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Abstract 
 
Reconfigurable hardware devices are envisioned as the proper 
platform to implement multimedia applications, providing both 
real time performance and dynamic adaptability for the 
application. In this paper, we discuss the issues involved in 
using reconfigurable hardware devices for multimedia 
applications. The ideas and approach are then applied to a 
collaborative object tracking system that has been built as part 
of our work. We justify the need for dynamic adaptation of the 
system through examples. Experimental results on a set of 
scenes advocate the fact that our dynamically adaptive system 
works effectively for different scenes and scenario of events, and 
it outperforms traditional pure software or hardware 
implementations. 
 
1. Introduction 
 
Many multimedia applications perform intensive computations, 
yet they have to cope with severe performance constraints. Pure 
software implementations of these applications on constrained 
embedded processors do not exhibit satisfactory performance. 
Therefore, such applications demand hardware implementation 
to exhibit real-time performance. Dedicated hardware solutions 
exploit the intrinsic parallelism of multimedia applications and 
execute many operations in parallel, which leads to substantial 
improvements in application runtime. Many researchers have 
used hardware implementations to speed up the application 
runtime [1, 2, 10, 16]. 
Another characteristic of multimedia applications is their 
sensitivity to input data stream. Usually, there are several 
different methods to process the input data, while each method 
is effective/optimized for a particular input data pattern. 
Therefore, the application’s quality can be greatly enhanced if 
the system is able to dynamically adapt itself to input data and 
external events.  
For example, tracking an object is a basic vision functionality 
that is utilized by many high-level applications such as traffic 
control and intruder monitoring systems. Commonly used 
trackers employ a number of vision algorithms for tracking a 
moving object. Each algorithm can be parameterized/is designed 
to perform with higher quality for a particular working condition 
such as a particular lighting condition, object shape, distance or 
resolution. Therefore, a tracking system that can dynamically 
adapt itself to the external events that happen in the scene can 

outperform the corresponding static implementation in terms of 
tracking quality [8].  
While dedicated hardware implementations successfully tackle 
the problem of real time performance constraint, they are not 
flexible enough to address the dynamic adaptability issue of the 
system. Traditional hardware implementations are not alterable 
at runtime and therefore, the application’s quality cannot be 
improved by exploiting a particular characteristic of the input 
data. 
The aforementioned arguments introduce the reconfigurable 
fabrics as an efficient solution for implementing multimedia 
applications. Reconfigurable hardware units not only 
demonstrate real time performance by exploiting the intrinsic 
parallelism of multimedia applications, but they also provide the 
required dynamic flexibility and adaptability for the system. 
Both of these objectives cannot be achieved by traditional pure 
software or hardware implementations on constrained embedded 
processors. 
Reconfigurable hardware devices are often coupled with a 
general-purpose processor that controls its parameterizations and 
reconfigurations [3]. Efficient partitioning of a given application 
onto a reconfigurable fabric and its coupled processor has been 
subject to extensive research in the past and present.  Currently, 
there is no widely accepted methodology for implementing an 
arbitrary application on such a platform. Therefore, an effective 
automated approach that is applicable to many multimedia 
applications is of great importance. However, before presenting 
such a general methodology, we focus on a case study (a 
collaborative object tracking system) to motivate the need for 
dynamic adaptability and verify its performance and quality 
improvements over a pure software and hardware 
implementation respectively. 
We proceed to describe two image-processing algorithms that 
are used in many tracking-based multimedia applications, 
namely feature selection and image restoration, in Section 2. In 
addition, the effect of external events and environmental 
changes on these algorithms and hence, the need for system 
adaptability are explained in that section. Section 3 presents our 
experimental platform, which is the used to verify the ideas and 
approach presented in this paper. Section 4 discusses the 
challenges involved in implementation of the tracking 
algorithms. Section 5 presents the experimental results that 
verify the effectiveness of the dynamic adaptable system in 
practice. Finally, section 6 outlines the conclusions and some 
future directions. 
 
