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Abstract— Tiny embedded systems have not been an ideal
outfit for high performance computing due to their constrained
resources. Limitations in processing power, battery life, commu-
nication bandwidth and memory constrain the applicability of
existing complex medical/biological analysis algorithms to such
platforms. Electrocardiogram (ECG) analysis resembles such
algorithm. In this paper, we address the issue of partitioning
an ECG analysis algorithm while the wireless communication
power consumption is minimized. Considering the orientation of
the ECG leads, we devise a technique to perform preprocessing
and pattern recognition locally on small embedded systems
attached to the leads. The features detected in pattern recognition
phase are considered for classification. Ideally, if the features
detected for each heart beat reside in a single processing node,
the transmission will be unnecessary. Otherwise, to perform
classification, the features must be gathered on a local node
and thus, the communication is inevitable. We perform such
feature grouping by modeling the problem with a hypergraph
and applying partitioning schemes. This yields a significant
power saving in wireless communication. Furthermore, we utilize
dynamic reconfiguration by software module migration. This
technique with respect to partitioning enhances the overall power
saving in such systems. Moreover, it adaptively alters the system
configuration in various environments and on different patients.
We evaluate the effectiveness of our proposed techniques on
MIT/BIH benchmarks.

I. INTRODUCTION

The electrocardiogram (ECG) is the record of variation
of bioelectric potential with respect to time as the human
heart beats. Due to its ease of use and non-invasiveness, ECG
play an important role in patient monitoring and diagnosis.
Multichannel electrocardiogram (ECG) data provide cardiol-
ogists with essential information to diagnose heart disease in
a patient. Our primary objective is to develop an ambulatory
ECG analysis algorithm with real-time diagnosis functions for
wearable computers. ECG analysis algorithms has always been
a very difficult task in the realization of computer aided ECG
diagnosis. Implementation of such algorithms become even
harder for small and mobile embedded systems that meet the
given latency requirements while minimizing overall energy
dissipation for the system. Distributed embedded systems are
now being successfully deployed in various wearable comput-

ers. Distributed architectures have been developed for cooper-
ative detection, scalable data transport, and other capabilities
and services. However, the complexity of algorithms running
on the resource constraint systems has introduced a new set
of challenges associated with resource constrained devices
and their energy concerns. These obstacles may dramatically
reduce the effectiveness of embedded distributed algorithms.
Thus, a new distributed, embedded, computing attribute, dy-
namically reconfigurable, must be developed and provided to
such systems. Reconfiguration capability may adaptively alter
the system configuration to accommodate the objectives and
meet the constraints for highly dynamic systems.

II. RELATED WORK

Several ”wearable” technologies exist to continually mon-
itor patient’s vital signs, utilizing low cost, well-established
disposable sensors such as blood oxygen finger clips and
electrocardiogram electrodes.The Smart Shirt from Sensatex
[1] is a wearable health monitoring device that integrates
a number of sensory devices onto the Wearable Mother-
board from Georgia Tech [2]. Several other technologies
have been introduced by MIT called MIThril [3], e-Textile
from Carnegie Mellon University [4], Wearable e-Textile from
Virginia Tech [5], CustoMed [6] and RFab-Vest [7] from
UCLA. The Lifeguard project being conducted at Stanford
University is a physiological monitoring system comprised
of physiological sensors (ECG/Respiration electrodes, Pulse
Oximeter, Blood Pressure Monitor, Temperature probe), a
wearable device with built-in accelerometers (CPOD), and a
base station (Pocket PC). The CPOD acquires and logs the
physiological parameters measured by the sensors [8]. The
Assisted Cognition Project conducted at the University of
Washingtons Department of Computer Science is exploring the
use of AI systems to support and enhance the independence
and quality of life of Alzheimers patients. Assisted Cognition
systems use ubiquitous computing and artificial intelligence
technology to replace some of the memory and problem-
solving abilities that have been lost by an Alzheimers patient
[9]. Nevertheless, none of the above projects/systems supports



Fig. 1. ECG Analysis Schematic

the concept of scalability and adapting complex processing
algorithms.

