
On Computation and Resource Management in Networked Embedded Systems

Soheil Ghiasi Karlene Nguyen Elaheh Bozorgzadeh Majid Sarrafzadeh

Computer Science Department
University of California, Los Angeles, CA 90095�

soheil, karlene, elib, majid@cs.ucla.edu �

Abstract
This paper presents the idea of managing the comprising computations of an ap-
plication performed by an embedded networked system. An efficient algorithm
for exploiting the timing slack of building blocks of the application is proposed.
The slack of blocks can be utilized by replacing them with slower but cheaper,
i.e. better, modules and by assigning the computations to the proper resources.
Thus, our approach manages the comprising computations and system resources
and can indirectly assist the realtime scheduling of computations on system re-
sources. This is performed without compromising the timing constraints of the
application and can lead to significant improvements in power dissipation, com-
putation accuracy or other metrics of the application domain. Our algorithm is
well-suited for arbitrary tree computations. Moreover, it delivers solutions that
are desirably close to the optimal solution. Experimental results for a number of
object tracking applications implemented in an networked system with embedded
computation resources, exhibit a significant amount of slack utilization.

1. Introduction
Today’s advances in technology has enabled the integration of pro-

cessing resources, memory blocks and sophisticated I/O interfaces into
data acquisition devices. Furthermore, these devices are often capable
of communicating with other system devices through wired or wireless
networks, and therefore form a network of embedded sensors and com-
putation resources. Such networked embedded systems provide the op-
portunity of processing the perceived information locally at the sensor
nodes as opposed to transferring the data to a remote processing station,
having the station perform the computation and reading the result back.

These two approaches to data processing, namely locally embedded
at the sensor nodes and traditional centralized processor-based comput-
ing schemes, introduce many trade offs into the design space. Scala-
bility, energy dissipation and performance of the system can be greatly
impacted by the choice of computation scheme deployed in the system.
Usually, embedded local computing improves system scalability and en-
ergy dissipation. It can also improve system performance for some ap-
plications. On the other hand, computation and resource management
becomes a critical issue in such scenarios. This paper discusses this
problem in a network of embedded devices tracking a moving object.
Techniques to automate the computation and resource management in
such environments have been proposed.

An instance of such a system consisting of a number of cameras and
a controller is depicted in Figure 1. The figure demonstrates an intruder
detection and object tracking system that has been built as part of this
work. The system consists of multiple IQeye3 cameras [7]. The cameras
communicate with the control unit in order to collaborate and distribute
their information.

Figure 2 demonstrates the abstract model of the resources existing in
the system. A general-purpose processor (IBM PowerPC) and a Xilinx
VirtexE FPGA are embedded in each of the cameras. Any of these em-
bedded resources can be used to realize the comprising basic blocks of
an application. The control unit is also capable of performing various
computations and has more powerful resources compared to the cam-
eras. It is also responsible for realtime scheduling of the application
processes on the system resources.

An application, such as the aforementioned object tracking applica-
tion, is composed of various basic blocks that perform different func-
tionalities. To realize an application, each basic block has to be executed

Fig. 1: The implemented target tracking system.

on one of system resources. Design libraries, voltage scaling, accuracy-
timing trade offs and other design choices lead to different implemen-
tations for any of the comprising blocks of the application. Each of the
implementations has its own specifications in terms of timing charac-
teristics, power dissipation, computation accuracy, etc. These specifi-
cations, provide a discrete range of choices for implementing a basic
block.

As highlighted in Figure 2, any of the application processes can be
executed locally on the resources embedded in the cameras or it can
be shipped to the controller and performed in the traditional manner.
In particular, the object tracking application is comprised of two basic
computations, namely feature selection and feature tracking. Different
versions of these two computations have been implemented for cam-
era and controller processors. Each implementation offers a particular
accuracy-latency tradeoff. This is used to study the involved trade offs
of embedded vs. traditional processing.

The quality of an implemented application is usually evaluated using
one of the standard design metrics such as power dissipation, accuracy
or timing. Optimization techniques for improving one of these metrics
will usually harm other characteristics of the design. In particular, inten-
sive timing optimization of a design usually imposes additional costs on
its implementation. Based on the application domain the system power
dissipation, accuracy or response time can be interpreted as the cost. In
the conventional implementation process, one of the performance met-
rics is usually fixed as a constraint and any implementation that does not
meet the constraint has no value. Optimization procedures are then used
to select the cheapest design among all the implementations that meet
the constraint.

