
System-Level Performance Estimation for
Application-Specific MPSoC Interconnect Synthesis

Po-Kuan Huang, Matin Hashemi, Soheil Ghiasi
Electrical and Computer Engineering

University of California, Davis, CA 95616, USA
{pohuang,hashemi,ghiasi}@ucdavis.edu

Abstract— We present a framework for development of
streaming applications as concurrent software modules running
on multi-processors system-on-chips (MPSoC). We propose an
iterative design space exploration mechanism to customize
MPSoC architecture for given applications. Central to the
exploration engine is our system-level performance estimation
methodology, that both quickly and accurately determine quality
of candidate architectures. We implemented a number of stream-
ing applications on candidate architectures that were emulated
on an FPGA. Hardware measurements show that our system-
level performance estimation method incurs only 15% error in
predicting application throughput. More importantly, it always
correctly guides design space exploration by acheiving 100%

fidelity in quality-ranking candidate architectures. Compared
to behavioral simulation of compiled code, our system-level
estimator runs more than 12 times faster, and requires 7 times
less memory.

I. INTRODUCTION

Advancements of technology and continuation of Moore’s
law have enabled integration of many processing elements
on the same chip. Multi-processor system-on-chip (MPSoC)
platforms exhibit substantial performance and energy im-
provements over conventional uni-processors, and yet, pro-
vide the flexibility of general-purpose computing systems [1].
Nevertheless, lack of efficient application-specific MPSoC
architecture synthesis tools, have impeded proliferation of
MPSoC architectures in embedded applications, where per-
formance and energy consumption are the primary design
concerns [2].

To address this issue, we present a library-based framework
for MPSoC architecture synthesis in which, both processors
and their interconnect architecture are composed using a
number of available implementations [3], [4]. Our target
system is a soft multi-processor in that its malleable architec-
ture is implemented on FPGA-like programmable fabric. We
aim at customizing the architecture to improve performance
(throughput) of given streaming applications.

The synthesis process explores the design space by iterative
generation of candidate architectures followed by system-
level estimation of their performance. Consequently, accuracy
and runtime of system-level performance estimation technique
are instrumental to quality and practicality of the synthesis
process.

We focus on system-level performance estimation during
interconnect synthesis [5], [6], where a number of candidate
interconnect architectures have to be compared. Examples

of candidate architectures are point-to-point, bus-based or
network-on-chip primitives with different parameters such
as word width and buffer size. Our estimation methodology
takes as input the specification of a candidate architecture,
high-level application specification, potential task assignment
and task schedule. It quickly generates accurate performance
estimations without compiling high-level estimations.

We implemented candidate designs on an FPGA, and
mapped several streaming applications onto them. We mea-
sured throughput of applications running on hardware, and
compared the results with system-level early estimations.
Throughput estimations are only about 15% lower than ac-
tual measurements. More importantly, our estimation method
demonstrated 100% fidelity in our experiments. That is, it
always ranked candidate architectures correctly, which is the
primary requirement in efficient exploration of design space.
Our technique runs about 12 times faster than behavioral
simulation while requiring 7 times less memory.

II. BACKGROUND

Application Model: Many researchers have investigated
appropriate abstractions for modeling of streaming applica-
tions that are meant to be implemented as concurrent software
modules. While the purpose of this paper is not delving into
model of computation and programming languages research,
we briefly discuss several outstanding choices for modeling
streaming applications.

It is a widely-accepted assertion that coarse grain
parallelism-extraction is a very difficult problem and hence,
sequential single-threaded languages, such as standard C, are
not appropriate choices for modeling concurrent tasks. A
number of leading experts believe that thread-based applica-
tion development in general, is not a productive and reliable
method of developing concurrent software [7], [8]. A possible
alternative would be to represent the applications in an actor-
oriented model, where coarse grain parallelism is explicit,
and tasks co-exist and communicate with one another using
a governing protocol [9], [10].