 



2. Vision Algorithms and Their Sensitivity to 
Input Data 

 

 
In this section, we present two algorithms that are required for 
enhancing the image quality and tracking the motions, i.e., 
image restoration and feature selection. First, we outline the 
algorithms’ underlying idea and functionality. Then, we describe 
their sensitivity to the changes in the scene.  
 
2.1 Feature Selection 
 
KLT tracking scheme [5, 6, 7], which is widely used in object 
tracking applications, is carried out in two stages. In the first 
stage, called feature selection, proper points in the images are 
selected. These points are passed on to the second stage, called 
feature tracking, in order to find their location in the consequent 
images.   
Feature selection algorithm consists of carefully choosing the 
points in the image, which can be easily tracked throughout a 
series of images.  Corner points of an object, where intensity 
changes noticeably, are considered as good feature points with 
good trackablity.  

Figure 1. Feature selection algorithm performed on a sample 
image. Selected features are denoted by small dark squares. 
 
2.2 Image Restoration 
 The feature selection algorithm computes a complex function, F, 

for each pixel and compares its result with a fixed threshold 
value, λ. Function F assumes a square window around each 
pixel and performs its computations using the intensity values of 
pixels inside the window. If the value of F for a pixel is larger 
than λ, that pixel is declared as a feature point; otherwise, it is 
not a feature point.  

Image restoration is a commonly used algorithm in image 
acquisition or processing for recovery of degraded images.  
Atmospheric turbulence, defocusing or motion of objects can be 
reasons of degradation. Restoration process recovers lost 
information of images by such degradation [13, 17, ].  The 
following degradation model holds in a large number of 
applications [13]: Function F solely depends on the intensity of the pixels inside 

the window and does not change with time or other parameters. 
Therefore, the number of selected features reduces with the 
increase of λ and vice versa. Hence, points that are selected with 
higher values of λ are considered as better features. Note that 
such features are also selected with small values of λ. These 
points are usually easier to track in consequent images. They 
exhibit significant intensity variation compared to their 
neighboring pixels. Figure 1 demonstrates the output of the 
feature selection on a selected region of a sample image. 
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where x(i, j) and y(i, j) denote the original and observed 
degraded image respectively. d(i, j) represents the impulse 
response of the degradation system, and ** stands for two-
dimensional (2D) discrete linear convolution.  The goal of image 
restoration is to estimate x(i, j) given y(i, j) and d(i, j), however 
one of the main difficulties in performing an ideal image 
restoration is that the degradation model is not completely 
known. In other words, d(i, j) is not exactly defined/known at 
the receiver. Therefore, it might not be able to completely 
reconstruct the image. 

The feature tracking stage of the KLT tracking method strives to 
locate the selected features in the next frame. This is performed 
with the assumption that the two consecutive images differ only 
by a small displacement factor. The tracked features will be 
tracked again in the future upcoming frames. Therefore, the 
displacement, motion direction, velocity and other information 
about the motion can be inferred. 

Image restoration is often implemented as a filter that is applied 
onto captured images. Noise signal injected into the image 
usually exhibits quick variations and hence, is considered high 
frequency signal. Therefore, common realizations of noise-
removal filters implement a low-pass filter, which allows the 
image signal to pass and filters out the high-frequency noise. A 
low-pass filter has no effect on low frequency image data (pixels 
with small variations compared to neighboring pixels) and 
removes the high frequency elements of the signal. As a result, 
the sharp edges of an image passed through a low-pass filter 
become blurred while the solid textures remain intact. On the 
other hand, blurred and defocused images have to be passed 
through a high pass filter in order to be restored. The high pass 
filter restores such images by sharpening and/or preserving their 
edges.  