For a design to meet the timing constraints, it is not always required
that all of the comprising basic blocks (or computations) run with the
lowest possible delay. In fact, some basic blocks can be slowed down
which in turn might lead to significant savings in other design metrics
while the design still meets the timing constraints. The process of de-
termining the delay (latency) values for comprising basic blocks of a
design is called delay budgeting. The objective of this work is to pro-
pose a provably effective delay budgeting scheme for managing the com-
putation latencies and resource utilization such that the design timing

Fig. 2: The abstract model of the system resources. The controller
has to schedule the tasks either on the camera’s embedded resources
or its computational units. Each camera has an FPGA and a pro-
cessor embedded in it.

constraints are met while using the slower implementations of computa-
tions.

The proposed technique determines the delay values for basic blocks
of a specific class of applications, namely the applications that can be
modeled using a rooted tree. Each computation latency corresponds to
a specific implementation of that basic block on a particular resource.
Therefore determining the latency value for computations assigns the
basic blocks to different system resources, hence manages the resources
and computations at the same time. The problem, as formulated in this
paper, is NP-hard. Therefore, an optimal polynomial time algorithm to
solve it does not exist unless P=NP. Given sufficient amount of time,
the proposed approximation algorithm can find solutions as close to the
optimal solution as desired.

Section 2 summarizes the previous works on slack management and
delay budgeting. Section 3 presents some basic definitions and notations
that are used throughout the paper. The problem addressed in this paper
is formally described in section 4. Section 5 describes the proposed ap-
proximation algorithm and discusses some interesting extensions. Sec-
tion 6 explains a class of vision applications that can be modeled using a
rooted tree. A set of experimental results supporting our algorithm and
its solution quality are also reported and finally section 7 concludes the
paper.

1.1 An Example
Figure 3.a shows an example of a data flow graph representing an

application with four basic blocks. There are two different implementa-
tions with different latencies available for realizing each of the blocks.
The possible delay values for each node are indicated in Figure 3.a. The
figure also illustrates three different implementations of the same appli-
cation. Assuming that the entire computation should not take more than
8 delay units, Figure 3.b shows an implementation that violates the tim-
ing constraint, because it takes 9 delay units to complete. Sections c and
d of the figure depict two valid implementations of the same application
with different total delay of the application blocks.

Since implementation of a block with relaxed timing constraints can
lead to significant savings in other design metrics, one would like to
maximize the total delay of the implemented blocks. Intuitively, the
implementation in Figure 3.c is more likely to be cheaper than the im-
plementation in Figure 3.d, because the latter has a total delay of 11 units
while this quantity for the former design is 14 units.

This example shows that an effective delay budgeting scheme can im-
prove the quality of the final design. This improvement is done through
constraint relaxation as much as it does not violate the timing constraints
of the design. In this paper, we present an ε-approximation algorithm
that can find solutions as close as desired to the optimal solution.

2. Related Work
The concept of slack in a more general context has been addressed in

the synthesis community. Slack has been used to prioritize the schedul-
ing of operations [3, 1]. Mobility is also used in force directed schedul-
ing [8, 9] aiming to balance the number of operations in each control
step. Operation mobility has been a guide for these algorithms to obtain

4

5

2

1

1

6

5

2

1

1

41

(a) (b)

(d)(c)

{1,6}

{1,5}

{1,4}

1

{1,3} 3

3

{1,2}

Fig. 3: (a) A sample design with different delay choices for each
block. (b) An invalid implementation violating the timing constraint
of 8 units. (c, d) Valid designs with different timing budgets for basic
blocks

a homogeneous distribution of operations to control steps while pursu-
ing this objective. They are not particularly concerned with the possible
ways to exploit the final slack distribution within the schedule for im-
proving other aspects of the design.

