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Abstract- Networked Reconfigurable System comprises of a 
heterogeneous ad-hoc network of reconfigurable devices 
interconnected in a wired or wireless manner. This system 
exploits the reconfigurable computing resource available 
over the network to improve application performance and 
increase the robustness of the system to failures. The 
resource constraints of an individual device can be 
overcome by utilizing the idle resources in the network. 
There is a need for providing run-time software support to 
the system to enable the dynamic adaptation. Resource 
monitoring, scheduling and task allocation at a network 
level become very critical issues in ensuring the proper 
functioning of the system. This paper proposes a 
framework for dynamic adaptation of the Networked 
Reconfigurable Systems. A Network Resource Manager 
(NRM) is developed that orchestrates the reconfiguration 
process at every device in the network. A Local 
Reconfiguration Manager (LRM) at every device abstracts 
the underlying hardware and provides a common interface 
and set of services to the Network Resource Manager. 

 
I. INTRODUCTION 

In recent years, the specifications for embedded 
systems have become increasingly demanding, requiring 
higher performance and reliability at lower power and 
cost. At the same time, these systems are increasingly 
proliferating into the environment [1] and being 
employed for a limitless range of applications. Such 
systems are exposed to a wide range of run-time events 
and tasks that cannot be predicted at design time. These 
observations promote the design and development of 
dynamically adaptive computing systems.  

 
A. Networked Reconfigurable System 

Run-time adaptation in embedded systems was 
traditionally done in software. However, the introduction 
of new high performance, high density field 
programmable gate arrays [2] and hybrid architectures 
embedding a processor core and a FPGA fabric on the 
same die [3][4] have enabled hardware reconfiguration  
for dynamic adaptability. Research efforts have been 
made in providing run-time support for this class of 
reconfigurable systems [5]. The run-time reconfiguration  
capability permits temporal adaptation of systems 

wherein multiple configurations required to execute an 
application can be scheduled over time.   

 The capability of these systems can be extended 
manifold by interconnecting these devices to realize an 
ad-hoc network of reconfigurable embedded devices. A 
heterogeneous network can be envisioned that comprises 
of processors, FPGA and other reconfigurable resources 
communicating with each other through wireless or 
wired communication channels. The entire network can 
be viewed as one monolithic adaptive system, called the 
Networked Reconfigurable System that can be adapted in 
both spatial and temporal domain. Different parts of the 
system can be reconfigured independently in response to 
the external inputs.  

Networked reconfiguration enhances the 
performance of applications. Sub-tasks of the application 
can be executed in parallel at various locations within the 
network. Often, a single device may be resource 
constrained to do a task. In such situations, the idle 
resources in the network can be utilized. The framework 
of networked reconfiguration improves resource 
utilization.  Also if a part of a device gets damaged, it 
can avail the resources shared through the network. This 
increases the robustness of the overall system to failures. 

 
B. Contribution 

In this paper, we present a framework for the 
dynamic adaptation of networked reconfigurable 
systems. We propose a centralized entity named the 
Network Resource Manager (NRM) that is responsible 
for managing the reconfiguration mechanism of the 
devices belonging to the network.  

A networked reconfigurable system can be modeled 
as a pool of computing resources, which are utilized by 
the tasks whenever they are initiated and are freed upon 
completion. The tasks can arrive at random times at 
arbitrary locations. This can result in an uneven demand 
for computation resources throughout the network. The 
NRM ensures an even distribution of the computation 
load throughout the networked reconfigurable system.  

To support the NRM, there is a local entity on each 
device called the Local Resource Manager (LRM) that 
abstracts the underlying hardware and provides a 
uniform interface throughout the network. In our 
framework, the NRM and the LRM communicate with 
each other over the network to co-ordinate the 
reconfiguration processes on the devices. 

This paper is based in part on research funded by DARPA
NEST Program under Contract No.  F33615-01-C-1906.
The views expressed in this paper are the authors', and do
not necessarily reflect those of the funding agency. 

  



B. Networked System Architecture We proceed to give a detailed description of 
NETCAMS (NETwork of CAMeraS), a networked 
reconfigurable system. The Computing Model assumed 
to develop the framework is discussed in section 3. NRM 
and LRM are described in Section 4 and section 5 
respectively. The paper ends with the current progress 
and conclusion. 