The latency of feature tracking stage is directly proportional to 
the number of selected features and hence, a large number of 
features makes tracking to slow down. On the other hand, a 
small number of features is not sufficient for high quality 
tracking, since tracking might ‘lose’ some features as the object 
moves. Therefore, the number of selected features should be 
within a specific range in order to maintain a balanced trade off 
between tracking quality and performance. 
However, many changes in the scene such as lighting or distance 
variations alter the intensity of the pixels. Therefore, a fixed-
implementation of feature selection algorithm cannot control the 
number of selected features. This issue can be handled by 
software implementation, however feature selection software 
realizations run quite slow on most of constrained embedded 
processors. Reconfigurable hardware devices seem to be the 
only proper platform for implementing this (and similar) 
algorithm (s) for multimedia applications.  

Therefore, based on the captured image deficiency (noise or 
unfocused lens and blurred edges) different filters should be 
applied to restore the image. Dynamically adaptable 
implementations of the filters should be able to enable/disable 
the filter or alter its coefficients at runtime. 
 



3. Case Study: Adaptive Object Tracking System 
 
In this section, we present a collaborative object tracking system 
that has been implemented in our lab [11]. The idea of dynamic 
system adaptation to external events is practiced in this system 
as a case study. The advantages of this approach and 
comparisons with non-adaptive systems are presented in 
experimental result section.  
The framework for our system is comprised of two IQeye3 
cameras provided by IQinVision [4], pan-tilt units to enable the 
actuation of the cameras, a main controller residing on a PC, and 
a network for communication. 
An IQeye3 camera, as a “smart” vision sensor, with embedded 
computation resources allows input image data acquisition and 
processing to be collocated in the camera, which minimizes 
network communication overhead and facilitates scalability. The 
processing resources embedded in each camera include a Xilinx 
Virtex 1000E FPGA [15] and a 250 MIPS PowerPC CPU 
(Figure 2). In addition, there is 4 MB of Flash RAM and 16 MB 
of SDRAM on each camera. The embedded FPGA is utilized for 
implementation of intensive image processing algorithms, while 
a simple controlling software code executes on the embedded 
processor that controls the reconfiguration and parameterization 
of the FPGA. 
Figure 2 demonstrates our system with two cameras and the 
main controller. The main supervisory controller resides on a PC 
and acts as the centralized governing unit of the system by 
maintaining the current state, processing internal and external 
triggers, and coordinating the collaboration among the cameras. 
When the main controller receives data from one of the IQeye3 
camera clients over the network, it deterministically selects the 
appropriate actions that should be taken by each camera (e.g., 
reconfiguring an embedded FPGA by swapping in a different 
algorithm from the database (Figure 2)). This is performed by 
sending a message to the designated camera.  
The sample application implemented on the framework is to 
continuously detect and track a moving object that is within the 
field of view of a camera. We assume that the object is always 
moving across the camera and hence, KLT tracking scheme [5, 
6, 7] can effectively track the motions. 
When the entire system initializes, cameras establish a 
connection with the main supervisory controller on the PC. 

Camera 1 assumes control initially and continuously runs feature 
selection algorithm on its embedded FPGA.  
As the objects in the scene, distance of the object to the camera, 
light conditions, lens focus and other parameters change the 
number of selected features varies. For example, two runs of the 
algorithm on two different objects will lead to selecting a 
smaller number of features for the object with fewer corners and 
intensity variations. Our implementation can detect such 
conditions and can adapt itself in order to compensate the effect 
of external parameters to select constant number of features. 
Therefore, it is ensured that the number of selected features, and 
hence both latency and tracking accuracy, are kept within a 
certain range. This is accomplished through reconfiguration and 
parameterization of the algorithms running on the embedded 
FPGA. 
Furthermore, when a moving object moves close to the edge of 
the field of view, the camera can no longer track the object. In 
this situation, the camera notifies the main controller by sending 
a message indicating the position where the moving object is 
located. The main controller then decides which camera should 
gain control and sends an appropriate camera a message 
indicating where the object is. Figure 2 outlines the architecture 
and application of the system. A sample pseudo code running on 
the controller and a high-level block diagram of each camera 
have been demonstrated. Note that each camera has a database 
of required algorithms locally available. 
 
4. Hardware Implementations 
 
In this section, we describe our system constraints and the 
modifications we had to make to the original algorithms in order 
fit them to our platform. Moreover, we discuss the system 
adaptability issue in our implementations. 
 
