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ABSTRACT 
In this paper, we present an efficient optimal algorithm for 
minimizing runtime reconfiguration (context switching) delay of 
executing an application on a reconfigurable system. We assume 
that the basic operations of the application are already scheduled 
and each of them has to be realized on the reconfigurable fabric 
in order to be executed. The modeling and algorithm are both 
applicable to partially reconfigurable platforms as well as Multi-
FPGA systems. The algorithm can be directly applied to minimize 
the application runtime for many typical classes of applications, 
where the actual execution delay of basic operations is negligible 
compared to reconfiguration delay. We prove the optimality and 
efficiency of our algorithm and report experimental results, which 
demonstrate 40% to 2.5% improvement in total runtime 
reconfiguration delay.  

1. INTRODUCTION 
Many applications contain computationally intensive blocks and 
hence they demand hardware implementation to exhibit real-time 
performance. Dedicated hardware solutions are capable of 
running many operations in parallel. Many researchers have used 
reconfigurable hardware units to speed up the application runtime 
[3, 6, 7, 8]. 
Reconfigurable systems provide the flexibility and reuse of 
hardware for multiple applications. Reconfigurable hardware can 
be used to execute designs, which are larger than the available 
hardware resources. In such cases, a part of a large application is 
executed on the hardware. By reusing the reconfigurable 
hardware, the remaining tasks of the application can be loaded 
and executed on the hardware at runtime. This is known as 
runtime reconfiguration. Another issue that necessitates the 
integration of reconfiguration in a hardware platform is that some 
applications require reconfiguration in different abstraction levels 
of system [11]. For example, some applications require different 
variations of an algorithm to execute their task. A non-flexible 
hardware realization for such applications has to fit all required 
algorithm variations on the die. This, if possible, makes the design 
and fabrication processes more complicated and expensive [17]. 
A major drawback of using runtime reconfiguration is the 
significant delay of reprogramming the hardware. The total 
runtime of an application includes the actual execution delay of 
each task on the hardware along with the total time spent for 
hardware reconfiguration between computations. The latter might 
dominate the total runtime, especially for classes of applications 
with a small amount of computation between two consecutive 
reconfigurations. Many previous works have tried to tackle the 
reconfiguration delay problem using different approaches [14, 15, 
16]. 
In many applications, only a small portion of the design changes 
at a time and there is no need to reconfigure the entire hardware 
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Task 2  Task 1scheduled high-level operations (or simply operations). The data 
dependencies among the operations constitute a directed acyclic 
graph (DAG). Our algorithm outputs an execution order of the 
operations on hardware resources such that the total runtime 
reconfiguration is minimized.  

The model and algorithm developed in this paper are directly 
applicable to current FPGA devices, multi-FPGA systems as well 
as other aforementioned partially reconfigurable systems. A 
special case of our algorithm applies to traditional non-partially 
reconfigurable FPGA platforms as well. We have conducted 
simulation-based experiments on some real applications. In terms 
of total runtime reconfiguration delay, our method outperforms 
other existing heuristics within the range of 40% to 2.5%. 

The rest of this paper is organized as follows: In section 2 the 
problem of partial reconfiguration delay minimization is formally 
described. Section 3 describes our algorithm and proves its 
correctness and optimality. Some experimental results based on 
simulation are presented in section 4. Section 5 will conclude the 
paper along with some future directions and possible extensions. 

