
Puzzle Solver Accelerators Make Excellent Capstone Design Projects

Soheil Ghiasi, Matin Hashemi, Volodymyr Khibin, Faisal Khan
Department of Electrical and Computer Engineering

University of California, Davis
CA, USA 95616

{ghiasi, hashemi, vykhibin, fnkhan}@ucdavis.edu

Abstract—We present a computer engineering capstone design
project course focused on accelerating intensive computations
via integration of application-specific co-processors with digital
processor systems. We propose utilization of puzzle solvers as
attractive, scalable and simple-to-understand applications to
engage students with practicing a number of fundamental
concepts in algorithm design, HW-SW co-design, computer
architecture, and beyond. While advocating a contest setup for
the course, we discuss several well-specified milestones that
enable balancing students’ creativity and freedom in design
choices with ensuring timely progress towards the end goal of
the class. We report our observations with the only offering of
the class so far, which resulted in successful project completion
by all students, and their supportive feedback.

Keywords-Capstone Project, Computation Acceleration,
Puzzle Solvers, HW-SW Co-Design, Solution Space Exploration

I. INTRODUCTION
The capstone project has become an important part of the

engineering education in the US. In particular, ABET [1]
guidelines require the capstone project to engage teams of
senior students in multi-disciplinary projects of sufficient
complexity. One of the objectives is to give students an
opportunity to practice a range of material and techniques
that they have been taught throughout the undergraduate
program.

Development of a quality capstone course is challenging
due to a number of reasons. The major challenge arises from
the natural tradeoff between complexity and manageability
in academic settings. On one hand, the project has to be
substantial enough to expose students to a number of
fundamental concepts, and to provide them with an
opportunity to practice such concepts. On the other hand, the
scope, resource requirement and breadth of underlying
disciplines have to be reasonable to admit solutions by small
teams of senior students under limited time in academic
settings. In addition, an ideal project would have tangible
specification and quality metrics, and would be appealing to
many students to attract their attention.

We present a capstone design project that we have
recently developed at the department of electrical and
computer engineering at the University of California, Davis.
The course, EEC181A/B, is offered over two consecutive
quarters. It mainly targets students whose primary area is
computer engineering, although many students with
computer science or electrical engineering emphasis also
participate in the course.

At its core, the project tasks teams of students with
FPGA-based development of application-specific processors
for acceleration of well-defined intensive computations.
During the course of the project, students are exposed to a
number of topics from their previous courses such as
algorithm design and complexity analysis, HW-SW Co-
design, computer architecture, parallel processing,
quantitative benchmark-driven design decisions, and digital
system development and validation.

We believe systems for solving logical puzzles, such as
the well-known Sudoku or Hitori (discussed in this paper),
make excellent project topics for a number of reasons. First,
puzzles are easy to explain and navigate, yet they expose
students to a wealth of relevant topics from algorithms and
solution space exploration to parallelization and acceleration
aspects in a digital system. Moreover, many puzzles can be
arbitrarily scaled to showcase the role of algorithm
complexity and memory bottlenecks in practical settings.
Finally, our experience is that many students find puzzles
attractive on a personal level, and relate to the problem
domain (e.g., candidate solution and search space), tradeoffs
(e.g., algorithms for solution space exploration), design
decisions (e.g., computation kernels for HW acceleration)
and quality metrics (solver runtime) very well.

Our contention (and subsequent observation) is that
contests bring out the best in most students, by encouraging
them to come up with creative ideas and to work harder to
excel in the competition. As such, we have set up the course
as a contest by providing the same problem specification and
resources to all student teams, and by defining an open-
ended metric (speedup over a minimum expected
performance) to evaluate the quality of projects.

Our experience and the students’ comments with the only
offering of the class are very positive. We would be happy to
share the teaching resources with interested colleagues.

II. THE HITORI PUZZLE
Hitori is an entertaining logic puzzle that was originally

introduced by the Japanese game publisher Nikoli [2]. It is
played with a grid of cells in which, each cell contains an
integer number. The objective of the game is to eliminate
numbers by filling in the cells (marking them as “black”)
such that the remaining cells (whites) do not contain
numbers that appear more than once in any of the rows or
columns.

In addition, filled-in cells cannot be horizontally or
vertically adjacent, although they can be diagonally adjacent.