We adopt the task graph application model that is com-
monly used in embedded systems community [11], [12].
Task graphs conform to the general notion of actor-oriented
computing. In this model, applications are represented with
a directed graphs whose nodes represent tasks. Edges of the
graph represent inter-task data or control dependencies. Tasks

(A)

T= CalcFFT(A)
B= Real(T)
C= Imag(T)

B
C

Q

A

P

X

Y

Z

Z= Mag(X,Y)

Q= Inv(P)

while(1) {

A= Read()

T= CalcFFT(A)
B= Real(T)
C= Imag(T)

Q= Inv(C)

Write(B)
Write(Q)}

while(1) {

X= Read()
Y= Read()

Z= Mag(X,Y)

Write(Z)

}

(B)

Fig. 1. A) An example task graph. B) Generated software when the top
two nodes are mapped to one processor and the bottom node to another.

are atomic in that their internal computation is specified in
sequential semantics, in C or higher-level languages, that can-
not be automatically parallelized. Our loosely-defined notion
of task graph is very similar to Kahn process networks [13]
in which, tasks communicate asynchronously using unidirec-
tional FIFO links, and receiving tasks block on empty input
links.

Task graphs and Kahn process networks have a dataflow
nature, which fits streaming applications very well. Sev-
eral other dataflow-based models such synchronous dataflow
(SDF) [14], [15] can be represented with task graphs. In
case of SDF, for example, a node in the task graph would
correspond to its associated node in SDF repeated by the
number of node’s appearances in SDF static schedule.

Target Architecture: We aim at implementing a given
application as software modules running on processors of a
MPSoC platform. To depart from the problems associated
with shared states among threads, and to move closer to
a robust actor-oriented implementation [7], we focus on
processors that work with isolated memory spaces. Therefore,
synthesized software processes would need to directly send
and receive messages to synchronize.

The target multi-processor architecture is soft in that it is
going to be built out of configurable logic, plus its architecture
specifics can be customized to better serve the application.
For example, the number of processors, processors’ functional
units or memory size, and interconnect architecture are among
the specifics that have to be determined during synthesis. We
refer to such architectures as soft multi-processor.

Our synthesis flow aims to generate an optimized soft
multi-processor for a given (possibly set of) streaming ap-
plication(s) under the area constraint of the configurable
substrate. Quick and accurate performance estimation for can-
didate architectures at system-level, is of prime significance
to quality and practicality of soft multi-processor synthesis.
This process will be further discussed in Section III.

Application Implementation: To implement a given ap-
plication on a given multi-processor architecture, application
tasks have to be assigned to processing resources. Subse-
quently, tasks assigned to the same processor have to be
scheduled to share the processor in time. Specifically, given
a set of tasks assigned to processor p and having a specific
schedule in mind, we synthesize the software running on p

by combining computations of all such tasks according to
the schedule. Inter-processor communication is implemented
by calling appropriate communication libraries that realize
necessary read and write primitives.

Figure 1 shows an example, in which the target archi-
tecture is composed of two processors connected using a
uni-directional FIFO channel. Let us assume that the top
two nodes (tasks) of the task graph are assigned to the first
processor and the bottom node to the second processor. Let
us examine the generated code for processor 1. We first add
a read function to read the input data and initialize A. Then
we insert code to perform the computation of CaclFFT node
followed by Inv node. Finally write functions are inserted
in the code to output the results B and Q to the second
processor.

Notice that we implicitly assume that a known schedule
dictates the ordering of the tasks assigned to a processor.
The schedule ensure that tasks are combined considering their
dependencies. For example, Inv node has to come only after
CalcFFT node because it has data dependency to CalcFFT
node. In this paper, we work with dataflow-based streaming
applications that can be scheduled statically.

III. SOFT MULTI-PROCESSOR SYNTHESIS

Our ultimate goal is to efficiently realize a given streaming
application as concurrent software modules running on a
customized multi-processor. Two main challenges have to be
addressed to achieve this goal. Firstly, the architecture of
soft multi-processor has to be synthesized such that it better
handles the application. Secondly, the application has to be
compiled into software modules running on processors.

Figure 2 illustrates a high-level view of soft multi-processor
synthesis framework. The process is divided into two architec-
ture customization and application compilation thrusts, where
architecture customization naturally precedes compilation.
This section discusses these two procedures, and highlights
the significance of high-level performance and area estimation
in the process.

