
Dynamic Adaptation of Networked Reconfigurable Systems
Ram Kumar1 Soheil Ghiasi2 Mani Srivastava1

1Networked and Embedded Systems Lab (NESL), Electrical Engineering Department, UCLA
2Embedded and Reconfigurable Systems Lab, Computer Science Department, UCLA

1{ram, mbs}@ee.ucla.edu, 2soheil@cs.ucla.edu

Abstract- Networked Reconfigurable System comprises of a
heterogeneous ad-hoc network of reconfigurable devices
interconnected in a wired or wireless manner. This system
exploits the reconfigurable computing resource available
over the network to improve application performance and
increase the robustness of the system to failures. The
resource constraints of an individual device can be
overcome by utilizing the idle resources in the network.
There is a need for providing run-time software support to
the system to enable the dynamic adaptation. Resource
monitoring, scheduling and task allocation at a network
level become very critical issues in ensuring the proper
functioning of the system. This paper proposes a
framework for dynamic adaptation of the Networked
Reconfigurable Systems. A Network Resource Manager
(NRM) is developed that orchestrates the reconfiguration
process at every device in the network. A Local
Reconfiguration Manager (LRM) at every device abstracts
the underlying hardware and provides a common interface
and set of services to the Network Resource Manager.

I. INTRODUCTION

In recent years, the specifications for embedded
systems have become increasingly demanding, requiring
higher performance and reliability at lower power and
cost. At the same time, these systems are increasingly
proliferating into the environment [1] and being
employed for a limitless range of applications. Such
systems are exposed to a wide range of run-time events
and tasks that cannot be predicted at design time. These
observations promote the design and development of
dynamically adaptive computing systems.

A. Networked Reconfigurable System

Run-time adaptation in embedded systems was
traditionally done in software. However, the introduction
of new high performance, high density field
programmable gate arrays [2] and hybrid architectures
embedding a processor core and a FPGA fabric on the
same die [3][4] have enabled hardware reconfiguration
for dynamic adaptability. Research efforts have been
made in providing run-time support for this class of
reconfigurable systems [5]. The run-time reconfiguration
capability permits temporal adaptation of systems

wherein multiple configurations required to execute an
application can be scheduled over time.

 The capability of these systems can be extended
manifold by interconnecting these devices to realize an
ad-hoc network of reconfigurable embedded devices. A
heterogeneous network can be envisioned that comprises
of processors, FPGA and other reconfigurable resources
communicating with each other through wireless or
wired communication channels. The entire network can
be viewed as one monolithic adaptive system, called the
Networked Reconfigurable System that can be adapted in
both spatial and temporal domain. Different parts of the
system can be reconfigured independently in response to
the external inputs.

Networked reconfiguration enhances the
performance of applications. Sub-tasks of the application
can be executed in parallel at various locations within the
network. Often, a single device may be resource
constrained to do a task. In such situations, the idle
resources in the network can be utilized. The framework
of networked reconfiguration improves resource
utilization. Also if a part of a device gets damaged, it
can avail the resources shared through the network. This
increases the robustness of the overall system to failures.

B. Contribution

In this paper, we present a framework for the
dynamic adaptation of networked reconfigurable
systems. We propose a centralized entity named the
Network Resource Manager (NRM) that is responsible
for managing the reconfiguration mechanism of the
devices belonging to the network.

A networked reconfigurable system can be modeled
as a pool of computing resources, which are utilized by
the tasks whenever they are initiated and are freed upon
completion. The tasks can arrive at random times at
arbitrary locations. This can result in an uneven demand
for computation resources throughout the network. The
NRM ensures an even distribution of the computation
load throughout the networked reconfigurable system.

To support the NRM, there is a local entity on each
device called the Local Resource Manager (LRM) that
abstracts the underlying hardware and provides a
uniform interface throughout the network. In our
framework, the NRM and the LRM communicate with
each other over the network to co-ordinate the
reconfiguration processes on the devices.

This paper is based in part on research funded by DARPA
NEST Program under Contract No. F33615-01-C-1906.
The views expressed in this paper are the authors', and do
not necessarily reflect those of the funding agency.

B. Networked System Architecture We proceed to give a detailed description of
NETCAMS (NETwork of CAMeraS), a networked
reconfigurable system. The Computing Model assumed
to develop the framework is discussed in section 3. NRM
and LRM are described in Section 4 and section 5
respectively. The paper ends with the current progress
and conclusion.

