; �������
int x[100],x1[50],x2[50];
while()
for i=1:100 x[i]=read(in);
split(100,x,x1,x2);
for i=1:50 write(x2[i],P2);
sort(50,x1);
for i=1:50 write(x1[i],P2);

#include msort.h; �������
int x1[50],x2[50];
int y[100];
while()
for i=1:50 x2[i]=read(P1);
sort(50,x2);
for i=1:50 x1[i]=read(P1);
merge(100,x1,x2,y);
for i=1:100 write(y,out);

���

��

�����

���

�� ��

!
��� ���

���

�� ��

!������� ������� �""

#"

#"

Figure 2. A) Example platform. B) Sort application modeled as a
SDF. C) Tasks are assigned to processors (color coded). D) Synthe-
sized software.

rithm, and the merge task merges two sorted data segments into
one stream using the mergesort algorithm.
An immediate observation is that the example task graph can-

not readily utilize many (more than 4 in the case of depicted task
graph) processors due to the limited concurrency in the specifica-
tion. At the other extreme, the throughput of the synthesized soft-
ware is going to be poor when one processor is targeted, compared
to eliminating the split and merge tasks and running a single sort
task (i.e., the quicksort algorithm) on the entire input stream 2. This
is partly because the overhead of coordination among multiple par-
allel tasks is only justified if sufficient amount of parallelism ex-
ists in the platform. Intuitively, increasing concurrency in the task
graph specification facilitates utilization of more parallel resources
and potentially increases the potential for improving performance
via load balancing between processors, however, it comes at the
cost of degraded performance when platforms with fewer proces-
sors are targeted.
Having made this observation, our idea is to specify the tasks

and their composition using a number of parameters. Adjustment
of parameters enables “massaging” the structure of the task graph
to fit the target architecture, while all candidate task graphs deliver
the same end to end functionality.
Figure 3 sketches the idea for the example sort application in

which fanout degree of the split task and fanin degree of the merge
task are parametrically specified. The number of tasks, their types
and compositions, as well as their data production rates are imme-
diate functions of the two split-fanout and merge-fanin parameters.
Three example instances of the FORMLESS graphs are shown in
Figure 3.

2 The discussion does not pertain to sorting of large databases which does not entirely
fit in the memory.

72

������ ���

split(p,m,x[]
,x1[],x2[],…,xp[])

for i=1:m
j= i/p
xj[i%p]= x[i]

merge(q,m,x1[],x2[],…,xq[],y[])
for j=1:q dj=1
for i=1:m
j=index_of_min(x1[d1],…,xq[dq])
y[i]=xj[dj]
dj++sort(m,x[])

quicksort(x[],1,m)

��� ��
$�%& �

�

�����$'(�%& ��'

�

���
$�(�%& �

���

)

)

��
$)%

���
$*()%
)�*

�����$�()%

�����$�()��%

�����$�()�+%
)�+

)��

��
$)�*%
)�*

)

)

)�,
���
$,()%

�����$,()%
)�,

��
$)�,%

)

)

Figure 3. FORMLESS specification of the sort example: A) Actor
specifications. B-D) Example instantiations.

3.2 Formalism
We make the key observation that SDF specifications are struc-
turally rigid. Such task graphs do not fully live up to the intended
promise of separating functional aspects of the application from
implementation platform, and thus, fail to deliver efficient porta-
bility and scalability with respect to number of processors in the
platform. To address the portability and scalability limitations, not
only application specification has to be sufficiently separated from
implementation platform, but it also has to admit platform-driven
transformations and optimizations.
We propose raising the level of abstraction in specifications to

eliminate the rigid structure of the task graph, while preserving its
functional behavior. Our approach is to require application design-
ers to specify the tasks and the structure of the task graph using a
number of parameters, referred to as the forming vector. Specifi-
cally, a forming vector Φ is defines as

Φ = (φ1, φ2, . . . , φ|Φ|)

where φj is a forming parameter whose possible set of values are
a subset of domain δj . Hence, domain of the forming vector Φ is
equal to

Δ = δ1 × δ2 × . . . × δ|Φ|

We extend the definition of a task α such that input ports, output
ports and data transformation function of α are all specified as
functions of the underlying parameters in Φ. In other words, task α
is defined as the tuple

∀Φ ∈ Δα : α(Φ) =
`
Inα(Φ), Outα(Φ), Fα(Φ)