A. Processor and Interconnect Architecture Customization

The goal of architecture customization is to determine the
appropriate configuration for processors and their intercon-

Task

Assignment

Area

Estimation

Processor

Assignment

Scheduling

Code

Generation

A
rc

h
ite

c
tu

re
 C

u
s
to

m
iz

a
tio

n

A
p

p
lic

a
tio

n
 C

o
m

p
ila

tio
n

Application

Analysis

Architecture

Customization

Architecture

Evaluation

Architecture

Generation

FPGA

Application(s)

Perf.

Estimation

Fig. 2. Architecture and application design flow for customized soft multi-
processor.

nect. This problem, a special case of the well-known high-
level synthesis problem, can be very difficult in the general
case: The synthesis engine has to adjust many interacting
knobs, such as processors architecture, instruction set, func-
tional units and memory hierarchy. As a result, efficient
design space exploration is prohibitive.

We focus on a constrained, yet interesting, version of
this problem by resorting to a library-based approach in
which, processors, their functional units and interconnect
primitives have to be selected from a number of choices
available in the library. this limits the degree of freedom on
some of customization knobs. Specifically, we assume that
processors configuration is already determined, and we focus
on interconnect synthesis.

Interconnect architecture is synthesized using point-to-
point, bus or NoC interconnect primitives that exist in the
library. Architecture parameters of interconnect primitives,
such as buffer size of router switches or FIFO channels,
are among the controllable knobs. Note that interconnect and
processor are generally competing over the silicon area. For
example, memory elements on programmable logic can be
allocated as either processor cache or interconnect buffers.

The left part of the flow in Figure 2 illustrates architec-
ture customization process. Customization is performed by
iterative identification of candidate architectures, followed
by their quality and feasibility evaluation using system-level
performance and area estimation techniques. Quality and
practicality of architecture customization directly depend on
accuracy and runtime of estimation methods, respectively.

Estimation methods have to function at the system-level to
run fast, which is a requirement for their integration in the it-
erative candidate architecture evaluation process. On the other
hand, they have to be accurate-enough to correctly guide the
customization engine. In Section IV, we discuss our approach
toward development of such estimation methodologies.

In this paper, we only focus on interconnect synthesis
problem. That is, we assume that the number of required
processors and their configuration are already determined.
The interconnect synthesis stage does not have control over
processors configuration, although, it might provide feedback
and re-invoke processor configuration if the best interconnect
does not meet application performance requirement.

B. Application Compilation

Once the target architecture is determined, the application
has to be compiled onto the processors to generate the
executable code for each processor (right part of the flow
in Figure 2). Recall that applications are specified using
task graphs. To compile the application, first, constituting
tasks are assigned to virtual processors, and then, virtual
processors are assigned to physical processors. Subsequently,
tasks’ computation and communication are scheduled, and
executable code for each processor is generated accordingly.
For our target application domain (streaming), computation
and communication can be statically scheduled. The compi-
lation pass is out of the scope of this paper, but interested

readers may refer to our recent paper on the topic [16].

IV. SYSTEM-LEVEL ESTIMATION

This section overviews our methodology in estimating per-
formance of a candidate interconnect architecture at system-
level. The input to our performance estimation is a candidate
architecture, including both processor and interconnect con-
figuration, and associated task assignment and schedule of the
application. The objective is to estimate throughput, without
compiling the application.

Performance Model Reduction: In order to accurately
estimate the performance of an application, candidate multi-
processor architecture has to be simulated using parallel
software modules. The simulation requires cycle-accurate
monitoring of instruction execution at each processor, com-
plemented by cycle-accurate simulation of interconnect ar-
chitecture. Although such simulation would result in accurate
performance estimations, it is not fast enough for utilization
in iterative evaluation of candidate architectures.

We introduce a simplified workload and communication
characterization method that eliminates the need to cycle-
accurately simulate instructions execution and data com-
munication. Our technique preserves coarse-grain temporal
behavior of the application, and is both fast and accurate.
Therefore, it can be utilized in iterative design space explo-
ration framework.

Our approach is to reduce the complexity of performance
model by coarsening temporal behavior of concurrent soft-
ware modules. We view a software module (running on one of
the processors) as a series of computation and communication
phases, and hence, we attempt to characterize latency and
volume of computation and communication phases at system-
level. Subsequently, a substantially-reduced verilog model is
generated for the system in which, characterized temporal
phases replace software module instruction sequence. Simu-
lating the reduced model is considerably faster, while giving
reasonable performance accuracy.