2. Problem Statement 
In this section, we formally present the problem of minimizing the 
reconfiguration delay for executing a given application on a 
system with multiple reconfigurable resources or with one 
partially reconfigurable resource. The application is composed of 
a set of basic tasks. At each time step, one or multiple tasks are 
revealed to the system. Arriving tasks have to be executed before 
next set of upcoming tasks. Executing these tasks (operations) in 
the specified order will lead to a correct execution of the 
application. 
Suppose a partially reconfigurable hardware (PRH) is selected as 
the target platform to execute an arbitrary application. The 
application can be modeled as a set of operations that have to be 
executed in some specific order. Therefore, the functional unit 
corresponding to each operation should exist on the hardware 
before execution. Due to area constraint, only a subset of 
operations can be implemented in the PRH at each time. PRH can 
be partially reconfigured to realize the remaining operations. In 
such cases, partial reconfiguration delay for instantiating 
operations in the PRH imposes a delay on the total application 
runtime. Reconfiguration delay is one of the major barriers in 
using PRH for some real-time systems. 
Partial reconfiguration delay is roughly proportional to the 
number of bits needed to transmit to PRH. Partial reconfiguration 
bits contain both data and control information for altering logic 
and interconnect of a particular block on the chip. The length of 
the sequence of reconfiguration bits is proportional to the 
reprogrammed area on the chip. In this paper, we assume the 
reconfiguration delay is equal for all types of operations. This 
assumption is exact for Multi-FPGA systems with identical 
FGPAs and for architectures in which we have some fixed places 
on the chip to plug in an operation [4, 13]. With this assumption, 
the number of required partial reconfigurations (RPR) represents 
the total reconfiguration delay. This delay mainly dominates the 
total application runtime for some classes of applications where 
the operation delay is negligible compared reconfiguration delay. 
Therefore, a reasonable metric for estimating the total application 
runtime is the number of RPRs for executing all operations. 

Figure 2 demonstrates an example in which different execution 
order of nodes, leads to different number of RPR. Tasks (nodes) 1 
and 3 have the same type ‘a’ and Task 2 has another type ‘b’. 
PRH is able to fit one operation at a time, in this example. 
Executing such an application in <1 2 3> order, requires loading 
of ‘a’, ‘b’, and ‘a’ into the PRH respectively. This will cost 3 
units, whereas execution of the same application in <2 1 3> order 
requires loading of ‘b’, and ‘a’ respectively, which costs 2 units. 
Therefore, execution order of basic tasks can impact the number 
of RPR and hence, total reconfiguration delay. 
Let G (V, E) be a directed acyclic graph (DAG) representing a 
given application, where V is a set of vertices that represent 
operations and E is a set of directed edges that corresponds to the 
dependencies between operations (Figure 1). Assume that vertices 
of G have been already scheduled according to the time step at 
which they are revealed. Moreover, suppose the target 
reconfigurable hardware can accommodate at most K different 
operations in it. This implies that an upcoming new operation has 
to overwrite one of the K existing operations in PRH. Loading a 
new operation requires the PRH to be partially reconfigured. 
Therefore, it incurs a unit cost and increases the number of RPR 
by one. The partial reconfiguration delay minimization problem 
can be formally stated as: 
Given such a scheduled G (V, E) and K as inputs, the objective is 
to load and execute all nodes of G on PRH so that the number of 
RPR is minimized. The constraints are that there are at most K 
different operations existing on hardware at all times and all 
nodes at cycle i have to be executed before nodes at cycle j if i < 
j. This ensures that the resulting execution order of operations 
leads to a valid evaluation of the computation and maintains the 
data dependencies among the nodes of G. We denote the 
minimum number of RPR to execute the scheduled G on a PRH 
with capacity K by Cost(G, K). Note that this problem can 
capture the case when a K-FPGA system is serving as the target 
architecture and each of the FPGAs can realize a single operation. 
In particular, the special case of K=1 represents the conventional 
single FPGA platforms (Figure 2). 
The problem, as formulated above, is somewhat similar to 
standard paging problem that has been formulated and extensively 
studied in the domain of Online Algorithms. Particularly, 
reconfigurable hardware in present terminology corresponds to a 
cache unit with capacity K and each partial reconfiguration 
request is similar to a page fault (miss) that has a unit cost. 
However, to the best of our knowledge, the problem presented in 
this paper has not been studied and the current formulation is 
novel for modeling partial reconfiguration cost. Throughout this 
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Figure 2. Different execution order of basic tasks leads to 
different number of required reconfigurations.



Lemma 2: Let P=<P1P2 … Pi…Pn> be an optimal solution for a 
given instance of the problem. Let Qi be a subsequence of Pi 
which contains operations in Pi that are in PRH(i). Similarly, let 
Ri be a subsequence of Pi that includes operations not in PRH(i). 
Then, S=<P1P2 … Pi-1Qi Ri Pi+1…Pn> is also an optimal solution. 

paper, we may use terms from our formulation and standard 
paging formulation interchangeably. 