´

For example, the merge task in Figure 3.A is defined based
on the forming vector Φ = {q, m}. The function Inmerge(q, m)
specifies q input ports of rate m

q
, and function Outmerge(q, m)

specifies one output port of rate m. The data transformation func-
tionFmerge(q, m) specifies a mergesort algorithm which combines
q sorted input arrays of size m

q
into a single sorted output array of

size m. In this example, Δmerge = {(q, m) | m ≥ 2, q ≥ 2, m
mod q = 0}.
We also extend the definition of task graph G(V, E) such that

tasks (V) and channels (E) are specified as functions of the un-
derlying parameters in Φ. Formally, task graph G is defined as the
tuple

∀Φ ∈ ΔG : G(Φ) =
`
VG(Φ), EG(Φ)

´

VG(Φ) is a function which specifies the set of tasks in G based
on forming vector Φ, and is formally defined as

VG(Φ) =
˘
α1(Φ1), α2(Φ2), . . . , α|V |(Φ|V |)

¯

where αi(Φi) is an instance of task αi which is formed based on
forming vector Φi, and both αi and Φi are determined based on
the given Φ. For instance, the task graph in Figure 3.B is specified
based on forming vector Φ = {p, q, m} = {3, 3, N}, and function
VG specifies the set of tasks as

VG(3, 3, N) =
˘
split(3, N), sort(N

3
),

sort(N

3
), sort(N

3
),merge(3, N)

¯

in which, for example, task merge(3, N) is instance of merge(q, m)
=

`
Inmerge(q, m), Outmerge(q, m), Fmerge(q, m)

´
, where {q, m} =

{3, N}.
Similarly, EG(Φ) is a function which specifies the set of chan-

nels in G based on the forming vector Φ, and is formally defined
as

EG(Φ) =
˘
(prd, cns) | prd ∈ Outαi

(Φi), cns ∈ Inαj
(Φj)

¯

where (prd, cns) denotes a channel from an output port prd of
some task αi to an input port cns of some task αj .
We would like to stress that our primary objective in this paper

is to demonstrate the merit of the idea and scalability of malleable
specifications. In our scheme, it is the programmer’s duty to define
the ports, task computations and graph composition based on the
parameters. Furthermore, he has to ensure that every assignment
of values from the specified domain ΔG to the forming vector Φ
results in the same functional behavior. This tends to be straight
forward since tasks perform the same high-level function under dif-
ferent parameters (e.g. splitting, sorting or merging in the example
of Figure 3).

3.3 Higher-Order Language
Development of a formal higher-order programming language in-
volves many considerations that are beyond the scope of this paper
[10–12]. However, in this section we present an example realization
of the general idea that we have developed.
Figure 4.A presents the prototype for specifying task and appli-

cation task graph based on a set of parameters. The task specifi-
cation starts with a list of forming parameters and their type. The
interface section specifies the set of input and output ports of
the task, and the function section specifies its data transforma-
tion function, all based on the given parameters.
Similarly, application specification also starts with a list of

forming parameters. The interface section is the same as task
interface. In a composition section, the tasks are instantiated by
assigning the corresponding parameters using the instantiate
construct. The channels are instantiated using the connect con-
struct which connect ports of two tasks.
Figure 4.B shows the code for our previously mentioned sort

application. For example, the merge task is specified with two
parameters m and q. As we see the number and rate of input ports
in this task is defined using a for loop. In general we allow a rich
set of programming constructs such as for and if-else in order
to provide enough flexibility in specifying the tasks based on the
given forming parameters.

3.4 Related Work
Unfolding an SDF graph [13] is to construct a larger SDF which
consists of multiple copies of the original graph. The unfolded
SDF has the same functional behavior while expressing more par-
allelism. This technique can be employed to scale the throughput

73

task Merge (int M, //length of output
int Q, //fan-in degree

){
interface {

output merged_array (M);
for (i=0; i < Q; i++)

input sub_array[i] (M/Q);
}
function {

//the mergesort algorithm
}

}

application MergeSort (int P, //split fan-out degree
int Q //merge fan-in degree

){
interface {

input input_array (N);
output output_array (N);