Figure 3 visualizes an example of our model simplification.
In the figure, a candidate interconnect architecture is being
evaluated under a given task assignment and schedule. To
perform behavioral simulation, the compilation path should be
followed, which generates code similar to the snippet shown
on Figure 3.a for each processor. Our technique views the
processors as traffic generator/consumer with known delay
elements, and simplifies temporal behavior of the code based
on estimations (Figure 3.b). Details of our model reduction
is the following.

Task Workload Characterization: The first step to es-
timate system performance, is to characterize the workload
intensity associated with each task. Although compilers can
perform various inter-task optimizations after several tasks are
assigned to the same processor, it is reasonable to ignore such
potential optimizations at system-level. Therefore, we analyze
tasks in isolation and associate a deterministic number to
each task that represents its workload latency on its allocated
processor.

proc.

candidate

Interconnect

while(1) {

A= Read()

T= CalcFFT(A)

B= Real(T)

C= Imag(T)

Q= Inv(C)

Write(B)

Write(Q)

}

X
 c

y
c
le

s
 o

f

s
e

q
u

e
n

ti
a

l

e
x
e

c
u

ti
o

n

blocking-read |A|

tokens from

interconnect

blocking-write

|B|+|Q| tokens

to interconnect

proc.

proc. proc.

(B) (C)(A)

Fig. 3. A) Sample code of a processor, B) and its simplified performance
model for quick evaluation of C) candidate interconnect architectures.

Specifically, we profile processors in the library to esti-
mate their cycle per instruction (CPI) distribution. We also
analyze the impact of functional units available in the library
on processor’s CPI. We make the observation that from a
system-level perspective, it is reasonable to assume that only
instructions directly benefiting from the functional unit are
affected. For example, we assume that only floating point
operations are affected by inclusion (exclusion) of a dedicated
floating point unit to (from) a soft processor.

Following library characterization, tasks internal computa-
tions are analyzed at high-level, without compiling to assem-
bly, to derive a rough mapping between high-level language
constructs and processor instructions. Furthermore, we use
first order control-flow estimation such as average if-then-
else path latencies, and expected number of loop iterations,
to account for application control-flow behavior. Note that
streaming applications are mostly data-flow intensive and
their control-flow characteristics are minimal. This one-time
analysis derives the estimated number of clock cycles needed
for execution of a task on its allocated processor.

Similarly, inter-task communication cost is estimated from
high-level application specification in which, parallelism is
explicit. Given a specific task assignment and for a particular
task, the number of data tokens that might have to be trans-
mitted to other processors is readily calculated by checking
the processors to which immediate descendant of the task are
allocated. For applications modeled as synchronous dataflow
graphs, each node appears a specific number of times in
the steady state schedule. The number of appearances and
data production and consumption rates are known statically,
which enable quick one-time characterization of tasks data
communication volume.

Processor Workload Characterization: Tasks assigned to
the same processor are scheduled to generate the correspond-
ing executable code (Section II). Scheduling impacts temporal
behavior of code running on the processor, because temporal
motion of inter-processor read/write operations might create
or eliminate blockings on communication channels. There-
fore, parallel application performance directly depends on
task schedules, among other factors.

At system-level, the workload associated to a processor
can be estimated to be a straight-forward combination of
workloads of tasks that are assigned to that processor, ac-
cording to the given schedule. Note that this estimation
incurs inaccuracies because combined workload of several
tasks (in terms of cycles) is not necessarily equal to sum
total of tasks workloads that are characterized in isolation.

Compiler optimizations, such as enhanced register allocation
to reduce register spilling, typically improve upon sum total
of tasks workloads. However, “sum total” estimation is a good
approximation at system-level.

Consequently, we simplify temporal behavior of a pro-
cessor workload to a sequence of computation, with esti-
mated latency, and communication, with estimated volume.
This simplification is used to generate a temporal behavior
model for each interconnect port, which replaces processor
and its executable binary in a cycle-accurate simulation. As
mentioned before in Figure 2, we use this simplified model
as part of the iterative approach.