978-1-61284-639-2/11/$26.00 ©2011 IEEE 21

The remaining un-filled cells must form a single geometric
component that is connected horizontally or vertically. An
example 5x5 Hitori puzzle and a possible solution are shown
in Figure 1.

The Hitori grid always has equal number of rows and
columns. The number of rows, or columns, of the grid
defines the order of the puzzle through which, the problem
can be arbitrarily scaled. The numbers in the cells are
always positive integers no larger than the order of the
puzzle. That is, the numbers used in the cells are always
between 1 and the order of the puzzle. The example in
Figure I illustrates an order-5 Hitori puzzle, a correct and an
invalid solution (not a single connected component).

We ask students to develop an FPGA-based Hitori solver
that can solve puzzles of orders 5, 8, 12, 20, 50 and 100.
The puzzle orders are chosen to cover a wide range of
complexities, which might call for somewhat different
tweaks to the solver algorithm and its implementation.

III. HW PLATFORM

All teams are given an Altera DE2 FPGA board and
copies of the design software, which were made possible by
a generous donation from Altera [3]. The DE2 board is the
only platform that can be used for development of the solver
system. Identical hardware resources and problem
specification provide a level playing field for all
participating teams in the competition.

IV. MILESTONE I: PUZZLE SOLVING ALGORITHM
To ensure timely progress of student teams, we loosely

identify a set of milestones that teams have to demonstrate
by certain dates. The first milestone involves development
of the solver algorithm and its software prototype, for which
students are free to use any technique of their choice.

An interesting observation was that although teams
started with rather different approaches to solver algorithms,
they arrived at rather similar (from a high-level approach
viewpoint) general conclusions, after researching,
prototyping and experimenting with different puzzle
testbenches. The common approach, which is quite intuitive,
is to deterministically reduce the solution space (e.g. via
logical deductions) and only resort to exploration if needed.

A. Deterministic Logical Deduction
One can logically infer a number of easy-to-implement

feasibility checks or deduction steps to deterministically
reduce the solution space. For example, if a particular cell is
already marked black (as a result of another deduction
algorithm or guess), all of its adjacent cells must be marked
white, as black cells cannot touch in any valid solution.

As another example, if three identical numbers are
adjacent in the same row (or column), then the two outer
cells have to be marked black to eliminate repetitions of the
middle number in that row (or column) without marking two
adjacent cells black.

Such logical inference rules are straight forward to
implement in software, and reduce the complexity of the
solution space substantially more efficiently than back
tracking based exploration of the solution space.

B. Orderly Exploration of the Solution Space
There tends to be a limit on the applicability of the

checks for difficult puzzles, although ideally, one would like
to deterministically arrive at a valid solution only by going
through a series of logical deduction steps. This is not always
possible either because the input puzzle is not designed to be
solved only by deduction, or because complicated (and rarely
applicable) logical inference routines are better skipped in
favor of efficient exploration of the solution space via
guessing.

In either case, a partial solution obtained via logical
deduction has to be further solved by orderly exploration of
the solution space. At this stage, teams have to understand
some important concepts in search of the solution space,
such as solution space complexity, backtracking and
exploration tradeoffs (e.g. ordering of guesses). Students also
learn that the two guessing and logical deduction methods
can be combined to quickly check the feasibility of a guess
and to avoid unnecessary subsequent guesses.

V. MILESTONE II: DESIGN PLANNING
Following development of a software prototype, students

were tasked with development of a design plan for
accelerating the solver’s algorithm via hardware-enabled
parallelization and HW-SW co-design of the system. The
design plans are presented both in writing and orally to
enable the instructors provide necessary feedback early in the
design process.

A. Profiling and Kernel Identification
Stressing Amdahl’s law, students were asked to perform

timing profiling of their software prototypes to identify
compute-intensive kernels of their algorithms. Interestingly,
the timing profiling and analysis helped the teams to
optimize their software implementations to arrive at faster
runtimes. The polished software prototypes are used as the
baseline software implementation for each team.

Most teams found out that simple logical inference
routines form the kernels of the algorithm, as they should be
applied iteratively to deterministically reduce the search
space. Note that after sufficient application of a primary
inference routine, a secondary logical inference or even a
guess might enable the application of the primary inference
again, although it could no longer advance the solving
process on its own.