}
composition {

if (P==1) ...
else {

//tasks:
instantiate Split split (N, P);
for (i=0; i < P; i++)

instantiate Sort sort[i] (N/P);
int D = log(P,Q);
for (d=D-1; d >=0; d--) for (i=0; i < Q^d; i++)

instantiate Merge merge[d][i] (N/Q^d, Q);
//channels:
connect (input_array, split.input_array);
for (i=0; i < P; i++)

connect (split.output_array[i], sort[i].unsorted_array);
connect (sort[i].sorted_array, merge[D-1][i/Q].sub_array[i%Q]);

for (d=D-1; d > 0; d--) for (i=0; i < Q^d; i++)
connect (merge[d][i].merged_array, merge[d-1][i/Q].sub_array[i%Q]);

connect (merge[0][0].merged_array, output_array);
}

}
}

task Sort (int M //length of the array
){

interface {
input unsorted_array (M);
output sorted_array (M);

}
function {

//the quicksort algorithm
}

}

task Split(int M, //length of input
int P, //fan-out degree

){
...

}

task ActorName (//list of parameters
Type1 ParamName1,
Type2 ParamName2,
...){

interface {
//list of input and output ports
input InputPortName1 (PortRate);
input InputPortName2 (PortRate);
...
output OutputPortName1 (PortRate);
...

}
function {

//data transformation function
}

}

application AppName (//list of parameters
...

){
interface {

//list of input and output ports
...

}
composition {

//actors:
instantiate ActorName ActorID (ParamValue1, ...);
...
//channels:
connect (ActorID.PortName, ActorID.PortName);
...

}
}

���

���

Figure 4. A) Prototype for specifying task and application. B) An example malleable specification for the sort application in Figure 3.

to platforms with larger number of cores. Another technique which
also preserves the functional behavior and expresses more paral-
lelism is to convert the input SDF graph to HSDF [13]. The FORM-
LESS approach introduced in this paper is orthogonal to such tech-
niques and can be applied in parallel with unfolding or conversion
to HSDF.
A number of dataflow extensions such as parameterized dataflow

[14], scenario-aware dataflow [15], variable-rate dataflow [16] and
schedulable parametric dataflow [17] primarily focus on specifi-
cations which enable different static and/or dynamic dataflow be-
haviors based on the parameters. Our focus, however, is to specify
different possible implementations for the same application behav-
ior, in order to achieve scaling of performance with respect to the
number of processors. We are able to employ a rich set of program-
ming constructs to specify many aspects of the task graph based
on the forming parameters (Section 3.3). For example, not only the
production/consumption port rates but also the number of ports for
each task can be specified based on the parameters.
StreamIt compiler [3] automatically detects stateless filters

(data-parallel tasks) and judicially parallelizes them in order to
achieve better workload balance and hence scaling of performance.

This approach provides some level of malleability, but it is limited
to data-parallel tasks because it fully relies on the compiler’s ability
to detect malleable sections in the application.
In CUDA, scaling of performance is achieved by specifying the

application with as much parallelism as practically possible. At
runtime, an online scheduler has access to a pool of threads from
which the non-blocked threads are selected and executed on avail-
able cores [18]. This enables the scaling of performance to newer
devices with larger number of processors. However, performance
optimization for a specific target GPU device fully relies on the
programmer to optimally specify the application, e.g., the number
of blocks per grid and the number of threads per block [19].
In MPI, the programmer may describe the amount of parallelism

based on a set of parameters such as the number of available or idle
cores. However, since the data rate of communications among MPI
processes are not necessarily known at compile time, the allocation
and scheduling of the processes are performed by the operating
system at runtime.
We require the programmer to provide a malleable specifica-

tion, and also, employ complier optimizations to select the best task
graph based on the malleable specification at compile time.

74

4. Exploration of Forming Parameter Space
To examine the merits of FORMLESS, we developed a design
space exploration (DSE) scheme whose block diagram is depicted
in Figure 5. The DSE instantiates a platform-driven task graph
G(Φopt) from a given FORMLESS specification by optimizing the
forming vector Φ. Central to the quality of the DSE are high-level
estimation algorithms for fast assessment of the throughput of a
specific instance of the task graph.
Task Profiling: The workload associated with a task is com-

posed of two components: computation workload and communica-
tion induced workload. Since tasks are defined parametrically, their
computation workload depends on the values of the relevant form-
ing parameters. In addition, computation workload is inherently
input-dependent, due to the strong dependency of the tasks’ control
flow with their input data. The communication-induced workload
exists if some of the producers (consumers) of the data consumed
(produced) by the task are assigned to a different processor. We
take an empirical approach to characterize the computation work-
load. We measure the execution latency of several instances of the
tasks (based on the forming parameters) on the target processor. For
each case, we profile the runtime for several randomly generated
input streams to average out the impact of input-dependent execu-
tion times. The data is processed via regression testing to obtain
latency estimates for all parameter values. Hence, for a task α(Φ),
the profiling data provides DSE with a computation workloadWα.
In addition, for a channel (α, α