V. EVALUATION AND DISCUSSION

Experiments Setup: We utilized Xilinx Embedded Devel-
opment Kit (EDK) to develop the aforementioned soft multi-
processor synthesis framework. Xilinx EDK provides a library
of soft processors and interconnect primitives. Xilinx 32-bit
soft processor, called Microblaze, can be customized in a
number of ways. We characterized Microblaze processor to
determine its clock per instruction (CPI) distribution.

Microblazes can be interconnected using Xilinx Fast Sim-
plex Links (FSL), which essentially implement point-to-point
FIFO channels with configurable buffer size and width. We
also implemented a standard network-on-chip router element
with 5 bi-directional ports. Typically, one port connects to
a processor and the remaining four ports are connected
to neighboring routers. Hence, routers can be cascaded to
interconnect an arbitrary-sized mesh of processors.

Figure 4 illustrates the flow of our experiments. We utilize
MIT StreamIt [17] compiler to analyze and implement high-
level application specifications. StreamIt is a programming
language whose semantics are closely related to synchronous
dataflow model of computation [14] with a few enhancement.
Specifically, standard SDF model is enhanced to allow appli-
cation initialization phase and utilization of limited control
flow in program specification. In addition, StreamIt provides
an open-source compilation framework for stream programs
specified in its language. StreamIt compiler takes as input
an application specified in enhanced synchronous dataflow
(SDF) semantics with StreamIt syntax, and after partitioning
of the task graph, generates parallel C codes for parallel

Application

(.strfile)
StreamIt

Compiler
Task Assignment

& Scheduling

System-Level

W orkload

Characterization

Software Synthesis

(parallel C codes)

System

Performance

Simulation

Xilinx EDK

& C Compiler
Hardware

Synthesis

Conventional

Behavioral

Simulation

Measurement

on FPGA board

Candidate

Architecture

Fig. 4. Experiments flow

processors. Parallel codes should be compiled for the target
uni-processor to generate executable binary.

We implemented our task and processor workload char-
acterization method in StreamIt before generating C codes.
Processor workloads are estimated using high-level specifica-
tion of the applications in StreamIt language and Microblaze
CPI distribution, as discussed in Section IV. In addition,
StreamIt candidate task assignment and schedule are used
during processors workload characterization.

The characterized workload is spelled out as a simple
verilog code that breaks up estimated temporal behavior of
the processors into computation, with known latency, and
communication, with known volume, phases. This models
is integrated with the interconnect architecture model, and
simulated using Modelsim simulator. To compare our re-
duced model with exact simulation, we generated parallel
C codes using StreamIt and compiled them for processors.
The executable binary is plugged into behavioral model of
the processors, integrated with the interconnect architecture
model, and simulated using Modelsim.

In order to evaluate the accuracy of our results, we im-
plemented candidate architectures on Xilinx ML310 board
that has a Virtex II Pro FPGA. StreamIt and Microblaze
C compiler (mb-gcc) were used to generate executable bi-
naries from high-level application task graph. Application
throughput measurements from operating hardware are used
as baseline for estimation accuracy.

Performance and Area Estimation Results: We designed
ten different candidate architectures, which are summarized
in Figure 5. Candidate architectures contain different number
of Microblaze processors that are interconnected using ei-
ther packet-switched on-chip network or point-to-point FIFO
channels (FSL). The buffer size in both packet-switching
routers and FIFO channels are configured to explore different
design points.

We selected 5 representative streaming applications from
StreamIt benchmarks: Bitonic Sort, FFT, Filter Bank, Blocked
Matrix Multiplication, and Time Devision Equalization. We
estimated system throughput for all applications on the afore-
mentioned 10 candidate architectures. Candidate architectures
were also implemented on FPGA board and applications were
mapped to measure performance.

Figure 6 illustrates the average value of throughput mea-
sured on emulated candidate architectures. The last entry on
X-axis shows the geometric mean value for all applications.
The left vertical axis in the figure compares the runtime of
our performance estimation technique with that of behavioral
simulation of the system. In both cases, simulations were run
to generate 100 output tokens.