III. AUTOMATED FEATURE SET DETECTION

Given the goal of classifying objects based on their at-
tributes, the functionality of an automated pattern recognition
system can be divided into two basic tasks: the description
task generates attributes of an object using feature extraction
techniques, and the classification task assigns a group label to
the object based on those attributes with a classifier.
There are two different approaches for implementing a pattern
recognition system: statistical and structural. Each approach
utilizes different schemes within the description and classifi-
cation tasks which incorporates a pattern recognition system.
Statistical pattern recognition [10][11] concludes from statisti-
cal decision theory to discriminate among data from different
groups based upon quantitative features of the data. The
quantitative nature of statistical pattern recognition, however,
makes it difficult to discriminate among groups based on
the morphological (i.e., shape-based or structural) subpatterns
and their interrelationships embedded within the data. This
limitation provided the impetus for the development of a

structural approach to pattern recognition.
Structural pattern recognition [12][13] relies on syntactic
grammars to discriminate among data from different groups
based upon the morphological interrelationships (or intercon-
nections) present within the data. Structural pattern recognition
systems have proven to be effective to image data as well as
time-series data.
We have ported an accurate ECG processing algorithm based
on structural pattern recognition onto our processing units
(dot-motes) [14]. The algorithm consists of three stages: pre-
processing, pattern recognition and classification. We perform
the preprocessing and pattern recognition locally and within
close proximity to the ECG leads. The preprocessing includes
filtering while the pattern recognition includes heartbeat de-
tection (through the QRS complex detection), segmentation as
well as feature extraction. Once the features are extracted, they
will be processed for classification.
The filtering is performed by finite impulse response (FIR)
filters with cut-off frequencies of 5-200 Hz. The heartbeat
detection is implemented with a QRS detector based on the
algorithm of Pan and Tompkins [15] with some improvements
that employs slope information. The scheme proposed by



Laguna et al [16] was used to extract the fiducial points.
Consequently, features relating to heartbeat intervals and ECG
morphology were calculated for each heartbeat. The list of
features is included in Table I and are based on [17] with
minor additions.
We extracted a total of 17 features from the ECG signals,

Group label Features
RR Intervals Pre-RR interval

Post-RR interval
Average-RR interval
Local Average-RR interval

Heartbeat Intervals QRS duration
T wave duration
PR duration
ST duration
QT duration

Morphology 1A ECG Morphology (10 samples)
between Q and S

Morphology 1B Normalized ECG Morphology (10 samples)
between Q and S

Morphology 2A ECG Morphology (10 samples)
between S and T wave offset

Morphology 2B Normalized ECG Morphology (10 samples)
between S and T wave offset

Morphology 3A ECG Morphology (9 samples)
between R-50ms and R+100ms

Morphology 3B Normalized ECG Morphology (9 samples)
between R-50ms and R+100ms

Morphology 4A ECG Morphology (8 samples)
between R+150ms and R+500ms

Morphology 4B Normalized ECG Morphology (8 samples)
between R+150ms and R+500ms

TABLE I
FEATURES CATEGORIZED BY GROUPS THAT CONSIDERED IN THE STUDY

and each derives from one of the groups in Table I. Our
objective is to minimize the communication among processing
nodes before the classification phase, therefore, this study
does not investigate the problem of classification and we did
not implement a classifier for our platform. However, any
classifier suitable for suitable for small embedded systems may
be deployed.

IV. SOFTWARE PROFILING

Fig. 2. ECG Feature Detection Delays Extracted in Profiling Phase
To measure the execution delay of our heartbeat detection

and feature extraction system, we used Avrora [18], a
microcontroller simulator framework developed at UCLA.

For our experiments, we implemented a program monitor
on Avrora that generates a control flow graph (CFG) while
measuring the execution frequency and delay of each
basic block. Function delay is measured as the duration
when execution enters a function to when execution exits.
Calls to other functions are accounted for, while interrupts
are not. Function delays measured are represented in Figure 2.