3. Optimal Algorithm 
In this section, we present an optimal algorithm for solving the 
problem defined in Section 2. First, we consider a special case in 
which the given DAG has only one operation in each cycle. Such 
a DAG is a path and there is already an optimal method 
developed for this special case. We extend this method for DAG. 

Proof: The cost of T=<P1P2 … Pi-1Ri Pi+1…Pn> is equal to S 

since operations in Qi are in PRH(i) when LIU starts to process 
cycle i. Therefore, they will neither incur any RPR nor alter the 
PRH configuration. On the other hand, T is a subsequence of P. 
Therefore, its cost cannot be greater than Cost(P, K) according to 
Lemma 1. Since P is an optimal solution, S also has the optimal 
cost. � 

Consider the case when G is a simple sequence of operations in 
which an operation depends on the previous one. Hence, the 
scheduled version of this sequence has only one operation in each 
cycle. Therefore, the algorithm is forced to select the nodes 
according to their original order for execution. However, it has to 
select an operation to overwrite if there are K operations existing 
in PRH at some cycle. This problem, which is known as the 
offline paging problem has been optimally solved by Belady [1]. 
It has been proved that the Least Imminently Used (LIU) 
operation existing in the cache is the best candidate to overwrite. 
This algorithm (LIU) leads to the minimum number of page 
faults. 

Corollary 2: There exists an optimal algorithm, which executes 
operations previously existing in PRH before other nodes at each 
cycle.  

Corollary 3: There exists an optimal ordering in which nodes of 
the same type appear adjacent to each other in each cycle. 
Therefore, an optimal algorithm can merge nodes with the same 
type in each cycle and assume that nodes occurring in each cycle 
are distinct. 

 Lemma 3: Let P=< A1 A2 … Ai Ai+1 … Aj … Ak … Am > be a 
solution for a given instance of the problem in which Ai is the i’th 
operation of P. Let Aj and Ak be the next instances of Ai and Ai+1 
respectively (Figure 3). If Ai and Ai+1 both belong to the same 
cycle c and neither of them is in PRH(c), Then  
Q=< A1 A2 … Ai+1 Ai … Aj … Ak… Am> is also a solution and 
Cost(P, K) ≥ Cost(Q, K). 

Theorem 1: Given a sequence of operations and a PRH to run 
the operations on, LIU is an optimal method to execute the 
operations in the given order and minimize the number of RPR. 
 
Proof: There is a one to one correspondence between the present 
problem and the offline-paging problem. The LIU is known to be 
optimal for the latter; hence, it is also optimal for the current 
problem [1].                                                                                             �  
 
We define Si and Pi as the set of operations in cycle i and a 
permutation of operations in Si respectively. Note that the 
operations in Si are allowed to be repeated, since there can exist 
multiple operations of the same type in a cycle. Moreover, we 
define PRH(i) as the set of operations existing in PRH when the 
LIU starts to process cycle i . Therefore, PRH(0) = ∅.  

Sequence Q Sequence P 

n 
m

n 

m

Ai= mAny solution to the general problem proposed in section 2, will be 
a permutation of operations reflecting their execution order. This 
permutation has to be in the form of P = <P1P2 …Pn> to meet the 
data dependency constraint of the problem formulation.  
According to Theorem 1, executing P using LIU algorithm will 
lead to the minimum number of RPR. Therefore, the generalized 
optimal algorithm only needs to find the optimal sequence of 
operations among all possible choices for P.  

Ai+1= n

Aj= m
The following lemmas will aid in generating the optimal 
sequence: 
Lemma 1: Adding an operation to any place in a sequence of 
operations P cannot decrease Cost(P, K). 

Ak= nProof:  Let Q be the new sequence created by adding an 
operation to P. We can process P exactly the way LIU processes 
Q, namely we can load/evict the same operations the optimal 
algorithm loads/evicts for processing Q. This processes P with a 
cost equal to Cost(Q, K), i.e., there is at least one way to process 
P with cost equal to Cost(Q, K). Hence Cost(P, K) cannot be 
greater than Cost(Q, K). � Figure 3. Converting sequence P to Q will not increase 

the cost, provided that m and n are not in PRH(i). 
 