The system comprises of three IQEye3 cameras and a 
laptop computer networked via Ethernet. The cameras 
are monitoring three separate rooms as shown in the 
figure. The system has been deployed for intrusion 
detection and target tracking in the rooms. The detection 
of the intruders is done by executing the Background 
Subtraction algorithm in the cameras. This algorithm 
continually subtracts the currently captured frame with 
the previous frame. The difference between the two 
frames is the measure of activity taking place in the 
scene. If the difference exceeds a threshold, an intrusion 
is signaled and the image that captures the intrusion is 
stored.  

 
II. NETCAMS: SYSTEM DESCRIPTION 

NETCAMS is a network of IQinVision IQEYE3 [6] 
cameras deployed for intrusion detection and target 
tracking in an area of interest. 

 
A. IQEYE3 Camera Architecture 

The intruder upon detection is then compared with a 
database of targets that need to be tracked. The 
comparison is done using Template Matching algorithm. 
The templates of the targets of interest are stored in a 
database. The image of the intruder is co-related with the 
target template and if the degree of co-relation exceeds a 
threshold, a match is signaled. The target of interest is 
tracked using the Feature Selection and Tracking 
algorithm. Thus, the complete operation of the system 
requires the execution of three algorithms viz. 
Background Subtraction, Template Matching and 
Feature Selection and Tracking. 

The IQeye3 camera from IQinVision [6] is a 
network-enabled camera that can be configured to act as 
a web-server delivering live images to a web-browser. 
The main components of the architecture of the camera 
are shown in the block diagram in figure 1.  

The IBM PowerPC processor is the central 
processing unit of the system. The image datapath is 
implemented in a Xilinx VirtexE FPGA with the 
capacity of 200K system gates. The CMOS image sensor 
captures the scene images and transfers the raw stream to 
the image datapath, which resides inside the FPGA, 
using the IEEE 656 standard bus. The image datapath 
initially synchronizes the raw stream to the system clock. 
The synchronized stream is downsampled, windowed 
and packetized. The packetized stream is stored in the 
SDRAM through a DMA transfer on the PCI bus. The 
stream is available on the network through the Ethernet. 
The PCI bus connecting the components is clocked at 33 
MHz. The bus arbiter resides in the PowerPC.  

 

 

 

Fig 2: Networked System Architecture. 
 
The three algorithms cannot be executed by the same 

camera due to the following reasons. Firstly, the 
Background Subtraction algorithm continually needs to 
be running after the intruder is detected in order to 
determine its location. Secondly, the resource 
constraints on the camera do not permit the simultaneous 
execution of Background Subtraction and Template 
Matching. Therefore, the Template Matching algorithm 
is instantiated in the other idle cameras in the network. 
Template Matching is an involved step as it requires co-
relating the input image with multiple entries in the 
target database. However this task can be partitioned by 
dividing the database entries that need to be examined. 

Fig. 1: IQeye3 camera architecture 
 

The software architecture on the PowerPC provides 
an API that can dynamically reconfigure the FPGA at 
run-time. This feature enables developing applications on 
the PowerPC that can use the FPGA as a computing 
resource by scheduling different configurations over 
time. The Ethernet controller enables the camera to be 
controlled over the network. Thus, the camera with its 
FPGA can serves as a computing resource for the other 
devices in the network. 

  



B. Application Execution Significant improvements in the performance can be 
achieved by reconfiguring multiple cameras in the 
network to perform different parts of the template 
matching task. Finally, a hit in the database by any 
camera in the network will trigger a reconfiguration in 
the original camera to perform target tracking. Thus, the 
framework of dynamic networked reconfiguration 
enables the distributed execution of the application by 
utilizing the resources available in the network. 

The application execution proceeds in a distributed 
manner over the networked system. Each operation in the 
application task graph generates an event upon 
completion. NRM receives the events and schedules the 
next set of operations and allocates them to the 
reconfigurable devices in the network. Reconfiguration 
commands are sent to the devices over the network. Each 
device in the network maintains a configuration database 
of the possible operations that can be mapped onto it.   

III. COMPUTATION MODEL In the NETCAMS system, every camera contains 
FPGA images of the three vision algorithms. Also every 
device in the network provides an API for the run-time 
reconfiguration of the FPGA. On receiving the 
reconfiguration commands from the NRM, the device 
LRM performs the dynamic reconfiguration using the 
API. 

The dynamic networked reconfiguration framework 
enables triggered instantiation of operations across 
devices in the network. Multiple applications can be 
executed simultaneously on the network. 

 
A. Task Graph Representation 

IV. NETWORK RESOURCE MANAGER The applications are represented using task graphs. 
The task graph is a directed acyclic graph where each 
node of the graph represents an operation and each edge 
of the graph represents the input for an operation and the 
events that initiate it.  