In domains other than high-level synthesis, techniques to exploit slack
to achieve certain objectives have been proposed. For example, Shin and
Choi proposed a scheduling algorithm for hard real-time systems target-
ing a reduced power solution [15]. Zhu et. al. [5] describe a scheduling
technique to reclaim the time unused by a task to reduce the execution
speed of future tasks. Fields et al. propose a slack prediction scheme
to schedule operation in different pipelines with different speeds for en-
ergy optimization [2] . Zhang et al. [14] propose compiler optimization
techniques for exploiting slack in VLIW processor with decreasing the
energy consumption as the objective. Chen et al. proposed a slack dis-
tribution algorithm for logic circuits [4]. Given a network of logic gates
represented with a Directed Acyclic Graph (DAG), this algorithm uti-
lizes the available slack in the network as delay budgets to logic gates.
The authors report improvements over the Zero Slack Algorithm [10],
however they have the assumption of continuous possible latency val-
ues for different implementations of each gate. Hence, their approach
cannot be directly applied to the cases where the possible latencies of
each module are discrete values. A similar problem has been studied by
Li et al. [12, 13], however they present a pseudo polynomial algorithm.
Therefore, their algorithm’s running time exponentially grows with the
increase in values of the problem parameters.

This work presents a strongly polynomial technique for utilizing mo-
bility of components in a discrete latency scenario. Our algorithm im-
proves other metrics of the design (such as power dissipation) through
slack management without affecting the timing constraints.

3. Preliminaries
An application can be viewed as a set of basic tasks that are to be per-

formed on the input data in some specific order. Each basic task could
be a complex operation that is invoked by the application in order to ac-
complish its functionality. The data dependency among the comprising
tasks is usually modeled as a directed acyclic graph (DAG). However
for some classes of applications, the corresponding DAG does not have
any reconvergent fanouts. In this case, the data dependency among the
basic tasks can be represented using a rooted tree. Some instances of
such applications are mentioned in section 6.

Figure 4 illustrates an example of such applications. Each node of the
tree corresponds to a module performing one of the comprising basic
tasks. Throughout this paper we deal with the applications that can be
modeled using a rooted tree. For the same reason, we use the terms
comprising task of an application and node of the tree interchangeably.

A fanin of a node n is a node whose output is used as an input by n.
Similarly a fanout of node n is a node that receives as input, the output of
node n. We assume that each node has its own propagation delay, i.e. it
needs a specific amount of time to generate its output after all its inputs
become available. Given the arrival times at primary inputs (PI) and the

(a) (b)

Fig. 4: (a)An arbitrary application. (b) A sample application mod-
eled using a rooted tree

required times at primary output (PO), the arrival and required times at
the internal nodes of the tree can be computed as follows.

r � n ��� min
x � FO � n � � r � x �
	 dx � (1)

a � n ��� max
x � FI � n � � a � x ��� dn � (2)

where
r � n � = Required time at the output of node n,
FO � n � = Fanout set of node n,
dx dn = Delay in node x,n,
a � n � = Arrival time at the output of node n,
FI � n � = Fanin set of node n.

In order to compute the arrival times, the nodes are visited in topo-
logically sorted order (from PI to PO). The arrival time for each node is
computed using Equation 2. For required times, the nodes are still vis-
ited in topologically sorted order, but from PO to PI. Equation 1 is used
to set the required time at a node. We also define the slack associated
with a node n as the difference between the required and arrival time at
the node. The arrival time at the PIs are assumed to be 0. The required
time at the PO depends on the timing constraints of the application and
has to be greater than or equal to the slowest chain of tasks. So all the
slacks in the network are non-negative. A critical node is a node whose
slack is the minimum slack among all nodes. A critical path is a path
from PI to PO which is made of only critical nodes. Any delay budget-
ing strategy should be careful with existing and newly born critical paths
as they are the slowest paths in the circuit and hence they determine the
application latency.

4. Problem Formulation
The tree delay budgeting problem can be formulated as below:

� Given an application modeled as a rooted tree with n nodes, a
maximum affordable delay Dmax (also called delay budget) for
the entire application and at most m possible latency values for
different implementations of each node.

� The objective is to select a delay value for each node and maxi-
mize the total delay of the nodes, i.e. we would like to make

O � F ���
n

∑
i � 1

di

as large as possible, where di is the selected delay value for node
i.

