
Improving Performance and Quality thru Hardware Reconfiguration:

Potentials and Adaptive Object Tracking Case Study

Soheil Ghiasi, Hyun J. Moon, Majid Sarrafzadeh

Computer Science Department
University of California, Los Angeles
{soheil, hjmoon, majid}@cs.ucla.edu

Abstract

Reconfigurable hardware devices are envisioned as the proper
platform to implement multimedia applications, providing both
real time performance and dynamic adaptability for the
application. In this paper, we discuss the issues involved in
using reconfigurable hardware devices for multimedia
applications. The ideas and approach are then applied to a
collaborative object tracking system that has been built as part
of our work. We justify the need for dynamic adaptation of the
system through examples. Experimental results on a set of
scenes advocate the fact that our dynamically adaptive system
works effectively for different scenes and scenario of events, and
it outperforms traditional pure software or hardware
implementations.

1. Introduction

Many multimedia applications perform intensive computations,
yet they have to cope with severe performance constraints. Pure
software implementations of these applications on constrained
embedded processors do not exhibit satisfactory performance.
Therefore, such applications demand hardware implementation
to exhibit real-time performance. Dedicated hardware solutions
exploit the intrinsic parallelism of multimedia applications and
execute many operations in parallel, which leads to substantial
improvements in application runtime. Many researchers have
used hardware implementations to speed up the application
runtime [1, 2, 10, 16].
Another characteristic of multimedia applications is their
sensitivity to input data stream. Usually, there are several
different methods to process the input data, while each method
is effective/optimized for a particular input data pattern.
Therefore, the application’s quality can be greatly enhanced if
the system is able to dynamically adapt itself to input data and
external events.
For example, tracking an object is a basic vision functionality
that is utilized by many high-level applications such as traffic
control and intruder monitoring systems. Commonly used
trackers employ a number of vision algorithms for tracking a
moving object. Each algorithm can be parameterized/is designed
to perform with higher quality for a particular working condition
such as a particular lighting condition, object shape, distance or
resolution. Therefore, a tracking system that can dynamically
adapt itself to the external events that happen in the scene can

outperform the corresponding static implementation in terms of
tracking quality [8].
While dedicated hardware implementations successfully tackle
the problem of real time performance constraint, they are not
flexible enough to address the dynamic adaptability issue of the
system. Traditional hardware implementations are not alterable
at runtime and therefore, the application’s quality cannot be
improved by exploiting a particular characteristic of the input
data.
The aforementioned arguments introduce the reconfigurable
fabrics as an efficient solution for implementing multimedia
applications. Reconfigurable hardware units not only
demonstrate real time performance by exploiting the intrinsic
parallelism of multimedia applications, but they also provide the
required dynamic flexibility and adaptability for the system.
Both of these objectives cannot be achieved by traditional pure
software or hardware implementations on constrained embedded
processors.
Reconfigurable hardware devices are often coupled with a
general-purpose processor that controls its parameterizations and
reconfigurations [3]. Efficient partitioning of a given application
onto a reconfigurable fabric and its coupled processor has been
subject to extensive research in the past and present. Currently,
there is no widely accepted methodology for implementing an
arbitrary application on such a platform. Therefore, an effective
automated approach that is applicable to many multimedia
applications is of great importance. However, before presenting
such a general methodology, we focus on a case study (a
collaborative object tracking system) to motivate the need for
dynamic adaptability and verify its performance and quality
improvements over a pure software and hardware
implementation respectively.
We proceed to describe two image-processing algorithms that
are used in many tracking-based multimedia applications,
namely feature selection and image restoration, in Section 2. In
addition, the effect of external events and environmental
changes on these algorithms and hence, the need for system
adaptability are explained in that section. Section 3 presents our
experimental platform, which is the used to verify the ideas and
approach presented in this paper. Section 4 discusses the
challenges involved in implementation of the tracking
algorithms. Section 5 presents the experimental results that
verify the effectiveness of the dynamic adaptable system in
practice. Finally, section 6 outlines the conclusions and some
future directions.

2. Vision Algorithms and Their Sensitivity to
Input Data

In this section, we present two algorithms that are required for
enhancing the image quality and tracking the motions, i.e.,
image restoration and feature selection. First, we outline the
algorithms’ underlying idea and functionality. Then, we describe
their sensitivity to the changes in the scene.