Corollary 1: For any sequence of operations Q and any 
subsequence P of Q:  Cost(Q, K) ≥ Cost(P, K). 



Algorithm min-RPR(G, K): 

   PRH(0) = ∅; 
   For each operation  
      Find its next occurrence; 
   For each cycle (traversing in reverse order) 
      Sort nodes in this cycle according to their next occurrence;
   For each cycle 
      If any of the operations is already in PRH: 
         append it to the optimal sequence;   
      Append the remaining operations to the optimal; 
         sequence based on their previously known sorting; 
      Update PRH configuration by processing the ordered list for
         this cycle using LIU; 

Proof: We prove that Q is a valid solution and can be processed 
with cost equal to Cost(P, K), i.e., the optimal cost of processing 
Q is not greater than Cost(P, K). 

Proof: We prove that Q is a valid solution and can be processed 
with cost equal to Cost(P, K), i.e., the optimal cost of processing 
Q is not greater than Cost(P, K). 
Since Ai and Ai+1 both belong to the same cycle, swapping them 
will produce a valid permutation. Note that relative positions of 
Ai and Ai+1, compared to other operations in P and Q, do not 
change. Therefore, optimal processing of P and Q up to position i, 
will lead to the same cost and PRH configuration. Executing Ai 
and Ai+1 for both P and Q will incur two RPRs, since neither of 
them is in PRH(c). Loading the i’th node will overwrite the same 
operation for both sequences since they both have the same PRH 
configuration after processing the i’th node. Loading the i+1’th 
operation, however, might replace different existing modules, 
since i’th operations are different in P and Q.  

Since Ai and Ai+1 both belong to the same cycle, swapping them 
will produce a valid permutation. Note that relative positions of 
Ai and Ai+1, compared to other operations in P and Q, do not 
change. Therefore, optimal processing of P and Q up to position i, 
will lead to the same cost and PRH configuration. Executing Ai 
and Ai+1 for both P and Q will incur two RPRs, since neither of 
them is in PRH(c). Loading the i’th node will overwrite the same 
operation for both sequences since they both have the same PRH 
configuration after processing the i’th node. Loading the i+1’th 
operation, however, might replace different existing modules, 
since i’th operations are different in P and Q.  
Suppose loading Ai+1 overwrites operation x when we are 
processing P optimally. If x≠Ai then we can overwrite x with the 
(i+1)’th operation for Q and have the exact cost and PRH 
configuration up to position i+2. Since the rest of Q is exactly 
same as P, its total cost will be the same. However, If x=Ai we 
replace the i’th operation with the (i+1)’th operation when 
processing Q. This implies that except for one operation, PRH 
configuration is identical for P and Q up to position i+2. In 
particular, Q has an operation of type m instead of n (Figure 3). 
We continue processing Q exactly as LIU would process P up to 
position j. Note that RPRs for this span are the same, since type of 
operations between i+1 and j cannot be either m or n.  

Suppose loading Ai+1 overwrites operation x when we are 
processing P optimally. If x≠Ai then we can overwrite x with the 
(i+1)’th operation for Q and have the exact cost and PRH 
configuration up to position i+2. Since the rest of Q is exactly 
same as P, its total cost will be the same. However, If x=Ai we 
replace the i’th operation with the (i+1)’th operation when 
processing Q. This implies that except for one operation, PRH 
configuration is identical for P and Q up to position i+2. In 
particular, Q has an operation of type m instead of n (Figure 3). 
We continue processing Q exactly as LIU would process P up to 
position j. Note that RPRs for this span are the same, since type of 
operations between i+1 and j cannot be either m or n.  
If there is an operation overwriting n for P, we overwrite m with 
the same operation for Q. This will make both cost and PRH 
configuration up to that point equal and since the rest of P and Q 
are the same, they will have the same cost. However, if such a 
case does not happen up to position j, P has to increase the cost by 

one to load m and execute Aj while Q has m on its PRH and does 
not issue a RPR. If m overwrites n in PRH of P, both sequences 
will have the same PRH configuration while Q has a lower cost 
up to this point. However, if m does not overwrite n, we can 
overwrite the same module with n after executing Aj for Q. Again, 
we will have the same PRH configuration and cost up to this point 
while the rest of two sequences are the same. This completes the 
proof. � 