The system comprises of three IQEye3 cameras and a
laptop computer networked via Ethernet. The cameras
are monitoring three separate rooms as shown in the
figure. The system has been deployed for intrusion
detection and target tracking in the rooms. The detection
of the intruders is done by executing the Background
Subtraction algorithm in the cameras. This algorithm
continually subtracts the currently captured frame with
the previous frame. The difference between the two
frames is the measure of activity taking place in the
scene. If the difference exceeds a threshold, an intrusion
is signaled and the image that captures the intrusion is
stored.

II. NETCAMS: SYSTEM DESCRIPTION

NETCAMS is a network of IQinVision IQEYE3 [6]
cameras deployed for intrusion detection and target
tracking in an area of interest.

A. IQEYE3 Camera Architecture

The intruder upon detection is then compared with a
database of targets that need to be tracked. The
comparison is done using Template Matching algorithm.
The templates of the targets of interest are stored in a
database. The image of the intruder is co-related with the
target template and if the degree of co-relation exceeds a
threshold, a match is signaled. The target of interest is
tracked using the Feature Selection and Tracking
algorithm. Thus, the complete operation of the system
requires the execution of three algorithms viz.
Background Subtraction, Template Matching and
Feature Selection and Tracking.

The IQeye3 camera from IQinVision [6] is a
network-enabled camera that can be configured to act as
a web-server delivering live images to a web-browser.
The main components of the architecture of the camera
are shown in the block diagram in figure 1.

The IBM PowerPC processor is the central
processing unit of the system. The image datapath is
implemented in a Xilinx VirtexE FPGA with the
capacity of 200K system gates. The CMOS image sensor
captures the scene images and transfers the raw stream to
the image datapath, which resides inside the FPGA,
using the IEEE 656 standard bus. The image datapath
initially synchronizes the raw stream to the system clock.
The synchronized stream is downsampled, windowed
and packetized. The packetized stream is stored in the
SDRAM through a DMA transfer on the PCI bus. The
stream is available on the network through the Ethernet.
The PCI bus connecting the components is clocked at 33
MHz. The bus arbiter resides in the PowerPC.

Fig 2: Networked System Architecture.

The three algorithms cannot be executed by the same

camera due to the following reasons. Firstly, the
Background Subtraction algorithm continually needs to
be running after the intruder is detected in order to
determine its location. Secondly, the resource
constraints on the camera do not permit the simultaneous
execution of Background Subtraction and Template
Matching. Therefore, the Template Matching algorithm
is instantiated in the other idle cameras in the network.
Template Matching is an involved step as it requires co-
relating the input image with multiple entries in the
target database. However this task can be partitioned by
dividing the database entries that need to be examined.

Fig. 1: IQeye3 camera architecture

The software architecture on the PowerPC provides
an API that can dynamically reconfigure the FPGA at
run-time. This feature enables developing applications on
the PowerPC that can use the FPGA as a computing
resource by scheduling different configurations over
time. The Ethernet controller enables the camera to be
controlled over the network. Thus, the camera with its
FPGA can serves as a computing resource for the other
devices in the network.

B. Application Execution Significant improvements in the performance can be
achieved by reconfiguring multiple cameras in the
network to perform different parts of the template
matching task. Finally, a hit in the database by any
camera in the network will trigger a reconfiguration in
the original camera to perform target tracking. Thus, the
framework of dynamic networked reconfiguration
enables the distributed execution of the application by
utilizing the resources available in the network.

The application execution proceeds in a distributed
manner over the networked system. Each operation in the
application task graph generates an event upon
completion. NRM receives the events and schedules the
next set of operations and allocates them to the
reconfigurable devices in the network. Reconfiguration
commands are sent to the devices over the network. Each
device in the network maintains a configuration database
of the possible operations that can be mapped onto it.

III. COMPUTATION MODEL In the NETCAMS system, every camera contains
FPGA images of the three vision algorithms. Also every
device in the network provides an API for the run-time
reconfiguration of the FPGA. On receiving the
reconfiguration commands from the NRM, the device
LRM performs the dynamic reconfiguration using the
API.

The dynamic networked reconfiguration framework
enables triggered instantiation of operations across
devices in the network. Multiple applications can be
executed simultaneously on the network.

A. Task Graph Representation

IV. NETWORK RESOURCE MANAGER The applications are represented using task graphs.
The task graph is a directed acyclic graph where each
node of the graph represents an operation and each edge
of the graph represents the input for an operation and the
events that initiate it.

The intruder detection and tracking application
discussed in the previous section can be represented by
the task graph shown in figure 3. Each operation in the
task graph is initiated only upon the generation of an
event from its preceding operation. For example, the
Template Matching operation is started only after the
Background Subtraction operation signals the detection
of an intruder.

The task graph representation captures the data-
dependencies amongst the operations. The data
communication between the operations takes place
through the network. The deadline for the application
execution is annotated to the task graph.