� Such that the propagation delay from each primary input to the
primary output is not greater than Dmax. In other words, the entire
application can be performed within the delay budget. This con-
straint guarantees an upper bound for the application execution
time.

The idea is that the extra delay on each node can lead to a cheaper
implementation for that particular node. Therefore, maximizing the to-
tal delay of the nodes seems reasonable in order to decrease the imple-
mentation cost. The extra delay on nodes that are slowed down can be

utilized to improve the total power dissipation, area or any other design
metric that contributes to the cost. Intuitively, this problem tries to relax
the timing constraints of the nodes that are not critical to the application
runtime. The extra delay of such nodes can be exploited to implement
them in a cheaper fashion. Note that regardless of the user cost function,
a less timing-constrained module is always cheaper to implement.

5. An Approximation Algorithm for Delay Bud-
geting Problem

It is not hard to see that the subset problem [6, 11] can be reduced to
a special case of the formulated problem, namely when the application
tree is a path of basic blocks. Therefore the formulated delay budgeting
problem is NP-hard and a polynomial time optimal algorithm for solving
it does not exist unless P=NP [6]. In this section we present an algorithm
that can find a solution that is arbitrarily close to the optimal solution of
the problem.

Given an application tree T with n nodes and ε as the desired approx-
imation accuracy, assume the tree nodes are scheduled using the ASAP
algorithm. Therefore each node is assigned to a level (figure 5). Further-
more, assume that node i is implemented with its smallest possible delay
value, i.e. dmini . Also, Let B � Dmax 	 Dcp be the extra delay budget,
where Dcp is the critical path delay of the application.

level 1

level 0

level 2

level 3nL = {(d ,g), ,(d ,g)}n 1 1 k k

Fig. 5: ASAP scheduling of the tree nodes to determine their levels.

For all nodes, let cpi be the critical path delay of the subtree rooted
at node i. We also associate a list Li of delay-gain pairs to node i of the
tree. Figure 5 demonstrates an instance of this list for node n. Each pair
has the form � D G � and implies that G is the maximum achievable gain
by assigning the extra delay D to the subtree rooted at that particular
node. Given a particular node in the tree called i, Li and the extra delay
budget B for the subtree rooted at i, let OPT � i Li B � denote the maxi-
mum achievable gain by assigning B to that subtree. By definition, for
two pairs � d1 g1 � and � d2 g2 � in Li, if d1 � d2 then g1 � g2. Therefore,
it is apparent that OPT � i Li B � can be easily determined by conducting
a binary search on delay values of elements in Li and comparing them
with B. It follows that once this list is generated for the primary output,
OPT � PO LPO B � will be the best possible solution for the problem.

We initialize Li with all pairs of the form � di 	 dmini di 	 dmini � , where
di’s are possible delay values for node i. dmini is the minimum of all
di’s. Note that by definition Li contains � 0 0 � . The initialization process
shows the achievable gain by assigning all the extra delay budget to the
root node and hence forms a lower bound for the potential gain. Note
that assigning the extra delay to the subtree root does not violate the
timing constraints.

For updating the lists, we traverse the nodes in the order of their lev-
els1. At each level the delay-gain list for the nodes in that level is up-
dated and this process is continued until this list is updated for the pri-
mary output. Interestingly, as the subtrees rooted at level 0 nodes contain
only those nodes, the initialization step forms the exact lists for them.

Now, we describe an algorithm for updating the lists at each level,
assuming that delay-gain lists for nodes in the previous levels are al-
ready updated. We define two operations for accomplishing this task
and prove their accuracy. First operation called P � T1 T2 ����� Tn � is ap-
plicable to cases where the root node in tree T has one possible delay
choice equal to 0. Figure 6.a shows an example of this case. Clearly,
1Note that ASAP is used because it is easy to implement. Any other
topological ordering would be fine for our purpose.

The extra budget of T has to be applied to the fanins of node r since r
has no other option for its implementation other than 0.

T1

a

T

r

a

(a) (b)

T2

b

r

1Tp

p

Fig. 6: (a) Operation P applies the extra delay budget to all fanins.
(b) Operation S divides the extra delay budget between r and the
subtree T1

Since subtrees T1 T2 ����� Tn have different critical path delays, we might
be able to slow down some of the subtrees even more than the extra de-
lay budget. Clearly, the amount of the extra delay for the subtree i is
cpmax 	 cpi, where cpmax is the maximum critical path delay among
fanins of r. It follows that the delay-gain lists of the fanin nodes can be
optimally merged to update this list at node r. This process is outlined
by Algorithm 1.