V. TARGET ARCHITECTURE MODEL

Networked sensor nodes containing small, often battery-
powered embedded computers can densely sample phenomena
that were previously difficult or costly to observe. Sensor
nodes can be placed anywhere on a patients body [6] [7].
Due to the mobility of such systems, wireless sensor networks
are expected to be both autonomous and long-lived, surviving
environmental hardships while conserving energy as much as
possible. It is well-known that the amount of energy consumed
for a single wireless communication of one bit can be many
orders of magnitude greater than the energy required for a
single local computation. Thus, we focus our analysis to
the energy used for wireless communication. In our model,
since all the node are placed within close proximity of each
other, we assume they communicate directly and multi-hop
communication is not required. Therefore, the total energy
consumed for in-network communication is:

ε(n) = b(n)× e(n) (1)

where b(n) is the number of packets transmitted and e(n)
is the average amount of energy required to transmit one
packet. In our design, we consider Collision Free Model
(CFM) which simplifies the programming by abstracting all
details of low level channel contention and packet collision
away from the algorithm designers. By abstracting reliable
communication as an atomic operation, programming based
on CFM bears resemblance to existing algorithm design in
parallel and distributed computation. CFM does not really
capture the impact of packet collision that distinguishes wire-
less communication from wired communication, which makes
performance analysis under CFM not very accurate. However,
for the sake of simplicity, we consider CFM in our design.

VI. DYNAMIC RECONFIGURATION

Our target operating system is SOS, a new operating
system for mote-class sensor nodes that takes a more
dynamic point on the design spectrum [19]. SOS consists
of dynamically-loaded modules and a common kernel,
which implements messaging, dynamic memory, and module
loading and unloading, among other services. Dynamic
reconfigurability is one of our primary assumptions. In the
domain of embedded computing, reconfigurability is the
ability to modify the software on individual nodes of a
network after the network has been deployed and initialized.
This provides the ability to incrementally update the sensor
network after it is deployed, add new software modules to
a sensor node or remove unused software modules when



they are no longer needed. The growing tensions between
large hard to update networks and complex applications with
incremental patches has made reconfigurability an issue that
can no longer be ignored. SOS will support the a mechanism
that enables over the air reprogramming of the sensor nodes.
Using this methods, software modules may be modified,
added or removed.

VII. FEATURE SET PARTITIONING

A hypergraph is a generalization of a graph, where the set of
edges is replaced by a set of hyperedges. A hyperedge extends
the notion of an edge by allowing more than two vertices
to be connected by a hyperedge. Formally, a hypergraph
H = (V, Eh) is defined as a set of vertices V and a set
of hyperedges Eh, where each hyperedge is a subset of the
vertex set V [20], and the size a hyperedge is the cardinality
of this subset. Let wi denote the weight of vertex vi ∈ V . A
K-way vertex partition Π = {V1, V2, . . . , Vk} of H is said to
be balanced if each Vi satisfies the following equation:

Wk ≤ Wavg(1 + ε), for k = 1, 2, . . . , K (2)

where,

Wk =
∑

vi∈Vk

wi (3)

Wavg = (
∑

vi∈V

wi)/K (4)

In a partition of H, a hyperedge that has at least one vertex in
a partition is said to connect that partition. Connectivity set Λj

of a hyperedge ej is defined as the set of partitions connected
by ej . Connectivity λj = |Λj | of a hyperedge ej denotes
the number of partitions connected by ej . A hyperedge hj is
said to be cut (external) if it connects more than one partitions
(i.e. λj > 1), and uncut (internal) otherwise (i.e. λj = 1).
Therefore, cut-size is defined as follows:

cutsize(Π) =
∑

ej∈Eh

(λj − 1) (5)