The Network Resource Manager (NRM) is the kernel
of the adaptive configurable system framework. It is a
centralized entity that is responsible for managing the
reconfiguration across the network. The network
resource manager constitutes of sub-modules viz.
Network Interface, Resource Monitor, Scheduler and
Allocator.

Fig. 4: Block diagram of the Network Resource

Manager

A. Network Interface

The network interface module enables the
communication of the Network Resource Manager with
the devices in the network. The network interface
implements a daemon that listens and captures the events
generated by the individual devices. It parses the events
to determine the source ID of the generator device and
also the attribute of the event. The parsed information is
sent to the Scheduler module. The network interface
module also transmits the reconfiguration commands
issued by the Allocator module to the appropriate
destination devices in the network.

Fig 3. Task Graph representing the intrusion detection
and target tracking application. The edges represent the
triggers initiating the reconfigurations.

B. Resource Monitor

The networked reconfigurable system can be
modeled as a pool of adaptive computing resource. The
primary function of the resource monitor is to maintain a
record of the utilization of the computing resources by all
the devices in the network. Each device in the network
can be addressed uniquely. The record for each device is
indexed by its address. The record contains an identifier
for the configuration currently mapped to the
reconfigurable resource, the resource availability and the
time when this reconfiguration was done on the device.
For example, a record for one of the cameras in the
NETCAMS system will be as follows:

IP Address Configuration

Mapped
Resource

Stauts
Instantiation

Time
Camera 1

128.97.93.56
Template
Matching

Busy 500 time
units

Fig 5. An example of a resource utilization record.

The resource monitor records are updated by the

individual devices that convey their individual resource
availability status whenever they are reconfigured or
when a task execution terminates.

C. Scheduler

The scheduler determines the set of operations in the
application task graph that are ready for execution and
their deadlines. The scheduler initially computes a delay
budget for all the operations in the task graph. The delay
budget is the maximal permissible time for any operation
to complete its execution and IO. The computation of the
delay budget is done by assigning the worst-case
execution time for every operation in the task graph. The
critical path through the task graph is then identified. It is
the path from the source operation to the destination
operation that encounters the maximum delay. The
operations on the critical path have zero slack. The slack
for all the other operations is calculated and is added to
their worst-case execution times to compute their delay
budget.

A task graph is shown in figure 6 that comprises of
seven operations and their worst-case execution times.
The critical path is identified to be A, B, D, F, G. All
these operations have zero slack and therefore a delay
budget equal to their worst-case execution time.
Operations C and E do not lie on the critical path and
hence they have a positive slack as indicated in the
figure. The delay budget for the operations C and E will
be 35 and 30 respectively.

Each operation in the system generates an event upon
completion. The events are picked up by the network
interface and sent to the scheduler. On receiving the
events, the scheduler decides the next set of operations to
be scheduled from the task graph. Based on the delay

budgets of the operations and the current execution time
of the application, the scheduler assigns a deadline for
the completion of each operation that is to be scheduled
next.

For example in the task graph shown in figure 6,
when operation A signals completion, the operations B
and C are scheduled. If operation A is completed in 5
time units, then the remaining 5 units of its delay budget
are added to the delay budget of operations B and C.
Therefore, operation B will have a deadline of 20 time
units and operation C will have a deadline of 40 time
units.

Fig 6. Task graph with execution times of operations

D. Allocator

The allocator module receives the operations to be
scheduled with their deadlines and allocates the devices
to perform those operations. It also initiates the transfer
of the output data from the parent operation in the task
graph to the device allocated for the current operation.
The allocator maintains an estimate of the execution time
of an operation on each one of the devices in the system.
The resource monitor is queried by the allocator to
determine the availability of the devices. The allocator
assigns the operation to the available device, which has
an estimated execution time that is less than the deadline.

In case no device is available, the allocator computes
the time after which the first device will be free. This can
be done by reading the “Instantiation Time” field in the
record of that device in the resource monitor. The time at
which the device would be free can be computed by
summing the estimated execution time of the operation
currently allocated to that device and the “Instantiation
Time”.

For example from figure 5, if the estimated execution
time of Template Matching on camera 1 is 20 time units,
then the device would be free at 520 time units. If the
current time is 510 time units, then the allocator can
determine that the camera 1 will be free in 10 time units.
The estimated execution time of the new operation to be

allocated on that device is added to the time after which
the device would be free. For instance, if the new
operation to be instantiated is Feature Selection and
Tracking and it has an execution time of 30 units on
camera 1, then it would terminate after 40 time units due
to the initial delay of 10 time units. If this time is less
than the deadline, the operation is allocated to the device.
This process is repeated till the first feasible device is
found. If there is no device found, the operation is
allocated to the device that has the minimum termination
time.