Algorithm 1 Merging fanin delay-gain lists in operation P
Input: La Lb ����� Lp and cpa cpb ����� cpp,
Output: Lr
Let cpmax be the maximum of cpa cpb ����� cpp;
Clear Lr;
for all fanin of r do

for all pair p � d g ��� Li do
Let p � d g ��� p � d 	�� cpmax 	 cpi � g � ;

end for
end for
for all extra delay budget d � Li’s do

Add pair � d g1 � g2 ��������� gp � to Lr where gi is OPT � i Li d � ;
end for
Return Lr;

The second operation, S � T1 r � is applicable when the root node r has
only one fanin, namely T1 (figure 6.b). In this case, the extra budget
has to be divided among r and T1. We combine La and the initial value
of Lr to update Lr. The combination process, shown in algorithm 2,
enumerates all possible cases. Since the number of possible cases can
potentially grow exponentially, a trimming procedure is applied to re-
move some of the pairs from Lr. Section 5.1 proves that the trimming
procedure bounds the runtime of the algorithm by a polynomial in n and
m while the solutions kept in the list are at most � 1 	 ε � times smaller
than the optimal solution.

Algorithm 2 Updating and trimming the gain-delay list in operation S
Input: La Lr ε n,
Output: Lr
Let Ltemp � /0;
for all pair p � d g ��� La do

Let Ltemp � Ltemp � � Lr ��� d g ��� ;
/*where Lr ��� d g � is the list of all pairs in Lr with delay values
increased by d and gains increased by g.
*/
Trim Ltemp by the factor ε � n;
/*if there are two pairs with gains a and b in Ltemp such that 1 	
ε � n � a � b � 1 then remove the pair with gain b from the list.
*/

end for
Let Lr � Ltemp;
Return Lr;

In order to calculate the delay-gain list at the primary output of a
tree, it is necessary to transform a general rooted tree to a tree that can
be manipulated by two S and P operations. This can be achieved by
replacing each node a of the tree by two nodes a1 and a2. We put an
edge from a1 to a2. All fanins of a become the fanins of a1 and all
fanouts of a become the fanouts of a2. Furthermore, we assume that a1
has no delay and that is the only possible delay value for a1. It follows
that all possible delay values for a are possible for a2. Figure 7 shows
the transformation for a sample tree.

a

a 22

(a)

(b)

1a
aL ={(0,0)}
1

2 1a

a 1 1

L ={(d ,g) ... (d ,g)}1

L ={(d ,g) ... (d ,g)}k k

k k

Fig. 7: (a) Replacing a node with two to enable S and P operations.
(b) Transformation on the entire tree. Black nodes are initialized to
have zero delay as the only possible option.

As discussed earlier, a level by level traversing of nodes and apply-
ing S and P operations to nodes will update the delay-gain for all nodes.
Once this list is updated for the primary output, OPT � PO LPO B � re-
flects the maximum achievable gain.

A minor modification of the described algorithm can monitor the in-
termediate pairs that contribute to the gain of each pair of LPO. These
pairs will provide the proper implementation choice for each node. The
details of this implementation should be straightforward and are not ex-
plained in this paper.

5.1 Performance Guarantee
Since the trimming step introduces some error into the process, the

calculated solution might not be equal to the optimal solution. In this
section, we prove some upper bounds for this error and guarantee the
solution quality within some limits. We also prove that the algorithm
runs in polynomial time.

Theorem 1. The solution given by the algorithm described in sec-
tion 5, is at most 1 	 ε times smaller than the optimal solution.

Proof : Operation P does not introduce any error in the delay-gain list
since it does not remove any pair from its result. Therefore S is the only
operation that might introduce error in the result. There are n nodes in
the tree, therefore the number of performed S operations cannot be more
than n.

For each pair � D G � � Lr that is removed after the operation S (figure
6.b), there is another pair � D ! G !"�#� Lr such that 1 	 ε � n � G !$� G � 1.
This implies that D ! � D and hence G ! can be utilized in case the deleted
pair was to be chosen.