B. Accelerator Design Blueprint
Subsequently, each team developed a blue print of the

accelerator hardware and its interface with software. The
hardware blueprint has to include RTL-like details, and
hence, should cover information on anticipated data
encoding, HW-SW interface, and bus access arbitration
between custom HW module and the processor.

22

C. Performance Estimation
The last component of the design plan was performance

estimation of the solver system based on the system blueprint
and software timing profile. Specifically, teams were asked
to estimate the latency of the HW-mapped kernel with semi
cycle accuracy (cycle accurate for intensive loops), and
estimate the performance of the system if it were to be
implemented. Any team whose design plan did not meet the
performance target (see Section VII) was sent back to the
drawing board to improve their design plan.

Our experience is that the design plan is likely to be the
perfect stage for the instructor to step in, and provide
feedback to steer students away from wasting excessive
amount of time and energy on a design that is unlikely to
meet the specification.

VI. MILESTONE III: HW+SW CO-IMPLEMENTATION
Following review, discussion and approval of the design

plans, teams proceed with implementation and debugging of
their proposed designs. The implementation process is
typically the most time consuming milestone, as students
have to debug many subtle issues that come up with
interfacing HW and SW, access to shared resources, and
synchronization of concurrent HW and SW modules.

As part of this stage students get to practice many
engineering techniques used for debugging. In addition to
conventional simulation, and divide & conquer-based
debugging approaches, teams found Altera SignalTap
particularly helpful, as it enables monitoring of design
signals after they are mapped to the FPGA.

VII. PROJECT EVALUATION METHODOLOGY
We specify a time budget for solving a testbench puzzle

of a particular order, which specifies the expected runtime
of the solver for finding the solution. The time budget for
solving a puzzle of order N is 60*N3 µ-seconds, which is
arrived at by a combination of solver complexity analysis,
empirical adjustments, and expected HW speedup over
software prototypes. Students found the expected speedup
(time budget) to be about an order of magnitude relative to
their polished software implementation (Milestone I). The
formula limits the expected runtime for N=5 to be 7.5
milliseconds, and for N=100 to be 1 minute.

The designs are partially judged based on the time it takes
to solve puzzles. In particular, the designs receive a
Performance Score (PS), which is essentially the geometric
mean of speedups over all puzzles relative to their expected
time (time budget):

puzzlesofno)
t

Runtime(N)Expected(=PS
puzzlesall N

__
1

_
_
∏

, where N refers to the puzzle order, Expected_Runtime(N)
is the expected time for solving puzzles of order N, and tN is
the time the solver needs to solve a given puzzle of order N.
Both time budget and solver runtime are measured in tenths

of millisecond. Note that a performance score of 1 indicates
that on average, the solver clears the bar set for the class.

The rational for using the geometric mean of the speed
ups is to equally weigh the speedup for different puzzles,
rather than an arithmetic mean which would be biased
towards larger numbers [4]. Note that the slowdown of
runtime relative to the expected runtime for a particular
puzzle diminishes the contribution of the speedup over
another puzzle to the overall performance score.

If a solver fails to solve a given puzzle within 5X of the
expected time budget, the partial contribution of that puzzle
to the performance score is assumed to be 1/10. That is, the
particular unsolved puzzle will penalize the geometric
average of the speedups by a factor of 10. The rationale is to
give a very high weight for correctly solving all puzzles,
rather than giving up on a particular order and making up
for it by over-optimizing another puzzle order.

A. Puzzle Generation
Since scaled puzzles are solely meaningful for

computerized solution (and hence they are publicly
unavailable), we had to develop a mechanism for generation
of puzzles of different orders and difficulty levels to
sufficiently evaluate students’ designs. Subsequently, we
developed algorithms for puzzle generation, which were
implemented in a software program by the teaching staff.

The generated testbench puzzles were divided into two
sets: the debug set and the evaluation set. The debug set
puzzles were released to class to assist students in
development, debugging, and benchmarking of their designs.
The evaluation set was not disclosed to the students, and was
merely used to evaluate their final designs. The objective
was to eliminate the possibility of over-optimizing solvers to
better fit particular puzzle testbenches.