Hence, the cut-size is equal to the number of cut nets. The
hypergraph partitioning is defined as dividing it into two or
more parts such that the cut-size is minimized, while a given
balance criterion among the partition weights is achieved. The
hypergraph partitioning problem is known to be NP-hard [21].
During the software partitioning, it is quite important to be
able to divide the system specification into clusters so that the
inter-cluster (inter-mote) connections are minimized. Hyper-
graphs can be used to naturally represent feature extraction
algorithms. The vertices of the hypergraph are modeled as
features and their weights represent the computational time
required for features detection, and the hyperedges resembles
the number of times a set of features are triggered simul-
taneously. Partitioning such graph such that the cut-size is
minimized while the partitions are balanced can reduce the
communication that is required among various processing
units for classification phase (The vision is that all features

selected must be classified on a local node, thus, in the events
where selected features reside on distributed nodes, inter-
node communication is inevitable). A high quality hypergraph
partitioning algorithm greatly affects the feasibility, quality,
and the cost of the resulting system.
We employed a hypergraph partitioning algorithm that is based
on the multilevel paradigm. In the multilevel paradigm, a
sequence of successively coarser hypergraphs is constructed. A
bisection of the smallest hypergraph is computed and it is used
to obtain a bisection of the original hypergraph by successively
projecting and refining the bisection to the next level finer
hypergraph. We have used hMETIS, a set of programs for
partitioning hypergraphs implemented for PCs [22]. Same
algorithm can be easily ported on a mobile computer such
as a Pocket PC to facilitate dynamic reconfiguration. The
vision is that the hypergraph information is collected real-time
from the processing nodes of the wearable computer and the
algorithm running on the motes are reconfigured accordingly.
The number of partitions is determined as described below:
The deadline for performing preprocessing tasks as well as
pattern recognition must be completed before the next heart-
beat arrives. Let the heartbeat be N beats per minute (bpm).
Therefore, the heartbeat period can be obtained from:

Theartbeat = 60/N (6)

Let the time required for preprocessing and pattern recognition
be tpre and trecog respectively.

tpre + trecog < δ × (Theartbeat) where δ < 1 (7)

The factor δ is selected to be 0.9 to ensure a margin that
prevents from overloading the processing units. Therefore,
the maximum cpu time that may be assigned to pattern
recognition is δ × (Theartbeat)− tpre where tpre is fixed and
can be computed during profiling stage. As described earlier,
the weight on vertices represents the computational time for
features. Wk is already outlined in Equation 4. Therefore, the
following objective shall be accommodated:

Minimize K
s.t.

Wk < trecog ∀k = 1..K
(8)

To determine the value of K, we cosider the total time required
for pattern recognition on all features , Trecog , (extracted from
profiling analysis). It is trivial that the lower bound on K can
be obtained from the following Equation:

K = Trecog/trecog (9)

Once partitioning is performed based on the lower bound
value of K, the solution may be imbalanced and violates the
constraint described in Equation 8. In this case, K must be
incremented and the features are re-partitioned until a feasible
solution is determined.



# of queries # of queries Transmission power
Record # exchanged with adaptive exchanged with manual saving with adaptive

partitioning partitioning partitioning (%)
100 1 62 6200.00
101 10 58 580.00
102 0 0 N/A
103 0 0 N/A
104 31 109 351.61
105 45 272 604.44
106 0 0 N/A
107 0 0 N/A
118 6 73 1216.67
119 0 0 N/A
200 6 129 2150.00
201 0 0 N/A
202 0 0 N/A
203 0 24 N/A
205 5 115 2300.00
207 44 715 1625.00
208 11 61 554.55
209 145 928 640.00
210 32 150 468.75
212 173 2609 1508.09
213 58 842 1451.72
214 49 559 1140.82
215 22 610 2772.73
217 0 0 N/A
219 0 0 N/A