The intruder detection and tracking application 
discussed in the previous section can be represented by 
the task graph shown in figure 3. Each operation in the 
task graph is initiated only upon the generation of an 
event from its preceding operation. For example, the 
Template Matching operation is started only after the 
Background Subtraction operation signals the detection 
of an intruder.  

The task graph representation captures the data-
dependencies amongst the operations. The data 
communication between the operations takes place 
through the network. The deadline for the application 
execution is annotated to the task graph.  

The Network Resource Manager (NRM) is the kernel 
of the adaptive configurable system framework. It is a 
centralized entity that is responsible for managing the 
reconfiguration across the network. The network 
resource manager constitutes of sub-modules viz. 
Network Interface, Resource Monitor, Scheduler and 
Allocator.

 
Fig. 4: Block diagram of the Network Resource 

Manager 
 

A. Network Interface 

 

The network interface module enables the 
communication of the Network Resource Manager with 
the devices in the network. The network interface 
implements a daemon that listens and captures the events 
generated by the individual devices. It parses the events 
to determine the source ID of the generator device and 
also the attribute of the event. The parsed information is 
sent to the Scheduler module. The network interface 
module also transmits the reconfiguration commands 
issued by the Allocator module to the appropriate 
destination devices in the network. 

Fig 3. Task Graph representing the intrusion detection 
and target tracking application. The edges represent the 
triggers initiating the reconfigurations. 

  



B. Resource Monitor 

The networked reconfigurable system can be 
modeled as a pool of adaptive computing resource. The 
primary function of the resource monitor is to maintain a 
record of the utilization of the computing resources by all 
the devices in the network. Each device in the network 
can be addressed uniquely. The record for each device is 
indexed by its address. The record contains an identifier 
for the configuration currently mapped to the 
reconfigurable resource, the resource availability and the 
time when this reconfiguration was done on the device. 
For example, a record for one of the cameras in the 
NETCAMS system will be as follows: 

 
IP Address Configuration 

Mapped 
Resource 

Stauts 
Instantiation 

Time 
Camera 1 

128.97.93.56 
Template 
Matching 

Busy 500 time 
units 

Fig 5. An example of a resource utilization record. 
 
The resource monitor records are updated by the 

individual devices that convey their individual resource 
availability status whenever they are reconfigured or 
when a task execution terminates. 

 
C. Scheduler 

The scheduler determines the set of operations in the 
application task graph that are ready for execution and 
their deadlines. The scheduler initially computes a delay 
budget for all the operations in the task graph. The delay 
budget is the maximal permissible time for any operation 
to complete its execution and IO. The computation of the 
delay budget is done by assigning the worst-case 
execution time for every operation in the task graph. The 
critical path through the task graph is then identified. It is 
the path from the source operation to the destination 
operation that encounters the maximum delay. The 
operations on the critical path have zero slack. The slack 
for all the other operations is calculated and is added to 
their worst-case execution times to compute their delay 
budget.  

A task graph is shown in figure 6 that comprises of 
seven operations and their worst-case execution times. 
The critical path is identified to be A, B, D, F, G. All 
these operations have zero slack and therefore a delay 
budget equal to their worst-case execution time. 
Operations C and E do not lie on the critical path and 
hence they have a positive slack as indicated in the 
figure. The delay budget for the operations C and E will 
be 35 and 30 respectively. 

Each operation in the system generates an event upon 
completion. The events are picked up by the network 
interface and sent to the scheduler. On receiving the 
events, the scheduler decides the next set of operations to 
be scheduled from the task graph. Based on the delay 

budgets of the operations and the current execution time 
of the application, the scheduler assigns a deadline for 
the completion of each operation that is to be scheduled 
next.  

For example in the task graph shown in figure 6, 
when operation A signals completion, the operations B 
and C are scheduled.  If operation A is completed in 5 
time units, then the remaining 5 units of its delay budget 
are added to the delay budget of operations B and C. 
Therefore, operation B will have a deadline of 20 time 
units and operation C will have a deadline of 40 time 
units.

 
Fig 6. Task graph with execution times of operations 
 

D. Allocator 

The allocator module receives the operations to be 
scheduled with their deadlines and allocates the devices 
to perform those operations. It also initiates the transfer 
of the output data from the parent operation in the task 
graph to the device allocated for the current operation. 
The allocator maintains an estimate of the execution time 
of an operation on each one of the devices in the system. 
The resource monitor is queried by the allocator to 
determine the availability of the devices. The allocator 
assigns the operation to the available device, which has 
an estimated execution time that is less than the deadline. 