4.1 Platform Constraints 
 
IQeye3 camera is the vision sensor used in our platform. The 
camera imager continuously captures scenes and injects a non 
flow-controllable real-time stream of image pixels into FPGA at 
24 MHz.  FPGA then performs several operations on the stream 
such as image correction, windowing and down sampling.  
Then, a DMA unit residing on the FPGA stores the processed 
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Figure 2. Dynamic adaptation of the system. Each camera has access to a database of algorithms. The controller 
initiates the reconfiguration to realize the proper algorithm. It also maintains the coordination among cameras.



scene data in the main memory. The FPGA is clocked at 33 
MHz. Any program running on the PowerPC can access the 
memory and the image data stored there.  

The feature selection algorithm performs computations using 
only pixels in the 3x3 window around a pixel to determine 
whether it is a feature or not. This algorithm has been 
implemented on the same platform in a previous work [9, 14] 
using this method.  The result of the computations is compared 
with a fixed threshold to determine the features. While this 
implementation works well in practice, it does not have any 
control on the number of selected features. Moreover, the value 
of threshold cannot be altered easily, because threshold has been 
implemented as a constant, which must be specified at design 
time.  

Within this environment and platform, image-processing 
applications sitting on the FPGA need to meet some constraints. 
The most important issue is the timing constraint of the design, 
since the imager stream is not flow-controllable. Therefore, the 
applications have to process the input stream and generate the 
corresponding output at the same rate to avoid congestion.  This 
forces many designs to perform their intended computations 
with the small on-chip memory, because using off-chip memory 
unit will impose additional latency, which is not tolerable for 
many designs. 

Various parameters such as objects’ shape, scene light and lens 
focus can affect the number of selected features. As mentioned 
before, the selected features are passed to the tracking phase. 
The latency of the tracking grows, while its accuracy drops, with 
the increase number of selected features. Therefore, the number 
of selected features has to be controlled in order to maintain a 
proper tradeoff between the latency of tracking and its accuracy. 
Our implementation is similar to [14], however we have 
modified the original design such that the threshold value can be 
dynamically controlled by a program running on camera 
PowerPC. This was not a trivial modification of the basic 
design, since there is a system design continuously running on 
the FPGA. This design performs basic image processing 
routines such as image quality enhancement, packetizing, and 
transferring the final output to the system memory through 
DMA. Every modification to the system has to cope with this 
basic design and has to adopt its communication standards and 
data formats.  

Furthermore, there is a system design continuously running on 
the FPGA. This design performs basic necessary image 
manipulation functions such as windowing and packetizing. Any 
application mapped onto the FPGA has to integrate with this 
design and has to cope with its communication standards and 
data formats. Therefore, the algorithms cannot be used in their 
original form and have to be adapted to our constrained 
platform. 
 
4.2 Implementations 
 
As mentioned in the previous section, the main challenge for 
implementing the algorithms on the camera FPGA is that there 
is not enough on-chip memory available to store the entire 
image. Moreover, tight performance constraints do not allow us 
to use an off-chip memory module. Therefore, we had to modify 
the algorithms such that they could perform their intended 
computations with limited amount of memory. 

Software-controlled threshold value, has enabled the dynamic 
adaptation feature of the feature selection algorithm.  According 
to the algorithm, if the threshold used in feature selection is too 
low for a particular scene, we get too many features and if the 
threshold is too high, we get too few features.  Therefore, given 
a target number of features desired, we increase the threshold if 
we get features more than the target and decrease if we get less.  

The stream of image data injects pixels starting from the upper-
left corner to the right. After streaming each row, a control pixel 
is injected and then the next row is streamed in. Figure 3 
demonstrates the idea of our hardware implementations. For 
each pixel, we store slightly more than two rows of the image, in 
order to maintain a 3x3 window around that pixel on the chip. 
Therefore, we can perform many computations with the window 
pixels within the delay constraint.  