Now, suppose � D % G %�� denotes the optimal delay-gain pair at the pri-
mary output for a given problem instance. By induction on the number
of consecutive S operations, it can be easily shown that there is a pair
� D ! G ! ��� LPO such that � 1 	 ε � n � n � G ! � G % � 1 and D ! � D % . It fol-
lows that:

1 	 ε �&� 1 	 ε � n � n � G ! � G % � OPT � PO LPO B ��� G %
This completes the proof of the approximation bound '

Note that the P operations that might happen between two S oper-
ations will always keep the pairs within the desired bound and hence,
will not hurt the solution quality.

Theorem 2. The aforementioned algorithm runs in polynomial time
in terms of n.

Proof : To prove that the algorithm runs in polynomial time, we
bound the number of elements in LPO (and hence other intermediate
lists). Since the trimming step removes the close-enough gain elements
from the lists, each two pairs � d1 g1 � and � d2 g2 � remaining in a list
must satisfy the equation g2 � g1 (1 �)� 1 	�� ε � n ��� assuming that g2 (g1.
Therefore the number of distinct gain values is at most:

log1 *+� 1 , ε * n � nDMAX � ln � nDMAX �
	 ln � 1 	 ε � n � �

n ln � nDMAX �
ε

� n � lnn � ln DMAX �
ε

which is a polynomial in terms of the algorithm inputs and 1 � ε. Thereby
the proposed algorithm is a fully polynomial time approximation scheme
(FPTAS) '
5.2 Extensions to Other Objective Functions

The achieved gain by slowing down a node might not be linearly pro-
portional to its delay. For instance a specific implementation of a module
which runs two times faster than another implementation, might not be
two times more costly. In such cases, maximizing the total delay of the
nodes will not necessarily lead to the maximum gain.

However, in many cases the amount of potential gain can still be mod-
eled using a function of delay. If gain can be modeled using a polyno-
mial function of the module delay, the above approach and algorithm
can be directly applied to approximate the solution to the desired de-
gree. In other words, the above mentioned technique also works for the
following objective function:

O � F ���
n

∑
i � 1

P � di �

where P is a polynomial function of delay values.

6. Experimental Results
In this section, we present the result of applying our time budgeting

algorithm on several applications. The algorithm has been implemented
in C and applied to a number of target tracking applications. First, we
explain the framework of the performed experiments and then we report
the simulation results.

6.1 Experiment Framework
We have implemented a system consisting of multiple cameras with

embedded computational resources to track the objects moving in a par-
ticular area (figure 1). As discussed in section 1, the cameras have multi-
ple resources to realize the basic blocks of the application. Furthermore,
the controller resources can be used for executing the computations. The
particular application of interest is object tracking which is composed of
two basic vision algorithms, namely feature selection and feature track-
ing.

The feature selection algorithm is used to select the proper points in
an image to track. Sharp corners with significant color or intensity vari-
ations are usually considered as good features. Given two consecutive
images taken from a scene, The feature tracking algorithm tries to find
the location of the features in the first image, in the second one. This
will provide information for following the object in the scene. Hence,
the normal procedure for tracking an object is to run feature selection on
the first image and then switch to feature tracking for the next upcoming
images.

On the other hand, the tracking algorithm might not be able to track
all of the specified features in the second image and hence might lose
some of the features for tracking in the upcoming images. For example,
a sample run of the implemented tracking scheme on 10 consecutive im-
ages missed 44 out of the initial 100 features. Moreover, the motion of
the objects in the scene can hide some of their features or even create

new features visible by a particular camera. Therefore, the tracking sys-
tem needs to re-execute the feature selection algorithm at some points of
time during the application lifetime. This will refresh the feature points
provided to tracking algorithm and improves the tracking accuracy.

The appropriate time to reselect the features in a scene depends on
many practical parameters such as the required accuracy, camera resolu-
tion and object’s shape and motion. Therefore, any instance of the track-
ing application would switch from feature tracking to feature selection
at a particular moment of time and hence has a different data flow graph
(DFG). All of the DFGs representing such applications have the rooted
tree form. Figure 8 depicts a few iterations of a sample application. The
actual path that the application takes at runtime is not known in advance
and depends on the events happening in the scene. However, it is known
that the application will take ”one” of the paths from the tree root to one
of the leaves.