In case no device is available, the allocator computes 
the time after which the first device will be free. This can 
be done by reading the “Instantiation Time” field in the 
record of that device in the resource monitor. The time at 
which the device would be free can be computed by 
summing the estimated execution time of the operation 
currently allocated to that device and the “Instantiation 
Time”.   

For example from figure 5, if the estimated execution 
time of Template Matching on camera 1 is  20 time units, 
then the device would be free at 520 time units. If the 
current time is 510 time units, then the allocator can 
determine that the camera 1 will be free in 10 time units. 
The estimated execution time of the new operation to be 

  



allocated on that device is added to the time after which 
the device would be free. For instance, if the new 
operation to be instantiated is Feature Selection and 
Tracking and it has an execution time of 30 units on 
camera 1, then it would terminate after 40 time units due 
to the initial delay of 10 time units. If this time is less 
than the deadline, the operation is allocated to the device. 
This process is repeated till the first feasible device is 
found. If there is no device found, the operation is 
allocated to the device that has the minimum termination 
time. 

 
V. LOCAL RECONFIGURATION MANAGER 

The Networked Reconfigurable System will comprise 
of heterogeneous devices with different architectures and 
implementation technology. The Local Reconfiguration 
Manager (LRM) acts as a hardware abstraction layer 
presenting a common interface to the NRM. The LRM 
also provides a basic minimal set of services that would 
enable the device to be reconfigured dynamically over 
the network. The LRM comprises of a Network 
Interface, Main Thread, Reconfiguration Queue, Loader 
Thread and a Configuration Database. The main 
components of the LRM are shown in the figure. 

 

We have identified the key components necessary to 
enable networked reconfiguration: Network Resource 
Manager and Local Reconfiguration Manager. There is a 
detailed description of the sub-modules that constitute 
the Network Resource Manager viz. Network Interface, 
Resource Monitor, Task Partition Module and Scheduler. 
The working of the Local Reconfiguration Manager has 
also been explained. 

Fig 6. Block diagram of the Local Reconfiguration 
Manager 

 
The network interface transmits the events generated 

by the device to the NRM. The allocation commands 
issued by the NRM are parsed by the network interface 
and sent to the main thread. The main thread coordinates 
the functioning of all the operations that are allocated to 
the device. A new thread is spawned for every operation 
that is allocated to the device. The operation is added to 
the reconfiguration queue. The top element of the 
reconfiguration queue is called the current operation. 
The loader thread is started by the current operation 
thread. The configuration corresponding to the current 

operation is fetched from the Configuration Database. 
The loader thread programs the hardware using the run-
time reconfiguration API. The current operation thread 
signals its instantiation to the NRM. Only the current 
operation thread interacts with the hardware. The data 
input for the current operation thread is received through 
the network interface. Upon termination of execution, the 
current operation thread signals to the NRM and removes 
itself from the reconfiguration queue. The thread stays 
alive till all its output is routed to the appropriate 
destination using the network interface, after which it 
dies. 

 
 

VI. CURRENT WORK IN PROGRESS 

Currently, most of the work in progress involves 
implementation of the algorithms discussed in Section 2. 
The algorithm is described using Behavioral VHDL. The 
design flow consists of behavioral synthesis of the design 
using the Synplify Pro from Synplicity [8]. The 
generated net-list is then input to the Xilinx ISE [9] that 
performs the mapping, place and route and bitfile 
generation operations. The bitfile is then built into a flash 
image using the proprietary tools from IQinVision. Upon 
the completion of the implementation phase, experiments 
using the proposed scheduling and allocation schemes 
would be conducted to observe the latency and overall 
resource utilization. 

 
VII. CONCLUSIONS 

In this paper, we have described a framework for 
dynamic adaptation of Networked Reconfigurable 
Systems. We first motivate the benefits of harnessing the 
computing capability available in the network in the 
form of idle reconfigurable hardware devices. Networked 
reconfiguration helps overcome resource constraints, 
improves application performance and increases 
robustness of system to failures.  

In future, the dynamic reconfiguration framework can 
be extended to devices that can support partial 
reconfigurations [7]. In such devices, multiple operations 
can be instantiated simultaneously which can greatly 
improve the granularity of the resource utilization and 
also the application performance. The use of hardware 
byte codes to transfer configurations across the network  
is also intriguing.  
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