If there is an operation overwriting n for P, we overwrite m with 
the same operation for Q. This will make both cost and PRH 
configuration up to that point equal and since the rest of P and Q 
are the same, they will have the same cost. However, if such a 
case does not happen up to position j, P has to increase the cost by 

one to load m and execute Aj while Q has m on its PRH and does 
not issue a RPR. If m overwrites n in PRH of P, both sequences 
will have the same PRH configuration while Q has a lower cost 
up to this point. However, if m does not overwrite n, we can 
overwrite the same module with n after executing Aj for Q. Again, 
we will have the same PRH configuration and cost up to this point 
while the rest of two sequences are the same. This completes the 
proof. � 
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Cycle i 

Therefore, an optimal algorithm can order all nodes appearing in a 
cycle, depending on their next occurrence. According to Corollary 
2, at each cycle, the optimal algorithm can execute nodes existing 
in PRH before others. The remaining nodes can be executed 
according to such ordering without increasing the cost compared 
to any other possible ordering, according to Lemma 3.  

Therefore, an optimal algorithm can order all nodes appearing in a 
cycle, depending on their next occurrence. According to Corollary 
2, at each cycle, the optimal algorithm can execute nodes existing 
in PRH before others. The remaining nodes can be executed 
according to such ordering without increasing the cost compared 
to any other possible ordering, according to Lemma 3.  

Cycle j 

Note that next instance of each operation happens in some Si and 
all operations in Si will come before all operations in Sj provided 
that i < j. Hence, comparing location of the next instance is trivial 
when two operations don’t have their next occurrence in the same 
cycle. If an operation does not have another repetition in the next 
cycles, we can think of its next repetition at infinity and apply the 
same approach. For example in Figure 4, either <y m n x> or  
<y n m x> would be an optimal ordering for cycle i. 

Note that next instance of each operation happens in some Si and 
all operations in Si will come before all operations in Sj provided 
that i < j. Hence, comparing location of the next instance is trivial 
when two operations don’t have their next occurrence in the same 
cycle. If an operation does not have another repetition in the next 
cycles, we can think of its next repetition at infinity and apply the 
same approach. For example in Figure 4, either <y m n x> or  
<y n m x> would be an optimal ordering for cycle i. 

Cycle k 

If two operations in cycle i have their next instances in cycle j 
(Figure 4), their relative order in cycle j determines their ordering 
in cycle i. However, the same argument applies to cycle j and 
operations relative order in cycle j depends on their next 
occurrence. To tackle this problem, the ordering can be done in 
reverse order. Starting the ordering process from the last cycle, all 
nodes occurring in cycle j, have their future occurrences already 
ordered. Therefore, they can be ordered deterministically using 
their next occurrences.  

If two operations in cycle i have their next instances in cycle j 
(Figure 4), their relative order in cycle j determines their ordering 
in cycle i. However, the same argument applies to cycle j and 
operations relative order in cycle j depends on their next 
occurrence. To tackle this problem, the ordering can be done in 
reverse order. Starting the ordering process from the last cycle, all 
nodes occurring in cycle j, have their future occurrences already 
ordered. Therefore, they can be ordered deterministically using 
their next occurrences.  

Figure 4. Tie breaking at cycle i. 

This procedure can be summarized as the min-RPR algorithm 
depicted in Figure 5. After the initialization step in which the next 
occurrence of a node is determined, nodes are ordered according 
to their next instance. Cycles are examined in reverse order for 
this step for efficient implementation. For determining the optimal 
execution order of nodes, operations already in the PRH are 
executed before other operations in each cycle. The remaining 
operations are executed according to their calculated ordering. 
PRH configuration is then updated for next cycle by processing 
the partial sequence generated in current cycle. Lemma 2 and 3 
guarantee the min-RPR algorithm (Figure 5) finds a valid 