′) with communication volume
N(α,α′), the communication-induced workload of producer and
consumer tasks are analytically characterized asWwrite ×N(α,α′)

and Wread × N(α,α′), respectively. Wwrite and Wread are the
profiled execution latency of platform communication operations.
Task Graph Formation: Formation of a task graph is essen-

tially assignment of valid values to the forming parameters. Any
such assignment implies a specific instantiation, which can be
passed onto subsequent stages for quality estimation. Our current
DSE implementation exhausts the space of forming vector param-
eters by enumeration, due to the manageable size of the solution
space in our testcases, and quickness of subsequent solution quality
estimation. In principle, high-level quality estimations can analyze
performance bottlenecks to provide feedback and to guide the pro-
cess of value assignment to forming set parameters. Note that our
primary objective in this paper is to demonstrate the scalability of
malleable specifications, and not development of a sophisticated
DSE.

�����
����	
��

����
�������
	

����
��
�����

����

�����
���������
��������

�����	����
�������

����������
�������

�����
����	
��

�������
���

�����������	
����
����

��������
�����������

��������	
������	
�������

������	
����	����������

���������
 ����

��
�����

����
��������
	

Figure 5. Design space exploration for platform-driven instantia-
tion of a FORMLESS specification.

Task Assignment: Task assignment is a prerequisite to applica-
tion throughput estimation, and quantifying the suitability of a can-
didate task graph for a target platform. Tasks’ computations should
be distributed among processors as evenly as possible while inter-
processor communication is judiciously minimized. This can be
modeled as a graph partitioning problem, in which a graphG(V, E)
is cut into a number of subgraphs Gp(Vp, Ep), one for each pro-
cessor. We employ METIS graph partitioning package [20] for this
purpose because our primary focus is to quickly generate solutions
to enable integration within the iterative DSE flow. Every vertex
(task) α ∈ V is assigned a weight Wα which denotes its com-
putation workload, and every edge (α, α

′) is assigned a weight of
N(α,α′) which denotes its communication volume.
Throughput Estimation: For typical FIFO channels with small

latency (relative to processors’ execution period), the communica-
tion overhead only appears as communication-induced workload
on processors (Section 2). That is, the workload of a processor can
be estimated as:

Wp =
X

α∈Vp

Wα + Wread ×
X

α/∈Vp,α′∈Vp

N(α,α′)

+ Wwrite ×
X

α∈Vp,α′ /∈Vp

N(α,α′)

where Wread and Wwrite denote the execution latency of plat-
form read and write system calls. The last two terms indicate
communication-induced workload on p. We use workload of the
slowest processor to estimate the throughput. Formally

Throughput = 1 ÷ max
1≤p≤P

Wp

For a given task assignment, throughput of a candidate solution
depends on the buffer sizes of the platform FIFO channels [2], as
well as the firing schedule of the tasks that are assigned to the same
processor. The above equation merely serves to provide a rough
throughput estimate for guiding the DSE. Note that we accurately
simulate the impact of interconnect limited buffer size in our final
experimental evaluations, which are performed using synthesized
software from FORMLESS models (Section 5).