2.1 Feature Selection

KLT tracking scheme [5, 6, 7], which is widely used in object
tracking applications, is carried out in two stages. In the first
stage, called feature selection, proper points in the images are
selected. These points are passed on to the second stage, called
feature tracking, in order to find their location in the consequent
images.
Feature selection algorithm consists of carefully choosing the
points in the image, which can be easily tracked throughout a
series of images. Corner points of an object, where intensity
changes noticeably, are considered as good feature points with
good trackablity.

Figure 1. Feature selection algorithm performed on a sample
image. Selected features are denoted by small dark squares.

2.2 Image Restoration
 The feature selection algorithm computes a complex function, F,

for each pixel and compares its result with a fixed threshold
value, λ. Function F assumes a square window around each
pixel and performs its computations using the intensity values of
pixels inside the window. If the value of F for a pixel is larger
than λ, that pixel is declared as a feature point; otherwise, it is
not a feature point.

Image restoration is a commonly used algorithm in image
acquisition or processing for recovery of degraded images.
Atmospheric turbulence, defocusing or motion of objects can be
reasons of degradation. Restoration process recovers lost
information of images by such degradation [13, 17,]. The
following degradation model holds in a large number of
applications [13]: Function F solely depends on the intensity of the pixels inside

the window and does not change with time or other parameters.
Therefore, the number of selected features reduces with the
increase of λ and vice versa. Hence, points that are selected with
higher values of λ are considered as better features. Note that
such features are also selected with small values of λ. These
points are usually easier to track in consequent images. They
exhibit significant intensity variation compared to their
neighboring pixels. Figure 1 demonstrates the output of the
feature selection on a selected region of a sample image.

),(**),(),(jixjidjiy =
where x(i, j) and y(i, j) denote the original and observed
degraded image respectively. d(i, j) represents the impulse
response of the degradation system, and ** stands for two-
dimensional (2D) discrete linear convolution. The goal of image
restoration is to estimate x(i, j) given y(i, j) and d(i, j), however
one of the main difficulties in performing an ideal image
restoration is that the degradation model is not completely
known. In other words, d(i, j) is not exactly defined/known at
the receiver. Therefore, it might not be able to completely
reconstruct the image.

The feature tracking stage of the KLT tracking method strives to
locate the selected features in the next frame. This is performed
with the assumption that the two consecutive images differ only
by a small displacement factor. The tracked features will be
tracked again in the future upcoming frames. Therefore, the
displacement, motion direction, velocity and other information
about the motion can be inferred.

Image restoration is often implemented as a filter that is applied
onto captured images. Noise signal injected into the image
usually exhibits quick variations and hence, is considered high
frequency signal. Therefore, common realizations of noise-
removal filters implement a low-pass filter, which allows the
image signal to pass and filters out the high-frequency noise. A
low-pass filter has no effect on low frequency image data (pixels
with small variations compared to neighboring pixels) and
removes the high frequency elements of the signal. As a result,
the sharp edges of an image passed through a low-pass filter
become blurred while the solid textures remain intact. On the
other hand, blurred and defocused images have to be passed
through a high pass filter in order to be restored. The high pass
filter restores such images by sharpening and/or preserving their
edges.

The latency of feature tracking stage is directly proportional to
the number of selected features and hence, a large number of
features makes tracking to slow down. On the other hand, a
small number of features is not sufficient for high quality
tracking, since tracking might ‘lose’ some features as the object
moves. Therefore, the number of selected features should be
within a specific range in order to maintain a balanced trade off
between tracking quality and performance.
However, many changes in the scene such as lighting or distance
variations alter the intensity of the pixels. Therefore, a fixed-
implementation of feature selection algorithm cannot control the
number of selected features. This issue can be handled by
software implementation, however feature selection software
realizations run quite slow on most of constrained embedded
processors. Reconfigurable hardware devices seem to be the
only proper platform for implementing this (and similar)
algorithm (s) for multimedia applications.

Therefore, based on the captured image deficiency (noise or
unfocused lens and blurred edges) different filters should be
applied to restore the image. Dynamically adaptable
implementations of the filters should be able to enable/disable
the filter or alter its coefficients at runtime.