-.--.--.-
/.//.//./

Feature Tracking

Feature Selection

Fig. 8: A tracking application modeled as a rooted tree. Black and
white nodes represent feature selection and tracking, respecitvely.

For many practical applications the system’s worst case response time
should be guaranteed. Our algorithm manages the computation delays
such that the timing constraint is met and the sum of the computation de-
lays are maximized. Each delay value for a computation, corresponds to
a particular implementation of that computation on a particular resource.
Therefore, the output manages system computations and resources and
can assist the task scheduling.

6.2 Delay Budgeting Results
We have implemented several variations of the feature selection and

tracking algorithms. These algorithms are executed either on the IQeye3
camera PowerPC processor or on the controller. These implementations
perform the feature selection and tracking tasks with different accuracy
levels, hence they exhibit different latencies. Table 1 summarizes the de-
lay values for different implementations of features selection and track-
ing. The delays are measured for a single run of the algorithm on a
sample image. All other affecting parameters are fixed, hence we expect
that these numbers scale by porting the algorithm to other platforms.

All numbers are reported for executing the computations on camera’s
embedded processor, except for the first line of each section, which cor-
responds to running processes on the controller’s processor (table 1).
While controller’s processor is more powerful than processor embed-
ded in the camera, the communication delay for sending the data to the
controller and reading the result back slows down this scheme. The
significant difference in computation latencies run on camera and the
controller highlights this fact.

Also, a number of tracking application trees have been created. These
trees correspond to object tracking applications with different accuracy
requirements and they differ in the frequency of feature selection execu-
tion. Each tree has about 30 to 40 nodes. Each node is to be implemented
with the tasks listed in table 1. Therefore, manual enumeration of all of
the cases is not possible and practical. Figure 8 demonstrates one small
sample tracking tree.

Each application has a particular worst case delay, i.e. it has to finish
within a guaranteed amount of time. We assume that each application
has at most a 10% extra delay budget. In other words, it has to finish
its computation within 10% delay of its fastest possible implementation.
The choice of 10% extra delay budget has been made for experimental
purposes only. Our approach would be effective for any other choice of

Minimum Additional Inserted Additional Inserted Additional Inserted Additional Inserted Additional Inserted
Application possible latency 0ms 1 latency 0ms 1 latency 0ms 1 latency 0ms 1 latency 0ms 1

latency 0ms 1 ε � 0 � 7 ε � 0 � 5 ε � 0 � 3 ε � 0 � 1 Optimal solution
app1 949 1227 1227 1257 1283 1283
app2 1045 1704 1732 1732 1732 1737
app3 1013 1555 1555 1611 1611 1611
app4 949 1272 1272 1302 1328 1328
app5 1045 1451 1471 1471 1471 1471
app6 981 1426 1524 1519 1524 1524
app7 1340 3721 3692 3714 3721 3721
app8 1045 1800 1830 1810 1830 1830
app9 981 1708 1753 1796 1822 1822

app10 1077 1821 1825 1825 1825 1825

Table 2: The result of applying the proposed algorithm on 10 different tracking applications. The extra computation delay injected into the
application (which can be utilized to improve the tracking accuracy) is mentioned. Last column shows the maximum achievable gain for
each application. All simulations were performed assuming that the application can be slowed down at most 10% of its maximum latency.

Algorithm Execution Delay
0ms 1

Feature Selection

Executed on controller’s cpu 3300
Basic Implementation 340
Modified gradient calculation 310
Removed multi-resolution pyramid 295
Feature Tracking

Executed on controller’s cpu 3345
Basic Implementation 360
Removed multi-resolution pyramid 230
Removed smoothing code 180
Modified gradient calculation 110
On demand gradient calculation 95
Tracking 60% of features 80
Tracking 30% of features 60
Simplified tracking for 30% of features 32

Table 1: The implemented algorithms and their corresponding de-
lay values in milliseconds. Each latency is calculated for one itera-
tion of the algorithm under similar conditions. Faster implementa-
tions have lower accuracy levels.

delay budget.
The proposed algorithm has been implemented in C and applied to the

aforementioned applications. The result of the simulation is reported
in Table 2, which summarizes the result of applying our algorithm on
10 different object tracking applications. For each application, the de-
lay of its fastest possible implementation is mentioned. The delay of
the implemented applications are at most 10% more than the minimum
possible delay. Several simulations have been performed with different
approximation factors(ε values) and all of them support the fact that the
additional inserted computation delay into the application is within the
required bound from the optimal solution.