5. Experimental Evaluation
5.1 Application Case Studies
To demonstrate the merits of our idea, we experiment with low-
density parity check (LDPC), advanced encryption standard (AES),
fast fourier transform (FFT), parallel merge sort (SORT) and matrix
multiplication (MMUL).
Low-Density Parity Check: A regular LDPC code is charac-

terized by an M × N parity check matrix, called the H matrix.
N defines the code length and M is the number of parity-check
constraints on the code (Figure 6.A). Based on matrix H , a Tanner
graph is defined which has M check nodes and N variable nodes.
Each check node Ci corresponds to row i in H and each variable
node Vj corresponds to column j. A check node Ci is connected
to Vj if Hij is one (Figure 6.B). The input data is fed to the vari-
able nodes, and after processing goes to the check nodes and again
back to the variable nodes. This process repeats R times, where R
depends on the specific application of the LDPC code. In practice,
theH matrix has hundreds or thousands of rows and columns, and
therefore, given the complexity of edges in the Tanner graph, we
decided not to use this graph as the task graph for software imple-
mentation. In fact, direct hardware implementation of the Tanner
graph is also not desired because a huge portion of the chip area
would be wasted for routing resources [21].
We construct the task graph in the following manner. The vari-

able and check nodes are collapsed into single nodes, and subse-

75

!
"
"
"
!
"
#$

!
"
"
"
"
!
#!"

"
"
"
!
!
"
#!!

�%""!!"""!"
�&!"!""!!""
�'!!"!""""!
�("""""!"!"

!
!
#'

"
"
#&

"
!
#%

"
"
#)

!
"
#!

�)

�!
"
"
#!)

"
!
#*

"
"
#+

"
"
#(��� ���

����� ����
�	
�����������

���

��� ��� ���� �����

����������

#! #) #% #& #' #(#+ #* #$ #!" #!! #!)

�! �) �% �& �' �(

#! #) #% #& #' #(#+ #* #$ #!" #!! #!)

�,! �,%�,) �,& �,(�,' �-! �-%�-) �-& �-(�-'

Figure 6. LDPC application: A) Sample H matrix. B) Tanner
graph. C) Task graph. Row-Split LDPC based on [21] : D) Tanner
graph. E) Task graph.

quently, the graph is unrolledR times (Figure 6.C). We experiment
with the LDPC code used in 10GBASE-T standard, where the ma-
trix size is 384 × 2048 and R = 6.
In order to have a malleable specification, we decided to employ

the Row-Split method which is a low-complexity message passing
LDPC algorithm and is originally developed for hardware imple-
mentation [21]. In this method, in order to reduce the complexity
of the edges, the Tanner graph is generated while the rows are split
by a factor of φ = 2, 4, 8 or 16. As shown in Figure 6.D for φ = 2,
the variable nodes are divided into φ = 2 groups, V1, . . . , V N

2

and
V N

2

, . . . , VN , and each check node Ci is split into φ = 2 nodes
C

′
i and C

′′
i . The corresponding task graph is shown in Figure 6.E,

where additional synchronization nodes are required for the check
nodes. Interested readers may refer to [21] for further details.
Advanced Encryption Standard: The AES is a symmetric

encryption/decryption application which performs a few rounds of
transformations on an stream of 128-bit data (4×4 array of bytes).
The number of rounds depends on the length of the key which is
10 for 128-bit keys. As shown in Figure 7.A, the task graph for the
AES cipher consists of four basic tasks called sub, shf, mix and
ark. Task sub is a nonlinear byte substitution which replaces each
byte with another byte according to a precomputed substitution
box. In shf, every row r in the 4 × 4 array is cyclically shifted
by r bytes to the left. Task mix views each column as a polynomial
x, and calculates modulo x

4 + 1. Task ark adds a round key to
all bytes in the array using XOR operation. The round keys are
precomputed and are different for each of the 10 rounds.
Therefore, tasks sub and ark can be parallelized over all ele-

ments of the array, and task shf only over the four rows, and task

	�� �- �. ��/ 	�� �- �. 	��0
�1 �1

��� ����	
���2�
���

	��

�-

�.
��/ 	�� 	��0

�1 �1

���

�-

�-

�-

�.

+
*

+ �-

�.�-

�-

�-

�.

+
*

+

�1 �1 �1 �1 �1 �1 �1 �1

�1

����	
���2�
���

Figure 7. AES: A) Φ = (1, 1, 1, 1) B) Φ = (4, 2, 1, 1).