3. Case Study: Adaptive Object Tracking System

In this section, we present a collaborative object tracking system
that has been implemented in our lab [11]. The idea of dynamic
system adaptation to external events is practiced in this system
as a case study. The advantages of this approach and
comparisons with non-adaptive systems are presented in
experimental result section.
The framework for our system is comprised of two IQeye3
cameras provided by IQinVision [4], pan-tilt units to enable the
actuation of the cameras, a main controller residing on a PC, and
a network for communication.
An IQeye3 camera, as a “smart” vision sensor, with embedded
computation resources allows input image data acquisition and
processing to be collocated in the camera, which minimizes
network communication overhead and facilitates scalability. The
processing resources embedded in each camera include a Xilinx
Virtex 1000E FPGA [15] and a 250 MIPS PowerPC CPU
(Figure 2). In addition, there is 4 MB of Flash RAM and 16 MB
of SDRAM on each camera. The embedded FPGA is utilized for
implementation of intensive image processing algorithms, while
a simple controlling software code executes on the embedded
processor that controls the reconfiguration and parameterization
of the FPGA.
Figure 2 demonstrates our system with two cameras and the
main controller. The main supervisory controller resides on a PC
and acts as the centralized governing unit of the system by
maintaining the current state, processing internal and external
triggers, and coordinating the collaboration among the cameras.
When the main controller receives data from one of the IQeye3
camera clients over the network, it deterministically selects the
appropriate actions that should be taken by each camera (e.g.,
reconfiguring an embedded FPGA by swapping in a different
algorithm from the database (Figure 2)). This is performed by
sending a message to the designated camera.
The sample application implemented on the framework is to
continuously detect and track a moving object that is within the
field of view of a camera. We assume that the object is always
moving across the camera and hence, KLT tracking scheme [5,
6, 7] can effectively track the motions.
When the entire system initializes, cameras establish a
connection with the main supervisory controller on the PC.

Camera 1 assumes control initially and continuously runs feature
selection algorithm on its embedded FPGA.
As the objects in the scene, distance of the object to the camera,
light conditions, lens focus and other parameters change the
number of selected features varies. For example, two runs of the
algorithm on two different objects will lead to selecting a
smaller number of features for the object with fewer corners and
intensity variations. Our implementation can detect such
conditions and can adapt itself in order to compensate the effect
of external parameters to select constant number of features.
Therefore, it is ensured that the number of selected features, and
hence both latency and tracking accuracy, are kept within a
certain range. This is accomplished through reconfiguration and
parameterization of the algorithms running on the embedded
FPGA.
Furthermore, when a moving object moves close to the edge of
the field of view, the camera can no longer track the object. In
this situation, the camera notifies the main controller by sending
a message indicating the position where the moving object is
located. The main controller then decides which camera should
gain control and sends an appropriate camera a message
indicating where the object is. Figure 2 outlines the architecture
and application of the system. A sample pseudo code running on
the controller and a high-level block diagram of each camera
have been demonstrated. Note that each camera has a database
of required algorithms locally available.

4. Hardware Implementations

In this section, we describe our system constraints and the
modifications we had to make to the original algorithms in order
fit them to our platform. Moreover, we discuss the system
adaptability issue in our implementations.

4.1 Platform Constraints

IQeye3 camera is the vision sensor used in our platform. The
camera imager continuously captures scenes and injects a non
flow-controllable real-time stream of image pixels into FPGA at
24 MHz. FPGA then performs several operations on the stream
such as image correction, windowing and down sampling.
Then, a DMA unit residing on the FPGA stores the processed

Camera 1 Camera
2

Controller

Moving object

Initiate algorithm X Initiate algorithm Y

Computation resultsAlgorithm
Database

Motion Detection

Feature Selection

Image Restoration

Scene Data

I/O controller

FPGA

Processor

Figure 2. Dynamic adaptation of the system. Each camera has access to a database of algorithms. The controller
initiates the reconfiguration to realize the proper algorithm. It also maintains the coordination among cameras.

scene data in the main memory. The FPGA is clocked at 33
MHz. Any program running on the PowerPC can access the
memory and the image data stored there.

The feature selection algorithm performs computations using
only pixels in the 3x3 window around a pixel to determine
whether it is a feature or not. This algorithm has been
implemented on the same platform in a previous work [9, 14]
using this method. The result of the computations is compared
with a fixed threshold to determine the features. While this
implementation works well in practice, it does not have any
control on the number of selected features. Moreover, the value
of threshold cannot be altered easily, because threshold has been
implemented as a constant, which must be specified at design
time.

Within this environment and platform, image-processing
applications sitting on the FPGA need to meet some constraints.
The most important issue is the timing constraint of the design,
since the imager stream is not flow-controllable. Therefore, the
applications have to process the input stream and generate the
corresponding output at the same rate to avoid congestion. This
forces many designs to perform their intended computations
with the small on-chip memory, because using off-chip memory
unit will impose additional latency, which is not tolerable for
many designs.