Behavioral simulation requires about 150-450 seconds per
iteration. Slow runtime makes it impractical to utilize be-
havioral simulation in iterative system-level design space
exploration. System-level estimation runs about 10-12 times
faster than behavioral simulation, because it eliminates the
overhead of functional simulation of software instructions.
Our method improves memory usage and simulation loading

Arch. # of Interconnect Buffer
name processors arch. Size
3x2-2 6 3x2 packet-switch 2
3x2-4 6 3x2 packet-switch 4
3x2-8 6 3x2 packet-switch 8
2x2-2 4 2x2 packet-switch 2
2x2-4 4 2x2 packet-switch 4
2x2-8 4 2x2 packet-switch 8

4-FSL-16 4 FSL cascade 16
4-FSL-32 4 FSL cascade 32
2-FSL-16 2 FSL cascade 16
4-FSL-32 2 FSL cascade 32

Fig. 5. Candidate interconnect architectures and configurations

0

50

100

150

200

250

300

350

400

450

500

BSORT TDE MATMUL FILTER FFT Geo Mean

R
u

n
ti

m
e

 (
s

e
c

.)

14.6

14.7

14.8

14.9

15

15.1

15.2

15.3

15.4

15.5

E
s

ti
m

a
ti

o
n

 E
rr

o
r

(%
)

Beh.sim.time Est.sim.time Estimation error

Fig. 6. Performance estimation accuracy and runtime comparison.

time of behavioral simulation more than 7 times. Note that
behavioral simulation does not include intra-processor com-
ponents, memory controller logic, etc. and is the simplest and
fastest possible functional simulation.

As shown on the right vertical axis of Figure 6, the error
in system-level performance estimation is around 15%. This
error is calculated as the relative difference between the actual
throughput measured on FGPA, and estimated throughput
using our model. The estimated throughput is consistenly
lower than actual measurements, which suggests that our
workload estimation is slightly pessimistic. Nevertheless as
we show in next subsection, it can reliably guide design space
exploration process.

Inaccuracy in throughput estimation is primarily due to two
reasons. First, during high-level workload characterization
a rough mapping between task specification and processor
instructions are determined, which naturally is not perfectly
accurate. Second, some compiler optimizations, such as im-
proved register allocation, loop overhead reduction and mem-
ory access optimization, are enabled by combining multiple
tasks that run on the same processor. At system-level, it is
hard and runtime-expensive to consider such optimizations.

Quality-Ranking of Candidate Architectures: The pri-
mary function of system-level performance estimator, in an
iterative design space exploration setting, is to correctly
rank candidate architectures according to their quality. High-
fidelity quality-ranking of candidate architectures correctly
guides candidate architecture generation and selection, and
ultimately, leads to success of the synthesis flow. High-fidelity
quality-ranking is probably more useful than increasing ab-
solute estimation accuracy.

To demonstrate fidelity of our estimation in quality rank-
ing candidate architectures, we ranked all ten architectures
according to their performance for a specific application.
Figure 7 shows the data normalized to a single-processor
performance. For each chart, the architectures on X-axis are

1 2

Throughput Estimated Throughput

0
1
2
3
4
5
6

un
i-p

ro
c

2F
S

L-
16

2F
S

L-
32

2x
2-

2

2x
2-

4

4F
S

L-
16

3x
2-

2

4F
S

L-
32

2x
2-

8

3x
2-

4

3x
2-

8

B
S

O
R

T
T

hr
ou

gh
pu

t

0
1
2
3
4
5
6

un
i-p

ro
c

2F
S

L-
16

2F
S

L-
32

2x
2-

2

3x
2-

2

2x
2-

4

4F
S

L-
16

3x
2-

4

4F
S

L-
32

2x
2-

8

3x
2-

8

FF
T

T
hr

ou
gh

pu
t

0
1
2
3
4
5
6

un
i-p

ro
c

2x
2-

2

2F
S

L-
16

2F
S

L-
32

3x
2-

2

4F
S

L-
16

4F
S

L-
32

2x
2-

4

2x
2-

8

3x
2-

4

3x
2-

8

FI
LT

E
R

T
hr

ou
gh

pu
t

0
1
2
3
4
5
6

un
i-p

ro
c

2x
2-

2

2F
S

L-
16

2F
S

L-
32

3x
2-

2

2x
2-

4

4F
S

L-
16

3x
2-

4

4F
S

L-
32

2x
2-

8

3x
2-

8

M
A

TM
U

L
T

hr
ou

gh
pu

t

0
1
2
3
4
5
6

un
i-p

ro
c

2F
S

L-
16

2F
S

L-
32

2x
2-

2

2x
2-

4

4F
S

L-
16

3x
2-

2

4F
S

L-
32

2x
2-

8

3x
2-

4

3x
2-

8

TD
E

T
hr

ou
gh

pu
t

Fig. 7. Quality-ranking of candidate architectures for different applications.
Estimation always correctly ranks candidate architectures.

reordered to have an ascending curve of “measured perfor-
mance”. Therefore, the ordering of architectures implies their
ranking based on application performance. Then, “estimated
performance” points are added to each chart, and connected
to visualize their trend.