Note that the feature selection algorithm performs its 
computations on the FPGA and exhibits real time performance. 
The threshold controlling entity is a small program running on 
the camera PowerPC, which counts the number of selected 
features and controls the threshold value accordingly. 

Note that, the amount of required on-chip memory grows 
linearly with the size of window (assuming that the window size 
is too small compared to the image size). Hence, larger window 
sizes or dynamically variable window sizes can be implemented 
on large enough FPGAs. 

On the other hand, image restoration has a variety of 
implementation and iterative method is a widely used one.  The 
purpose is to estimate the original image given the degraded 
image.  The original implementation performs operations on the 
entire image iteratively.  The iteration is stopped when the 
restored image converges with insignificant residual ε [13].   
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of window can be from 3x3 to the entire image.  Researchers in 
[13] have shown that the algorithm implemented as described 
above, has reasonable restoration quality. As the window gets 
smaller, the restoration quality drops since the center pixel 
(Figure 3) does not have any information about pixels out of the 
restoration window.  However, this enables processing of image 
stream using a small-sized storage.  
Moreover, we showed that iteration over a small window could 
be unrolled a priori. Therefore, iterative image restoration can be 
replaced by a simple non-iterative process that performs the very 
same algorithm using less hardware resources. Particularly, we 
have gained 11% improvement in terms of the number of 
utilized CLBs on a Virtex1000E FPGA chip. This percentage is 



more significant for smaller devices that have a smaller number 
of CLBs. 
Varying the restoration window size leads to accuracy-memory 
requirement tradeoff. Small restoration windows need smaller 
on-chip storage, however their quality is not as good as larger 
restoration windows. Note that memory requirement correlates 
with performance.  
Figure 3 shows that the amount of storage required for 
implementing a 3x3 window is (two rows + 2) words. In 
general, a window of size ‘n’ requires ((n-1) rows + n –1) words 
to be stored on chip. Note that this number grows linearly with 
the size of the processing window. For our platform (utilizing a 
Virtex1000E FPGA chip) windows as large as 15x15 can fit 
onto the chip. 
 
5. Experimental Results 
 
We have implemented the feature selection and image 
restoration algorithms (discussed in sections 2) on both 
PowerPC and FPGA embedded in the IQeye3 cameras of our 
platform depicted in Figure 2. For hardware implementation, the 
threshold value in feature selection algorithm can be 
dynamically adjusted through a software program running on the 
PowerPC of the camera.  
 

 
 

 
 
Figure 4. 42 and 152 Features are selected on a simple object 
with FS-FIX and FS-AUTO, respectively. 
 
Furthermore, the image restoration algorithm implemented on 
the FPGA can be dynamically disabled or enabled through 
reconfiguration. If the distribution of the features on objects of 

different distances to the camera is not satisfactory, the system 
will be reconfigured to enable the image restoration before 
selecting features. On the other hand, image restoration can alter 
the original image if it is not degraded to some degree. 
Therefore, it has to be disabled for cases that the image quality 
is reasonable. 
The performance comparison of hardware and software 
implementations of the feature selection is quite interesting. 
Software implementation takes about 15 seconds to select 
features on a 300x200 pixel image, while hardware 
implementation performs the same functionality in 50 
milliseconds, which is about 300 times faster. This verifies the 
fact that software implementations on constrained embedded 
processors do not show satisfactory performance. 
The rest of experiments are conducted to compare adaptive and 
non-adaptive hardware realizations. We simulate a subset of 
tracking environments and observe how feature selection with 
fixed threshold (FS-FIX) reacts to it.  We also examine if feature 
selection with automatically adjusted threshold (FS-AUTO) 
selects appropriate number of features as expected.  Finally, we 
demonstrate how FS-AUTO detects unfocused objects with help 
of image restoration.  In all experiments, FS-FIX has a fixed 
threshold of 512 and FS-AUTO targets for 150 features with 
10% tolerance range, i.e. the number of selected features should 
be within (135-165) range.   
 