Various parameters such as objects’ shape, scene light and lens
focus can affect the number of selected features. As mentioned
before, the selected features are passed to the tracking phase.
The latency of the tracking grows, while its accuracy drops, with
the increase number of selected features. Therefore, the number
of selected features has to be controlled in order to maintain a
proper tradeoff between the latency of tracking and its accuracy.
Our implementation is similar to [14], however we have
modified the original design such that the threshold value can be
dynamically controlled by a program running on camera
PowerPC. This was not a trivial modification of the basic
design, since there is a system design continuously running on
the FPGA. This design performs basic image processing
routines such as image quality enhancement, packetizing, and
transferring the final output to the system memory through
DMA. Every modification to the system has to cope with this
basic design and has to adopt its communication standards and
data formats.

Furthermore, there is a system design continuously running on
the FPGA. This design performs basic necessary image
manipulation functions such as windowing and packetizing. Any
application mapped onto the FPGA has to integrate with this
design and has to cope with its communication standards and
data formats. Therefore, the algorithms cannot be used in their
original form and have to be adapted to our constrained
platform.

4.2 Implementations

As mentioned in the previous section, the main challenge for
implementing the algorithms on the camera FPGA is that there
is not enough on-chip memory available to store the entire
image. Moreover, tight performance constraints do not allow us
to use an off-chip memory module. Therefore, we had to modify
the algorithms such that they could perform their intended
computations with limited amount of memory.

Software-controlled threshold value, has enabled the dynamic
adaptation feature of the feature selection algorithm. According
to the algorithm, if the threshold used in feature selection is too
low for a particular scene, we get too many features and if the
threshold is too high, we get too few features. Therefore, given
a target number of features desired, we increase the threshold if
we get features more than the target and decrease if we get less.

The stream of image data injects pixels starting from the upper-
left corner to the right. After streaming each row, a control pixel
is injected and then the next row is streamed in. Figure 3
demonstrates the idea of our hardware implementations. For
each pixel, we store slightly more than two rows of the image, in
order to maintain a 3x3 window around that pixel on the chip.
Therefore, we can perform many computations with the window
pixels within the delay constraint.

Note that the feature selection algorithm performs its
computations on the FPGA and exhibits real time performance.
The threshold controlling entity is a small program running on
the camera PowerPC, which counts the number of selected
features and controls the threshold value accordingly.

Note that, the amount of required on-chip memory grows
linearly with the size of window (assuming that the window size
is too small compared to the image size). Hence, larger window
sizes or dynamically variable window sizes can be implemented
on large enough FPGAs.

On the other hand, image restoration has a variety of
implementation and iterative method is a widely used one. The
purpose is to estimate the original image given the degraded
image. The original implementation performs operations on the
entire image iteratively. The iteration is stopped when the
restored image converges with insignificant residual ε [13].

n n

w

c
n

n

P

• • • •

n n
n

n heign

Figure 3. Image frame and
center pixel on which the co
represent the neighbor pixel
of the image frame need to be

We have made several modifications to adapt the original
method to our environment. Instead of globally iterating over
the entire image, we iterate over local windows, where the size
• • •

• •
idth

rocessing win

processing w
mputation is
s. In this exa
 stored on-ch
 • • •
dow (3×3)

ht

indow. c is the
carried and n’s
mple, two rows
ip.

of window can be from 3x3 to the entire image. Researchers in
[13] have shown that the algorithm implemented as described
above, has reasonable restoration quality. As the window gets
smaller, the restoration quality drops since the center pixel
(Figure 3) does not have any information about pixels out of the
restoration window. However, this enables processing of image
stream using a small-sized storage.
Moreover, we showed that iteration over a small window could
be unrolled a priori. Therefore, iterative image restoration can be
replaced by a simple non-iterative process that performs the very
same algorithm using less hardware resources. Particularly, we
have gained 11% improvement in terms of the number of
utilized CLBs on a Virtex1000E FPGA chip. This percentage is

more significant for smaller devices that have a smaller number
of CLBs.
Varying the restoration window size leads to accuracy-memory
requirement tradeoff. Small restoration windows need smaller
on-chip storage, however their quality is not as good as larger
restoration windows. Note that memory requirement correlates
with performance.
Figure 3 shows that the amount of storage required for
implementing a 3x3 window is (two rows + 2) words. In
general, a window of size ‘n’ requires ((n-1) rows + n –1) words
to be stored on chip. Note that this number grows linearly with
the size of the processing window. For our platform (utilizing a
Virtex1000E FPGA chip) windows as large as 15x15 can fit
onto the chip.