Average 25.52 292.64 1146.71

TABLE II
NUMBER OF QUERIES EXCHANGED AMONG THE PROCESSING UNITS : SAMPLING RATE = 360 SAMPLE/SEC

# of queries # of queries Transmission power
Record # exchanged with adaptive exchanged with manual saving with adaptive

partitioning partitioning partitioning (%)
100 138 2218 1607.25
101 5 16 320
102 0 0 N/A
103 0 0 N/A
104 88 948 1077.27
105 34 884 2600
106 0 0 N/A
107 0 0 N/A
118 65 1170 1800
119 0 0 N/A
200 13 604 4646.15
201 0 0 N/A
202 0 0 N/A
203 5 289 5780
205 42 602 1433.33
207 43 1198 2786.05
208 165 1317 798.18
209 114 1497 1313.16
210 64 1008 1575
212 260 3245 1248.08
213 126 1653 1311.90
214 23 1202 5226.09
215 9 352 3911.11
217 0 0 N/A
219 0 0 N/A

Average 47.76 728.12 1524.54

TABLE III
NUMBER OF QUERIES EXCHANGED AMONG THE PROCESSING UNITS : SAMPLING RATE = 100 SAMPLE/SEC

VIII. EXPERIMENTAL ANALYSIS

This section presents various experimental analysis per-
formed to exhibit the effectiveness of our technique. All the

experiments were carried out with ECG signals from MIT-
BIH Arrhythmia database. The MIT-BIH Arrhythmia database



contains 48 half-hour excerpts of two-channel ambulatory
ECG recordings, obtained from 47 subjects studied by the
BIH Arrhythmia Laboratory between 1975 and 1979. The
recordings were digitized at 360 samples per second per
channel with 11-bit resolution over a 10 mV range. We used
25 of 48 complete records freely available from PhysioNet
[23]. Each MIT-BIT record has the recordings of two channels.
However, we only used the first channel. The second channel
was not used for the sake of simplicity.
We performed profiling analysis on the algorithm described
in Section I using Avrora to compute the computational delay
of feature detection modules. The ECG algorithm was ported
both for dot-motes (SOS) and PCs. The algorithm for PC
was written in C language. The simulation for feature and
hypergraph extraction was done on PC. As for hypergraph
partitioning, we utilized hMETIS. The MIT/BIH benchmarks
were used with two sampling rates as illustrated in Tables II
and III. The original sampling rate was 360 samples/sec while
100 samples/sec were acquired by downsampling data from
benchmarks. In Table II and III, two scenarios for configura-
tion was considered. In one scenario, features were adaptively
assigned to processing units based on hypergraph partitioning.
In the other scenario, the configuration was manually set and
remained fixed through out the experiments. The lower bounds
on the number of partitions were obtained from Equation 9
for each benchmark. Table II figures the number of queries
exchanged in both scenarios. Considering that the experiments
were carried out through the simulations, we were unable
to measure the wireless power consumption. However, given
the number of features we examined - seventeen, each query
may be incorporated in a wireless packet of dot-motes (30
bytes). Therefore, taking into account Equation 1, the wireless
power consumption is proportional to the number of queries
exchanged. On average, the wireless power consumption was
reduced by a factor of 11 using adaptive reconfiguration in the
360 samples/sec set of experiments. Likewise, the power was
reduced by factors of 15 for sampling rate of 100. The wireless
communication overhead for partitioning was negligible due to
the small size of our hypergraphs and their slowly changing
nature. The maximum number of reconfigurations was five
while the maximum number of hyperedges was eight for half
an hour duration of benchmarks. Therefore, its effect on the
performance of the system was negligible.

IX. CONCLUSION

We proposed a technique for software partitioning in tiny
embedded systems. Our target application was an ECG anal-
ysis algorithm which is generally classified as a complex
biomedical application. We addressed the problem of mapping
such application onto resource constrained embedded systems.
Our main objective was to extend the lifetime of the system.
This was achieved by reducing the power consumption due
to wireless communication. We proved the effectiveness of
our technique on various ECG excerpts form MIT/BIH bench-
marks. On average the power consumption was reduced by a
factor of 13.
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