Interestingly, the estimated performance curve is also as-
cending in all cases, which implies that our estimation method
correctly ranks candidate architectures according to their
performance. For example, 2x2-8 configuration is estimated
to have better throughput for all applications compared to
4FSL-32 configuration, which is verified by performance

measurements. Fast runtimes and high-fidelity quality ranking
of architectures enable integration of our system-level perfor-
mance estimation in our iterative MPSoC customization and
synthesis framework.

VI. CONCLUSIONS

We presented a MPSoC design exploration framework for
efficient synthesis of streaming applications on customized
soft multi-processors. We developed a fast and accurate
system-level performance estimation technique that is very
successful at guiding design space exploration engine by
high-fidelity quality-ranking of candidate architectures. Ex-
tensive experiments including both simulation and emulation
advocate the effectiveness of our approach. Future work
will focus on accelerated design space exploration guided
by enhanced application analysis and improved candidate
architecture generation methods.

REFERENCES

[1] Shekhar Borkar, Norman P. Jouppi, and Per Stenstrom. Microprocessors
in the era of terascale integration. DATE, pages 237–242, 2007.

[2] Federico Angiolini et al. An integrated open framework for hetero-
geneous MPSoC design space exploration. DATE, pages 1145–1150,
2006.

[3] Nitin Deo et al. What happened to ASIC? go (recon)figure? DAC,
2004.

[4] Chris Rowen. Engineering the Complex SOC: Fast, Flexible Design
with Configurable Processors. Prentice Hall, 2004.

[5] Alessandro Pinto, Luca P. Carloni, and Alberto L. Sangiovanni-
Vincentelli. Constraint-driven communication synthesis. DAC, pages
783–788, 2002.

[6] Ilya Issenin and Nikil Dutt. Data reuse driven energy-aware MPSoC
co-synthesis of memory and communication architecture for streaming
applications. CODES+ISSS, pages 294–299, 2006.

[7] Edward A. Lee. The problem with threads. IEEE Computer, 39(5):33–
42, 2006.

[8] Michael I. Gordon et al. A stream compiler for communication-exposed
architectures. ASPLOS, 2002.

[9] Gul Agha. Actors: A Model of Concurrent Computation in Distributed
Systems. PhD thesis, Massachusetts Institute of Technology, 1985.

[10] Gang Zhou, Man-Kit Leung, and Edward A. Lee. A code generation
framework for actor-oriented models with partial evaluation. Interna-
tional Conference on Embedded Software and Systems, 2007.

[11] Ravindra Jejurikar and Rajesh Gupta. Optimized slowdown in real-time
task systems. IEEE Transactions on Computers, 55(12):1588–1598,
2006.

[12] Keith S. Vallerio and Niraj K. Jha. Task graph extraction for embedded
system synthesis. VLSI Design, 2003.

[13] Gilles Kahn and David B. MacQueen. Coroutines and networks of
parallel processes. IFIP, pages 993–998, 1977.

[14] Edward A. Lee and David G. Messerschmitt. Synchronous data flow.
Proceedings of the IEEE, 75(9):1235–1245, 1987.

[15] Shuvra S. Bhattacharyya, Praveen K. Murthy, and Edward A. Lee. Syn-
thesis of embedded software from synchronous dataflow specifications.
Journal of VLSI Signal Processing Systems, 21(2):151–166, 1999.

[16] Matin Hashemi and Soheil Ghiasi. Exact and approximate task
assignment algorithms for pipelined software synthesis. DATE, 2008.

[17] William Thies, Michal Karczmarek, and Saman Amarasinghe. StreamIt:
A language for streaming applications. Proceedings of the International
Conference on Compiler Construction, 2002.