This procedure can be summarized as the min-RPR algorithm 
depicted in Figure 5. After the initialization step in which the next 
occurrence of a node is determined, nodes are ordered according 
to their next instance. Cycles are examined in reverse order for 
this step for efficient implementation. For determining the optimal 
execution order of nodes, operations already in the PRH are 
executed before other operations in each cycle. The remaining 
operations are executed according to their calculated ordering. 
PRH configuration is then updated for next cycle by processing 
the partial sequence generated in current cycle. Lemma 2 and 3 
guarantee the min-RPR algorithm (Figure 5) finds a valid 
Figure 5. Algorithm min-RPR pseudo code 



sequence of operations with the minimum cost. 
The time complexity for algorithm min-RPR is O(n.p.log(p)), 
where n is the number of operations and p is the number of 
distinct operation types appearing in the scheduled DAG 
respectively. Note that at each cycle, it takes O(p.log(p)) to sort 
the nodes and there are O(n) cycles in the scheduled DAG. For 
practical applications, p does not grow with n. In realistic 
scenarios, the number of distinct operation types occurring in the 
application DAG is fixed; hence, the algorithm runtime is 
expected to scale linearly with respect to the application size. 
 

4. Experimental Results 
We have implemented our proposed algorithm along with three 
other algorithms using the C language. These four algorithms 
have been executed on 12 different scheduled DFGs extracted 
from real applications. These DFGs are all extracted from the 
signal processing toolbox of Matlab software. They are standard 
functions used in many signal-processing applications such as 
digital filter design. Each node of these DFGs is a complex matrix 
manipulation operation such as matrix inversion, multiplication 
and sine of matrix elements. Since matrix dimensions can be 
large, these operations could be complex enough to be 
implemented on the PRH. 
Each DFG has been scheduled using a path-based scheduler [10] 
with two different sets of resource constraints. In Table 1, the two 
DFGs with the same name and different indices refer to the same 
DFG but different resource constraints (and hence schedules). 
Examples are Firls1 and Firls2. Table 1 demonstrates the basic 
characteristics of these test benches including number of nodes 
and number of cycles. 
All scheduled DFGs are executed using four different algorithms. 
These algorithms differ in the manner in which they order nodes 
in a cycle. Once the order of the nodes at each cycle is 
determined, the generated sequence of nodes will be passed to the 
LIU algorithm [1] to measure the number of RPRs. For each 
algorithm, the number of RPRs is recorded as the cost.  
The first algorithm, LF (Left First), executes the left node before 
other nodes occurring at its right in each cycle. LRU (Least 
Recently Used), at each cycle, executes a node that has been least 
recently used, while MRU selects the most recently used node to 
execute. Finally, the last algorithm is min-RPR, which we proved 
its optimality in section 3.  
Results of four aforementioned algorithms on these DFGs are 
shown in Table 2. This table contains the number of RPR for 
PRHs with 1, 2 or 3 module capacity (K). The experimental 
results show that the optimal algorithm outperforms the other 
algorithms significantly. The overhead penalty that other 
algorithms have to pay ranges from 2.5% to more than 40% for 
these DFGs. 
Intuitively, increasing the number of partitions on PRH reduces 
the algorithms’ performance gap. In the extreme case, if K is 
equal to the number of module types occurring in DFG, all 
algorithms would behave the same. In this case, all algorithms 
have to pay a unit cost for loading the first occurrence of each 
operation type. From that point on, future occurrences of 
operations of the same type will not incur any cost. DFGs listed in 
Table 1 do not have many different types of operations. 

Therefore, the small performance penalty happens at small values 
of K. For instance for case K=3, the performance penalty of MRU 
is 2.5%.  
We have randomly generated a set of DFGs with 26 different 
operation types and 500±10% nodes. These DFGs were used to 
show that this small performance gap would occur at greater 
values of K in case there are many types of operations in DFG. 
The output of the aforementioned four algorithms on this set of 
test benches is summarized in Table 3. The performance gap for 
all algorithms is significant for K=4. This significant gap can be 
observed for LF and LRU algorithms even for K=16. 
 

Scheduled 
DFG 

Number of 
nodes 

Number of 
cycles 

Fircls1 63 24 

Fircls2 63 22 

Firls1 64 32 

Firls2 64 20 

Firrcos1 79 42 

Firrcos2 79 42 

Invfreq1 41 25 

Invfreq2 41 23 

Maxflat1 115 51 

Maxflat2 115 42 

Spectrum1 55 28 

Spectrum2 55 21 

 

Table 1. Scheduled DFGs used for experiments. 
 