5. Experimental Results

We have implemented the feature selection and image
restoration algorithms (discussed in sections 2) on both
PowerPC and FPGA embedded in the IQeye3 cameras of our
platform depicted in Figure 2. For hardware implementation, the
threshold value in feature selection algorithm can be
dynamically adjusted through a software program running on the
PowerPC of the camera.

Figure 4. 42 and 152 Features are selected on a simple object
with FS-FIX and FS-AUTO, respectively.

Furthermore, the image restoration algorithm implemented on
the FPGA can be dynamically disabled or enabled through
reconfiguration. If the distribution of the features on objects of

different distances to the camera is not satisfactory, the system
will be reconfigured to enable the image restoration before
selecting features. On the other hand, image restoration can alter
the original image if it is not degraded to some degree.
Therefore, it has to be disabled for cases that the image quality
is reasonable.
The performance comparison of hardware and software
implementations of the feature selection is quite interesting.
Software implementation takes about 15 seconds to select
features on a 300x200 pixel image, while hardware
implementation performs the same functionality in 50
milliseconds, which is about 300 times faster. This verifies the
fact that software implementations on constrained embedded
processors do not show satisfactory performance.
The rest of experiments are conducted to compare adaptive and
non-adaptive hardware realizations. We simulate a subset of
tracking environments and observe how feature selection with
fixed threshold (FS-FIX) reacts to it. We also examine if feature
selection with automatically adjusted threshold (FS-AUTO)
selects appropriate number of features as expected. Finally, we
demonstrate how FS-AUTO detects unfocused objects with help
of image restoration. In all experiments, FS-FIX has a fixed
threshold of 512 and FS-AUTO targets for 150 features with
10% tolerance range, i.e. the number of selected features should
be within (135-165) range.

Figure 5. 572 and 152 Features are selected on an object with
sharp edges, using FS-FIX and FS-AUTO, respectively.

Figure 4 shows how FS-FIX and FS-AUTO select features on a
simple object. Since the object is round and does not have

enough sharp corners, FS-FIX chooses only 42 features, which
is far less than our target, 150. FS-AUTO, however,
successfully decreases the threshold value until it selects 154
features with a new threshold value of 300. Extra features are
observed at the left end of the object. Feature tracking algorithm
can utilize this additional information for better tracking.
In another set of experiments, the object is replaced with a more
complex-shaped object in Figure 5. The object is a toy car that
has many colorful parts and sharp edges, which are potentially
good candidates for features. FS-FIX again uses the same
threshold value for feature test and it selects 572 features, which
is almost 4 times more than the desired number of features.
Unnecessarily many features are observed around the wheel and
wire part of the object on Figure 5. FS-AUTO adjusts the
threshold value to select fewer features. It selects 152 features
with a new threshold value of 912.
As discussed above, FS-AUTO is able to select proper number
of features for any type or number of objects. It certainly is a
better solution than FS-FIX, which works only for limited type
or number of objects, but it is not the best solution under any
condition. One example is where multiple objects are present in
a single scene. Therefore, the camera lens can be focused on
only one of them. In any case, FS-AUTO will adjust its
threshold value to detect all features. However, under this
situation, most of the features will be placed on one object and
the rest of the objects will not be tracked.

Figure 6. Initially features are only selected on the focused
object. Applying image restoration before feature selection
partially removes noise and distributes features on both
objects.

Figure 6 represents such environment where the puppy doll that
is close to the camera has brighter colors than the mouse located
far. FS-AUTO cannot detect any features on the mouse. This is
generally a hard problem to solve. However, by employing
image restoration, the problem is alleviated to some degree. In

lower section of Figure 6, FS-AUTO selects features on the
same scene as the upper part of the figure, however the image is
first restored using the implemented image restoration
algorithm. Restoration partially removes noises from the image
and clears the edges and corners of both objects. After
dynamically enabling the image restoration algorithm, features
are selected on the mouse as well as the puppy. Moreover, the
number of features is balanced on the two objects.
In lower section of Figure 6, FS-AUTO chooses features with
higher threshold value than the upper section of Figure 6.
Particularly, the features in the upper portion of Figure 6 are
selected with feature selection threshold set to 290, while the
lower section of the figure has threshold set to 664. Therefore,
features selected in the lower part of the Figure 6 demonstrate
better distinction and are easier to track.
In fact, image restoration removes the noises added to the image
and clears the edges and corners of the object. Therefore, sharp
corners and edges are better defined and it becomes easier to
select features. Hence, that the quality of features is enhanced
through restoration.
It follows that a dynamically adaptive system can exploit
particular working condition and input data patterns to improve
system’s performance. Moreover, it can meet the real time
constraints of the multimedia applications by exploiting the
intrinsic parallelism of them.