B. Evaluation Software
We developed a software module that runs on a host PC

that is interfaced with the FPGA board via a standard RS-
232 connection. The software communicates with the design
with a well-documented protocol. It sends puzzles of
different orders to the FPGA, receives the solved puzzles and
checks the solution for correctness. Also, it measures the
solver runtime for each puzzles by which, it calculates the
performance score (PS) of each participating team.

VIII. TEAMS’ PERFORMANCE AND FEEDBACK
All seven participating teams in the course were

successful in developing designs that correctly and
efficiently solved the input puzzles of different difficulty
levels within the expected runtime. We evaluated the
performance of the designs with four undisclosed puzzles of
each order (5, 8, 12, 20, 50, and 100). The four puzzles of the
same order represented a range of difficulty levels.

Out of 168 tests that we ran (7 teams, 6 orders and 4
puzzles per order), only one test failed due to the solver
generating an invalid solution. It turned out that a particular
input triggered a synchronization bug in one of the designs,
which had not appeared previously when students tested with

23

debug benchmarks and it also did not appear with the
remaining 23 tests of the evaluation benchmarks. Similarly,
we had to stop only one test because the solver did not return
any solution within the 5X timeout that we had specified for
solver runtime. All the remaining 166 tests returned correct
solutions within the 5X timeout with the overwhelming
majority running significantly faster than the expected time.
In fact, some puzzles were solved about 30X faster than the
expected runtime (50X in case of debug benchmarks).

Table I reports the summary of performance scores, the
geometric mean of measured speedups relative to the
expected runtime, as obtained with both testbench (disclosed
to students and used for design development) and evaluation
(undisclosed and solely used for evaluation upon submission
of designs) puzzles. The results are sorted with respect to PS
under evaluation puzzles.

The first observation is that all teams achieved the
performance target of the class by successfully accelerating
their baseline software prototype using application-specific
accelerators. The average speedups were as high as 7X more
than the expected runtime, which was set to translate to
about 10X improvement over baseline software
implementation. Moreover, with the exception of team 5, the
performance score measured over a wide range of shared
testbench puzzles followed the same trend as PS over
evaluation puzzles.

Our contention is that the large number and diversity of
testbench puzzles (and evaluation puzzles) did not allow easy
utilization of puzzle-specific hacks and to a large degree
eliminated the indeterminacy of runtime with respect to input
puzzles. This in turn, translated to a more fair and predictable
contest, which was appreciated by students. Before the final
evaluation, many students were concerned that a specific
choice of evaluation benchmarks might render their design
decisions unjustified (as is the case in real life!). We were
happy to see that the ordering of teams was mostly
preserved, while the important point about benchmark-driven
design decisions hit home with students.

Students’ feedback was quite encouraging. Many
students made positive comments about the wealth of topics
that were involved in the course of project, its contest setup,
use of puzzle solvers as an appealing design problem, and

the end-to-end nature of the project, which enabled them to
practice their knowledge.

TABLE I. PERFORMANCE SCORES OF THE PARTICIPATING TEAMS

Team PS (testbench puzzles) PS (evaluation puzzles)
1 7.54 7.31
2 7.17 6.11
3 5.73 4.94
4 4.77 4.44
5 6.45 4.40
6 4.55 3.89
7 2.43 2.37

IX. CONCLUSIONS
We presented a computer engineering capstone project
course on HW-SW co-design that utilizes puzzle solvers as a
computationally-intensive application driver. The course
allows students to practice a large number of fundamental
concepts that are covered in a typical computer engineering
curriculum. We showcase the use of a series of milestones
that balance students’ freedom and creativity with ensuring
their timely progress towards the end goal.

ACKNOWLEDGMENT
We would like to thank Altera for the generous donation

of FPGA boards and design software, which enabled us to
offer this course. Lance Halsted helped us with the
development of some laboratory material that introduced
students to the hardware platform at the beginning of the
course.

REFERENCES

[1] Accreditation Board for Engineering and Technology (ABET),
http://www.abet.org/

[2] Nicoli (The First Puzzle Magazine in Japan),
http://www.nikoli.co.jp/en/

[3] Altera Corporation, http://www.altera.com
[4] D. Patterson and J. Hennessy, “Computer Organization and Design:

The Hardware/Software Interface”, Morgan Kaufmann, 200

Figure 1. A)An example Hitori puzzle of order 5. B)A valid solution. C)An incorrect solution (not a single connected component)

24