V. LOCAL RECONFIGURATION MANAGER

The Networked Reconfigurable System will comprise
of heterogeneous devices with different architectures and
implementation technology. The Local Reconfiguration
Manager (LRM) acts as a hardware abstraction layer
presenting a common interface to the NRM. The LRM
also provides a basic minimal set of services that would
enable the device to be reconfigured dynamically over
the network. The LRM comprises of a Network
Interface, Main Thread, Reconfiguration Queue, Loader
Thread and a Configuration Database. The main
components of the LRM are shown in the figure.

We have identified the key components necessary to
enable networked reconfiguration: Network Resource
Manager and Local Reconfiguration Manager. There is a
detailed description of the sub-modules that constitute
the Network Resource Manager viz. Network Interface,
Resource Monitor, Task Partition Module and Scheduler.
The working of the Local Reconfiguration Manager has
also been explained.

Fig 6. Block diagram of the Local Reconfiguration
Manager

The network interface transmits the events generated

by the device to the NRM. The allocation commands
issued by the NRM are parsed by the network interface
and sent to the main thread. The main thread coordinates
the functioning of all the operations that are allocated to
the device. A new thread is spawned for every operation
that is allocated to the device. The operation is added to
the reconfiguration queue. The top element of the
reconfiguration queue is called the current operation.
The loader thread is started by the current operation
thread. The configuration corresponding to the current

operation is fetched from the Configuration Database.
The loader thread programs the hardware using the run-
time reconfiguration API. The current operation thread
signals its instantiation to the NRM. Only the current
operation thread interacts with the hardware. The data
input for the current operation thread is received through
the network interface. Upon termination of execution, the
current operation thread signals to the NRM and removes
itself from the reconfiguration queue. The thread stays
alive till all its output is routed to the appropriate
destination using the network interface, after which it
dies.

VI. CURRENT WORK IN PROGRESS

Currently, most of the work in progress involves
implementation of the algorithms discussed in Section 2.
The algorithm is described using Behavioral VHDL. The
design flow consists of behavioral synthesis of the design
using the Synplify Pro from Synplicity [8]. The
generated net-list is then input to the Xilinx ISE [9] that
performs the mapping, place and route and bitfile
generation operations. The bitfile is then built into a flash
image using the proprietary tools from IQinVision. Upon
the completion of the implementation phase, experiments
using the proposed scheduling and allocation schemes
would be conducted to observe the latency and overall
resource utilization.

VII. CONCLUSIONS

In this paper, we have described a framework for
dynamic adaptation of Networked Reconfigurable
Systems. We first motivate the benefits of harnessing the
computing capability available in the network in the
form of idle reconfigurable hardware devices. Networked
reconfiguration helps overcome resource constraints,
improves application performance and increases
robustness of system to failures.

In future, the dynamic reconfiguration framework can
be extended to devices that can support partial
reconfigurations [7]. In such devices, multiple operations
can be instantiated simultaneously which can greatly
improve the granularity of the resource utilization and
also the application performance. The use of hardware
byte codes to transfer configurations across the network
is also intriguing.

REREFENCES

[1] D. Estrin, R. Govindan, J. Heidemann, and S.
Kumar, “Next Century Challenges: Scalable
Coordination in Sensor Networks.”, ACM
Mobicom’99, pp. 263-270, August 1999.

[2] Xilinx Platform FPGAs,
http://www.xilinx.com/products/platform

[3] Atmel FPSLIC.
http://www.atmel.com/atmel/products/prod39.htm

[4] J. R. Hauser and J. Wawrzynek, “Garp: A MIPS
processor with a re-configurable co-processor”, in
Proc. IEEE Symp. FPGAs for Custom Computing
Machines, Napa, CA, Apr. 1997, pp. 12-21

[5] J.S.N. Jean, K. Tomko, V. Yavagal, J. Shah, and R.
Cook, "Dynamic Reconfiguration to Support
Concurrent Applications," in IEEE Transactions on
Computers, Special Issue on Configurable
Computing, Vol. 48, No. 6, pp. 591--602, June
1999

[6] IQinVision IQeye3 Smart Cameras,
http://www.iqinvision.com/prd/IQe3.htm

[7] Edson L. Horta, John W. Lockwood, David E.
Taylor, David Parlour, “Dynamic Hardware
Plugins in an FPGA with Partial Run-time
Reconfiguration”, Design Automation Conference
(DAC), New Orleans, LA, June 10-14, 2002.

[8] Synplicity Products: Synplify Pro,
http://www.synplicity.com/products/synplifypro

[9] Xilinx ISE Design Tools Center,
http://www.xilinx.com/ise/design_tools