6. Conclusions and Future Directions

In this paper, we introduced the reconfigurable hardware devices
as the proper platform for implementing multimedia
applications. These devices provide both real time performance
and dynamic adaptability for applications.
As a case study, we studied a collaborative tracking system that
dynamically adapts itself to the environment changes.
Particularly, the system can dynamically adjust the threshold
value for selecting features, and can dynamically disable or
enable image restoration. Experimental results show that the
idea is effective in practice and the system can function in a
wide range of working conditions. Furthermore, it outperforms
the corresponding software implementation by a factor of 300.
Future works include the integration of tracking phase of the
KLT feature-tracking method into our system, enhancing the
collaboration schemes and applying the system reconfiguration
idea to other applications or application domains.

7. References

[1] J. Burns, A. Donlin, J. Hogg, S. Singh, M. Wit. "A Dynamic
Reconfiguration Run-Time System", IEEE Symposium on
FPGAs for Custom Computing Machines, 1997.
[2] A. Adario, E. Roehe, S. Bampi, “Dynamically
Reconfigurable Architecture for Image Processor Applications”,
Design Automation Conference, 1999.
[3] J. Hauser, J. Wawrzynek, “Garp: A MIPS Processor with a
Reconfigurable Coprocessor”, IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM), 1997.
[4] IQinVision Online Documentations, IQinVision Inc.,
http://www.iqinvision.com.
[5] B. Lucas, T. Kanade, “An Iterative Image Registration
Technique with an Application to Stereo Vision”, International
Joint Conference on Artificial Intelligence, pp. 674-679, 1981.

http://www.iqinvision.com/

[6] C. Tomasi, T. Kanade, “Detection and Tracking of Point
Features”, Carnegie Mellon University Technical Report CMU-
CS-91-132, April 1991.
[7] J. Shi, C. Tomasi, “Good Features to Track”, IEEE
Conference on Computer Vision and Pattern Recognition, pp.
593-600, 1994.
[8] S. Ghiasi, H.J. Moon, M. Sarrafzadeh, "Collaborative and
Reconfigurable Object Tracking", The International Conference
on Engineering of Reconfigurable Systems and Algorithms
(ERSA), June 2003.
 [9] A. Benedetti, P. Perona, “Real-time 2-D Feature Detection
on a Reconfigurable Computer”, IEEE Conference on Computer
Vision and Pattern Recognition, Santa Barbara, CA, June 1998.
[10] P. Athanas and L. Abbott, "Addressing the Computational
Requirements of Image Processing with a Custom Computing
Machine: An Overview", in Proceedings of the 2nd Workshop
on Reconfigurable Architectures, Santa Barbara, CA, April
1995.
[11] S. Ghiasi, H.J. Moon, M. Sarrafzadeh, "A Networked
Reconfigurable System for Collaborative Unsupervised
Detection of Events", Technical Report, Computer Science
Dept, UCLA, 2003.
[12] X. Feng, P. Perona, “Real Time Motion Detection System
and Scene Segmentation”, CDS TR CDS98-004, Caltech, 1998.
[13] S. Ogrenci Memik, A. K. Katsaggelos, M. Sarrafzadeh,
“FPGA Implementation and Analysis of an Iterative Image
Restoration Algorithm”, IEEE Transactions on Computers, vol.
52, no.3, March 2003.
[14] M. Maire, “Design and Implementation of a Realtime
Visual Feature Tracking System on a Programmable Video
Camera”, Technical Report, California Institute of Technology,
2002.
[15] Xilinx Online Documentations, Xilinx Inc.,
http://www.xilinx.com.
[16] J. Chen, J. Moon, K. Bazargan, "A Reconfigurable FPGA-
Based Readback Signal Generator For Hard-Drive Read
Channel Simulator", Design Automation Conference (DAC), pp.
349-354, 2002.
[17] A.K. Katsaggelos, "Iterative Image Restoration
Algorithms", Optical Eng., Vol. 28, pp. 735-748, July 1989.

http://www.xilinx.com/

	Improving Performance and Quality thru Hardware Reconfiguration: Potentials and Adaptive Object Tracking Case Study
	Abstract