������
�������

�������
���

Figure 8. A) Radix-2 and radix-4 butterfly tasks. B) 16-point FFT
application with radix-4 butterfly tasks. C) The same FFT com-
puted with radix-2.

mix only over the four columns. We constructed the FORMLESS
task graph with four parameters. φ1, φ2 and φ4 control the number
of rows that the array is divided into for the sub, shf and ark tasks.
Parameter φ3 controls the number of columns that the array is di-
vided into for the mix task. For example, the task graph of Figure
7.B is formed by Φ = (4, 2, 1, 1).
Fast Fourier Transform: Fourier tansform of an input array is

an array of the same size. Fast Fourier Transform (FFT), an efficient
algorithm for this computation, is performed using a number of
basic butterfly tasks connected in a dataflow network. The basic
butterfly operation calculates Fourier of two inputs and is called a
radix-2 butterfly. In general, however, FFT can be calculated using
butterfly operations with radices other than 2, although typically
powers of 2 are used.
AnN -point radix-r FFT uses a dataflow network of radix-r but-

terfly tasks. This network is organized in logN
r stages each con-

taining N
r
butterfly tasks. Figure 8.B shows the structure of the

dataflow network for a 16-point FFT application using radix-4 but-
terfly tasks. Figure 8.C shows the same computation performed us-
ing radix-2 butterflies. Since the computation of FFT is indepen-
dent of the choice of radix, we define our FORMLESS model for
FFT based on a forming parameter φ1 which is the radix. The radix
determines structure of the task graph as well as inter-task data
communication rates.
Parallel Merge Sort: A forming parameter φ1 controls the

number of parallel sort actors, and a parameter φ2 controls the
fanout and fanin degree of the split and merge actors (Figure 9).
The value of φ1 should be an integer power of φ2 to generate a
valid task graph, i.e., φ1 = φ

n
2 , n ≥ 0.

Matrix Multiply: The objective is to calculate A × B = C.
A block (submatrix) of C can be calculated by multiplying the
corresponding blocks of matrix A and B. Adjusting the block size
in C trades off the degree of concurrency among operations with

��� ���

)�+
�����

���

��

)

)
)�,

���
)��

)�+

)��

Figure 9. Parallel Merge Sort: A) Φ = (1, 2), B) Φ = (3, 3), C)
Φ = (4, 2).

76

��

� � ��

��

��� �)�.�/!�0��)!

���

�� ��� ���

��� ���

��� ��� �

�� ��
�����

����

� ����.
�������

��
��

��

���

	����

�

� 	

Figure 10. Matrix Multiply: A) Block operations for Φ = (3, 2).
B) Task graph formed with Φ = (3, 2).

the required amount of data replication and movement. Therefore,
we construct a FORMLESS task graph with two parameters φ1 and
φ2 that control the number of row and column blocks that matrices
A and B are divided into. The task graph of Figure 10.B is formed
by Φ = (3, 2).
The domains of the forming vectors used in experimenting the

above applications are shown in Figure 11. For example in the AES
application, each of the four forming parameters can be 1, 2 or 4.

5.2 Experiment Setup
We implemented both FORMLESS design space exploration and
baseline software synthesis schemes (Figure 5). For a given number
of processors, P , within the range of 1 to 100, an optimized task
graph G(Φopt) is constructed, and subsequently, parallel software
modules (separate .C files) are synthesized for this task graph.
We consider the following FPGA-prototyped multiprocessor

system for throughput measurement of the synthesized software
modules. Each processor is an Altera NiosII/f core with 8KB in-
struction cache and 64KB data cache. The communication network
is a mesh which connects the neighbor processors with FIFO chan-
nels of depth 1024. The processors use a shared DDR2-800 mem-
ory, but they only access their own region in this memory, i.e., they
communicate only through the FIFO channels. The compiler is gcc
in Altera NiosII IDE with optimization flag -O2.
Due to limited FPGA capacity, we were able to implement

the above architecture with up to 8 cores. For more number of
cores, we employ our previously developed Sequential Execution
Abstraction Model (SEAM), which is cycle-accurate in simulating
the effect of inter-processor communication (e.g., blocks on empty
or full buffers), and also accurately predicts any deadlock situation
[22, 23].
SEAM, however, abstracts the local execution phases of every

processor, in which no communication with the other processors
occur, as deterministic wait periods. For example, SEAM replaces
the function calls sort(50,x2) and merge(100,x1,x2,y) with
corresponding wait functions on processor 2 in Figure 2.D. For
a task α, the wait period is Wα which comes from the profiling
(Section 4). Subsequently, a behavioral Verilog model is generated
which captures the behavior of wait and read/write operations
in every processor. The generated Verilog models are interfaced to
the Verilog model of the interconnect network with exact buffer
resources, and simulated using commercial Verilog simulators to
obtain application throughput. Hence, SEAM relies on the accuracy
of profiling data for modeling sequential phases of each processor,
but it is far more scalable than cycle-accurate simulation of a
manycore system in Verilog. We have confirmed SEAM’s accuracy
by comparing it with smaller scale multiprocessor systems that we
could prototype in FPGA [22, 23].