 
 

 
 
Figure 5. 572 and 152 Features are selected on an object with 
sharp edges, using FS-FIX and FS-AUTO, respectively. 
 
Figure 4 shows how FS-FIX and FS-AUTO select features on a 
simple object. Since the object is round and does not have 



enough sharp corners, FS-FIX chooses only 42 features, which 
is far less than our target, 150.  FS-AUTO, however, 
successfully decreases the threshold value until it selects 154 
features with a new threshold value of 300.  Extra features are 
observed at the left end of the object.  Feature tracking algorithm 
can utilize this additional information for better tracking. 
In another set of experiments, the object is replaced with a more 
complex-shaped object in Figure 5.  The object is a toy car that 
has many colorful parts and sharp edges, which are potentially 
good candidates for features.  FS-FIX again uses the same 
threshold value for feature test and it selects 572 features, which 
is almost 4 times more than the desired number of features.  
Unnecessarily many features are observed around the wheel and 
wire part of the object on Figure 5.  FS-AUTO adjusts the 
threshold value to select fewer features.  It selects 152 features 
with a new threshold value of 912. 
As discussed above, FS-AUTO is able to select proper number 
of features for any type or number of objects.  It certainly is a 
better solution than FS-FIX, which works only for limited type 
or number of objects, but it is not the best solution under any 
condition.  One example is where multiple objects are present in 
a single scene. Therefore, the camera lens can be focused on 
only one of them. In any case, FS-AUTO will adjust its 
threshold value to detect all features.  However, under this 
situation, most of the features will be placed on one object and 
the rest of the objects will not be tracked.   
 

 
 

 
 
Figure 6. Initially features are only selected on the focused 
object. Applying image restoration before feature selection 
partially removes noise and distributes features on both 
objects. 
 
Figure 6 represents such environment where the puppy doll that 
is close to the camera has brighter colors than the mouse located 
far.  FS-AUTO cannot detect any features on the mouse.  This is 
generally a hard problem to solve.  However, by employing 
image restoration, the problem is alleviated to some degree.  In 

lower section of Figure 6, FS-AUTO selects features on the 
same scene as the upper part of the figure, however the image is 
first restored using the implemented image restoration 
algorithm.  Restoration partially removes noises from the image 
and clears the edges and corners of both objects.  After 
dynamically enabling the image restoration algorithm, features 
are selected on the mouse as well as the puppy. Moreover, the 
number of features is balanced on the two objects. 
In lower section of Figure 6, FS-AUTO chooses features with 
higher threshold value than the upper section of Figure 6. 
Particularly, the features in the upper portion of Figure 6 are 
selected with feature selection threshold set to 290, while the 
lower section of the figure has threshold set to 664. Therefore, 
features selected in the lower part of the Figure 6 demonstrate 
better distinction and are easier to track.  
In fact, image restoration removes the noises added to the image 
and clears the edges and corners of the object. Therefore, sharp 
corners and edges are better defined and it becomes easier to 
select features.  Hence, that the quality of features is enhanced 
through restoration. 
It follows that a dynamically adaptive system can exploit 
particular working condition and input data patterns to improve 
system’s performance. Moreover, it can meet the real time 
constraints of the multimedia applications by exploiting the 
intrinsic parallelism of them. 
 
6. Conclusions and Future Directions 
 
In this paper, we introduced the reconfigurable hardware devices 
as the proper platform for implementing multimedia 
applications. These devices provide both real time performance 
and dynamic adaptability for applications.  
As a case study, we studied a collaborative tracking system that 
dynamically adapts itself to the environment changes. 
Particularly, the system can dynamically adjust the threshold 
value for selecting features, and can dynamically disable or 
enable image restoration. Experimental results show that the 
idea is effective in practice and the system can function in a 
wide range of working conditions. Furthermore, it outperforms 
the corresponding software implementation by a factor of 300. 
Future works include the integration of tracking phase of the 
KLT feature-tracking method into our system, enhancing the 
collaboration schemes and applying the system reconfiguration 
idea to other applications or application domains. 
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