In summary, all experiments on real applications and randomly 
generated DFGs, for different values of K, show that our 
algorithm outperforms other candidates. This improvement ranges 
from a few percents to tens of percents depending on DFG, 
algorithm structure, and capacity of the PRH. An interesting point 
is MRU uses a policy similar to min-RPR to order nodes at each 
cycle. MRU exhibits close to optimal results and behaves more 
efficiently than LF and LRU. 

5. Conclusion 
We presented an efficient optimal algorithm for minimizing the 
number of required partial reconfigurations when a partially 
reconfigurable or multi-FPGA system is used to run an 
application. A special case of the algorithm also solves the 
problem for single non-partially reconfigurable FPGA platforms. 
Since total application runtime is mainly dominated by the partial 
reconfiguration delay for many classes of applications, this 
algorithm can be directly applied for minimizing total application 
runtime.  

Future research will focus on extensions with module area and 
delay considerations. Currently, all modules are assumed to 
occupy the same area on the chip and to have delays negligible 
compared to reconfiguration delay. These assumptions, however, 



might not be the case for all applications. We will work toward 
extending our results to more complicated models incorporating 
module delay and area. 
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 K=1 K=2 K=3 

 LF LRU MRU OPT LF LRU MRU OPT LF LRU MRU OPT 

Fircls1 59 60 50 46 36 43 35 32 25 30 24 23 

Fircls2 60 57 49 44 38 40 34 33 27 29 25 24 

Firls1 53 58 45 39 23 28 26 23 13 14 14 13 

Firls2 46 46 34 32 23 27 20 19 13 18 13 13 

Firrcos1 56 61 50 45 29 32 28 27 15 15 14 14 

Firrcos2 47 47 42 36 27 26 23 22 14 14 12 12 

Invfreq1 35 39 30 27 22 23 21 20 14 15 14 14 

Invfreq2 32 38 30 27 20 24 21 19 14 15 14 14 

Maxflat1 102 109 88 80 53 63 52 46 34 36 32 30 

Maxflat2 106 94 69 62 46 49 40 37 27 29 24 24 

Spectrum1 42 48 35 34 22 26 19 19 14 16 12 12 

Spectrum2 47 44 28 28 21 21 15 15 11 11 9 9 

Total 685 701 550 500 360 402 334 312 221 242 207 202 

Penalty(%) 37 40.2 10 NA 15.4 28.8 7.1 NA 9.4 19.8 2.5 NA 

 
Table 2. Number of required partial reconfigurations for different algorithms on real DFGs. 

 
 K=4 K=8 K=16 

 LF LRU MRU OPT LF LRU MRU OPT LF LRU MRU OPT 

DFG1 315 320 296 278 209 224 200 192 98 101 91 90 

DFG2 305 313 282 273 203 216 192 188 93 100 91 89 

DFG3 311 315 285 270 207 219 195 186 89 96 87 86 

DFG4 314 319 284 272 207 219 195 189 96 97 89 88 

DFG5 330 336 304 290 220 233 205 197 97 103 96 94 

DFG6 324 329 295 284 218 232 200 195 95 99 87 86 

DFG7 306 311 277 266 202 216 185 181 90 97 85 85 

DFG8 306 310 279 267 200 211 184 180 93 96 88 86 

DFG9 320 326 291 278 213 222 196 191 92 94 87 85 

DGF10 308 316 278 266 208 222 189 184 94 98 90 89 

DFG11 312 317 283 271 204 217 189 183 87 94 83 83 

DFG12 313 327 285 275 205 227 187 186 87 93 83 83 

Average 313.7 319.9 286.6 274.2 208 221.5 193.1 187.7 92.6 97.3 88.1 87 

Penalty(%
) 

14.4 16.7 4.5 NA 10.8 18.0 2.9 NA 6.4 11.9 1.2 NA 

 

Table 3. Number of required partial reconfigurations for different algorithms on randomly generated DFGs. 
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