Benchmark VectorΦ Domain of Φ
LDPC (φ1) δ1 = {1, 2, 4, 8, 16}

AES (φ1, . . . , φ4) δ1 = . . . = δ4 = {1, 2, 4}

FFT (φ1) δ1 = {2, 4}

SORT (φ1, φ2) δ1 = {1, 2, 3, 4, 8, 9, 16, 27}, δ2 = {2, 3}

MMUL (φ1, φ2) δ1 = δ2 = {1, . . . , 10}

Figure 11. The domain of the forming parameters in our bench-
mark applications.

5.3 Measurement Results
We compare the throughput of the best instantiated task graph,
i.e., G(Φopt), with the throughput of rigid task graphs. Figure 12
presents the application throughput normalized relative to single-
core throughput. The black curves show the throughput values ob-
tained through SEAM simulations from synthesized parallel imple-
mentations, and the 8 black squares show the throughput measured
on the FPGA prototype for systems up to 8 processors. The gray
curves show throughput of a few rigid task graphs selected.
The experiments show that rigid task graphs have a limited

scope of efficient portability and scalability with respect to number
of processors. For example, an LDPC rigid task graph constructed
with forming vector Φ = (4) does not scale beyond 40 processors.
Note that a rigid task graph which scales to large number of pro-
cessors does not necessarily yields the best throughput in smaller
number of processors. For example, an AES rigid task graph con-
structed with Φ = (2, 2, 1, 2) only yields the highest throughput
for 90 or more processors. For a single processor, this rigid task
graph yields 74% of the best instantiated task graph.
Similar scenarios happen in all benchmark case studies. Each

forming vector Φ yields the highest throughput only for a range
of targets. In other words, throughput of the best instantiated task
graph consistently beats the throughput of any rigid task graph.
This result validates the effectiveness of FORMLESS in extending
the scope of efficient portability and scalability with respect to
number of cores.
It is interesting to see that, for example, in the matrix multiply

application Φ = (5, 5) is not selected for the 25-core target. In-
stead, the DSE tool selected Φ = (6, 4) which has 24 multiply
tasks. This forming set is not intuitive because one would normally
split the multiplication workload into an array of 5×5 = 25 multi-
ply tasks for 25 cores. The DSE tool considers the effect of smaller
tasks (e.g., split tasks), and the communication-induced workloads
as well. This again proves that an automated tool outperforms man-
ual task graph formation. However, the DSE is able to scale per-
formance only if the programmer has provided meaningful paral-
lelism. For example in the SORT application, a larger value for
the forming parameter φ1 results in more parallel sort tasks, but
the performance does not scale beyond 13 processors because the
workload of the terminal merge stage, which is not parallelizable
through FORMLESS, becomes the bottleneck.
Figure 12 can also be used to determine a reasonable target size,

i.e., the number of processors, for each application. For example
in the AES application, more than 40 processors does not yield a
throughput gain unless we have at least 50 processors.

6. Concluding Remarks
We presented FORMLESS, a parametric extension to the static
dataflow model, which enables portable and scalable development
of streaming applications for manycore platforms. We demon-
strated the applicability of the idea using several common stream-
ing case studies. Experimental results confirmed the validity and
applicability of the idea, while showcasing portability and scalabil-
ity limitations of conventional task graphs.

77

����

���

����������
	�����

��

�

��

��

��

��

� �� �� �� �� ���

��

�!�
"#
��
$�
�
%�
��
%&

���

���

����������
	��'�'�'����

��

�

��

��

��

��

� �� �� �� �� ���

��

�!�
"#
��
$�
�
%�
��
%&

���

���

����������
	���

��
��

�

(

��

�(

��

�(

� �� �� �� �� ���

��

�!�
"#
��
$�
�
%�
��
%&

�� �

���

����������
	��'��

��
��

�
�

�
�
�

(
�

� �� �� �� �� ���

��

�!�
"#
��
$�
�
%�
��
%&

!!"�

���

����������
	�('(���

��

�

��

��

��

��

� �� �� �� �� ���
��1�����������

��

�!�
"#
��
$�
�
%�
��
%&

Figure 12. Application throughput on manycore platforms nor-
malized with respect to single-core throughput. The black curve
shows the throughput obtained from DSE instantiated task graphs.
The gray curves show the throughput of sample rigid task graphs.