7. Conclusion
We presented the idea of delay budgeting at the application level by

using a fully polynomial ε-approximation algorithm. The proposed al-
gorithm works for a particular class of applications that can be modeled
using a rooted tree. It is assumed that each block can be implemented in
a number of ways and each implementation has a different latency.

The proposed algorithm attempts to exploit the timing slack of each
basic block and replaces the basic blocks with slower implementations
without violating the timing constraints of the design. The slower imple-
mentations of each block are usually less costly in terms of conventional
design metrics such as power dissipation, area and accuracy. Thus, the
entire procedure leads to savings in the application implementation cost
or improvements in its quality.

Experimental results to advocate our algorithm and its solution qual-
ity have been reported. The experiments are performed on some object
tracking applications. The result for multiple approximation factors and
delay budgets support our algorithm performance and solution quality.

Future works include extension of the experiments to verify the sim-
ulation results in action. Moreover, the class of considered applications
should be generalized to less restricted applications.

8. References
[1] A. Parker, J. Pizarro and M. Mlinar. ”MAHA: A Program for

Datapath Synthesis”. In Design Automation Conference, 1986.
[2] B. Fields, R. Bodik and M.D. Hill. ”Slack: Maximizing

Performance Under Technological Constraints”. In International
Symposium on Computer Architecture, 2002.

[3] B. Pangrle and D. Gajski. ”Design Tools for Intelligent Silicon
Compilation”. In IEEE Transactions on CAD, volume 6, pages
1098–1112, November 1987.

[4] C. Chen, X. Yang and M. Sarrafzadeh. ”An Effective Algorithm
for Gate-Level Power-Delay Tradeoff Using Two Voltages”. In
International Conference on Computer Aided Design, 2000.

[5] D. Zhu, R. Melhem and B. Childers. ”Scheduling with Dynamic
Voltage/Speed Adjustment using Slack Reclamation in
Multi-Processor Real-Time Systems”. In IEEE Real Time Systems
Symposium, 2001.

[6] M.R. Garey and D.S. Johnson. Computers and Intractability, A
guide to the theory of NP-Completeness. W.H. Freeman and
Company, New York, 1979.

[7] IQinVision Inc. ”Iqeye3 Camera Documentation”. In
http://www.iqinvision.com.

[8] P. Paulin and J. Knight. ”Force Directed Scheduling for
Behavioral Synthesis of ASICs”. In IEEE Transactions on CAD,
volume 8, pages 661–679, 1989.

[9] R. Cloutier and D. Thomas . ”The Combination of Scheduling,
Allocation and Mapping in a Single Algorithm”. In Design
Automation Conference, 1990.

[10] R. Nair, C. Berman, P. Hauge and E. Yoffa. ”Generation of
Performance Constraints for Layout”. In IEEE Transactions on
CAD, volume 8, pages 860–874, 1989.

[11] R. Rivest T. Cormen, C. Leiserson. An introduction to algorithms.
MIT Press, 1990.

[12] P. Agrawal W. Li, A. Lim and S. Sahni. On the circuit
implementation problem. In Design automation conference, pages
478–483, 1992.

[13] P. Agrawal W. Li, A. Lim and S. Sahni. On the circuit
implementation problem. In IEEE Transactions on CAD,
volume 12, pages 1147–1156, August 1993.

[14] W. Zhang, N. Vijaykrishnan, M. Kandemir, M. J. Irwin, D. Duarte
and Y.Tsai. ”Exploiting VLIW Schedule Slacks for Dynamic and
Leakage Energy Reduction”. In International Symposium on
Microarchitecture, 2001.

[15] Y. Shin and K. Choi. ”Power Conscious Fixed Priority Scheduling
for Hard Real-Time Systems”. In Design Automation Conference,
1999.