References
[1] S. Battacharyya, E. Lee, and P. Murthy. Software synthesis from

dataflow graphs. Kluwer Academic Publishers, 1996.
[2] S. Stuijk, M. Geilen, and T. Basten. Throughput-buffering trade-off

exploration for cyclo-static and synchronous dataflow graphs. IEEE
Transactions on Computers, 57(10):1331–1345, 2008.

[3] M. Gordon. Compiler techniques for scalable performance of stream
programs on multicore architectures. PhD thesis, Massachusetts Insti-
tute of Technology, 2010.

[4] Andy D. Pimentel et al. Exploring embedded-systems architectures
with Artemis. IEEE Computer, 34(11):57–63, 2001.

[5] A. Sangiovanni-Vincentelli et al. Benefits and challenges for platform-
based design. Design Automation Conference (DAC), pages 409–414,
2004.

[6] D. Truong et al. A 167-processor 65 nm computational platform with
per-processor dynamic supply voltage and dynamic clock frequency
scaling. Symposium on VLSI Circuits, 2008.

[7] S. Bell et al. TILE64 processor: A 64-core SoC with mesh intercon-
nect. International Solid-State Circuits Conference (ISSCC), 2008.

[8] E. Lee and D. Messerschmitt. Synchronous data flow. Proceedings of
the IEEE, 75(9):1235–1245, 1987.

[9] M. Geilen and T. Basten. Reactive process networks. International
Conference on Embedded Software (EMSOFT), pages 137–146, 2004.

[10] J. Colaço, A. Girault, G. Hamon, and M. Pouzet. Towards a higher-
order synchronous data-flow language. International Conference on
Embedded Software (EMSOFT), pages 230–239, 2004.

[11] W. Taha. A gentle introduction to multi-stage programming. Domain-
Specific Program Generation, Lecture Notes in Computer Science
(LNCS), 2004.

[12] J. Adam Cataldo. The power of higher-order composition languages
in system design. PhD thesis, University of California, Berkeley, 2006.

[13] Marc Geilen. Reduction techniques for synchronous dataflow graphs.
Design Automation Conference (DAC), 2009.

[14] B. Bhattacharya and S. Bhattacharyya. Parameterized dataflow mod-
eling for DSP systems. IEEE Transactions on Signal Processing,
49(10):2408–2421, 2001.

[15] B.D. Theelen et al. A scenario-aware data flow model for combined
long-run average and worst-case performance analysis. Formal Meth-
ods and Models in CoDesign, 2006.

[16] Maarten H. Wiggers, Marco J.G. Bekooij, and Gerard J.M. Smit.
Buffer capacity computation for throughput constrained streaming
applications with data-dependent inter-task communication. IEEE
Real-Time and Embedded Technology and Applications Symposium
(RTAS), 2008.

[17] Pascal Fradet, Alain Girault, and Peter Poplavko. A schedulable
parametric data-flow MoC. Design, Automation, and Test in Europe
(DATE), 2012.

[18] J. Nickolls et al. Scalable parallel programming with CUDA. ACM
Queue, 6:40–53, March 2008.

[19] CUDA C best practices guide, chapter 4.4. March 2011.
[20] G. Karypis and V. Kumar. METIS 4.0: Unstructured graph partition-

ing and sparse matrix ordering system. Technical report, CS Dept.,
University of Minnesota, Minneapolis, 1998.

[21] T. Mohsenin, D. Truong, and B. Baas. Multi-split-row threshold
decoding implementations for LDPC codes. International Symposium
on Circuits and Systems (ISCAS), 2009.

[22] Po-Kuan Huang, Matin Hashemi, and Soheil Ghiasi. System-level
performance estimation for application-specific mpsoc interconnect
synthesis. Symposium on Application Specific Processors (SASP),
2008.

[23] Matin Hashemi. Automated Software Synthesis for Streaming Appli-
cations on Embedded Manycore Processors. PhD thesis, University of
California, Davis, 2011. Chapter 4.

78

