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Abstract—We present a computer engineering capstone design 
project course focused on accelerating intensive computations 
via integration of application-specific co-processors with digital 
processor systems. We propose utilization of puzzle solvers as 
attractive, scalable and simple-to-understand applications to 
engage students with practicing a number of fundamental 
concepts in algorithm design, HW-SW co-design, computer 
architecture, and beyond. While advocating a contest setup for 
the course, we discuss several well-specified milestones that 
enable balancing students’ creativity and freedom in design 
choices with ensuring timely progress towards the end goal of 
the class. We report our observations with the only offering of 
the class so far, which resulted in successful project completion 
by all students, and their supportive feedback. 
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I.  INTRODUCTION  
The capstone project has become an important part of the 

engineering education in the US. In particular, ABET [1] 
guidelines require the capstone project to engage teams of 
senior students in multi-disciplinary projects of sufficient 
complexity. One of the objectives is to give students an 
opportunity to practice a range of material and techniques 
that they have been taught throughout the undergraduate 
program.  

Development of a quality capstone course is challenging 
due to a number of reasons. The major challenge arises from 
the natural tradeoff between complexity and manageability 
in academic settings. On one hand, the project has to be 
substantial enough to expose students to a number of 
fundamental concepts, and to provide them with an 
opportunity to practice such concepts. On the other hand, the 
scope, resource requirement and breadth of underlying 
disciplines have to be reasonable to admit solutions by small 
teams of senior students under limited time in academic 
settings. In addition, an ideal project would have tangible 
specification and quality metrics, and would be appealing to 
many students to attract their attention. 

We present a capstone design project that we have 
recently developed at the department of electrical and 
computer engineering at the University of California, Davis. 
The course, EEC181A/B, is offered over two consecutive 
quarters. It mainly targets students whose primary area is 
computer engineering, although many students with 
computer science or electrical engineering emphasis also 
participate in the course.  

At its core, the project tasks teams of students with 
FPGA-based development of application-specific processors 
for acceleration of well-defined intensive computations. 
During the course of the project, students are exposed to a 
number of topics from their previous courses such as 
algorithm design and complexity analysis, HW-SW Co-
design, computer architecture, parallel processing, 
quantitative benchmark-driven design decisions, and digital 
system development and validation. 

We believe systems for solving logical puzzles, such as 
the well-known Sudoku or Hitori (discussed in this paper), 
make excellent project topics for a number of reasons. First, 
puzzles are easy to explain and navigate, yet they expose 
students to a wealth of relevant topics from algorithms and 
solution space exploration to parallelization and acceleration 
aspects in a digital system. Moreover, many puzzles can be 
arbitrarily scaled to showcase the role of algorithm 
complexity and memory bottlenecks in practical settings. 
Finally, our experience is that many students find puzzles 
attractive on a personal level, and relate to the problem 
domain (e.g., candidate solution and search space), tradeoffs 
(e.g., algorithms for solution space exploration), design 
decisions (e.g., computation kernels for HW acceleration) 
and quality metrics (solver runtime) very well. 

Our contention (and subsequent observation) is that 
contests bring out the best in most students, by encouraging 
them to come up with creative ideas and to work harder to 
excel in the competition. As such, we have set up the course 
as a contest by providing the same problem specification and 
resources to all student teams, and by defining an open-
ended metric (speedup over a minimum expected 
performance) to evaluate the quality of projects. 

Our experience and the students’ comments with the only 
offering of the class are very positive. We would be happy to 
share the teaching resources with interested colleagues. 

II. THE HITORI PUZZLE 
Hitori is an entertaining logic puzzle that was originally 

introduced by the Japanese game publisher Nikoli [2]. It is 
played with a grid of cells in which, each cell contains an 
integer number. The objective of the game is to eliminate 
numbers by filling in the cells (marking them as “black”) 
such that the remaining cells (whites) do not contain 
numbers that appear more than once in any of the rows or 
columns. 

In addition, filled-in cells cannot be horizontally or 
vertically adjacent, although they can be diagonally adjacent. 
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The remaining un-filled cells must form a single geometric 
component that is connected horizontally or vertically. An 
example 5x5 Hitori puzzle and a possible solution are shown 
in Figure 1. 

The Hitori grid always has equal number of rows and 
columns. The number of rows, or columns, of the grid 
defines the order of the puzzle through which, the problem 
can be arbitrarily scaled. The numbers in the cells are 
always positive integers no larger than the order of the 
puzzle. That is, the numbers used in the cells are always 
between 1 and the order of the puzzle. The example in 
Figure I illustrates an order-5 Hitori puzzle, a correct and an 
invalid solution (not a single connected component). 

We ask students to develop an FPGA-based Hitori solver 
that can solve puzzles of orders 5, 8, 12, 20, 50 and 100. 
The puzzle orders are chosen to cover a wide range of 
complexities, which might call for somewhat different 
tweaks to the solver algorithm and its implementation. 

III. HW PLATFORM 

All teams are given an Altera DE2 FPGA board and 
copies of the design software, which were made possible by 
a generous donation from Altera [3]. The DE2 board is the 
only platform that can be used for development of the solver 
system. Identical hardware resources and problem 
specification provide a level playing field for all 
participating teams in the competition. 

IV. MILESTONE I: PUZZLE SOLVING ALGORITHM 
To ensure timely progress of student teams, we loosely 

identify a set of milestones that teams have to demonstrate 
by certain dates. The first milestone involves development 
of the solver algorithm and its software prototype, for which 
students are free to use any technique of their choice. 

An interesting observation was that although teams 
started with rather different approaches to solver algorithms, 
they arrived at rather similar (from a high-level approach 
viewpoint) general conclusions, after researching, 
prototyping and experimenting with different puzzle 
testbenches. The common approach, which is quite intuitive, 
is to deterministically reduce the solution space (e.g. via 
logical deductions) and only resort to exploration if needed.  

A. Deterministic Logical Deduction 
One can logically infer a number of easy-to-implement 

feasibility checks or deduction steps to deterministically 
reduce the solution space. For example, if a particular cell is 
already marked black (as a result of another deduction 
algorithm or guess), all of its adjacent cells must be marked 
white, as black cells cannot touch in any valid solution. 

As another example, if three identical numbers are 
adjacent in the same row (or column), then the two outer 
cells have to be marked black to eliminate repetitions of the 
middle number in that row (or column) without marking two 
adjacent cells black. 

Such logical inference rules are straight forward to 
implement in software, and reduce the complexity of the 
solution space substantially more efficiently than back 
tracking based exploration of the solution space.  

B. Orderly Exploration of the Solution Space 
There tends to be a limit on the applicability of the 

checks for difficult puzzles, although ideally, one would like 
to deterministically arrive at a valid solution only by going 
through a series of logical deduction steps. This is not always 
possible either because the input puzzle is not designed to be 
solved only by deduction, or because complicated (and rarely 
applicable) logical inference routines are better skipped in 
favor of efficient exploration of the solution space via 
guessing. 

In either case, a partial solution obtained via logical 
deduction has to be further solved by orderly exploration of 
the solution space. At this stage, teams have to understand 
some important concepts in search of the solution space, 
such as solution space complexity, backtracking and 
exploration tradeoffs (e.g. ordering of guesses). Students also 
learn that the two guessing and logical deduction methods 
can be combined to quickly check the feasibility of a guess 
and to avoid unnecessary subsequent guesses. 

V. MILESTONE II: DESIGN PLANNING 
Following development of a software prototype, students 

were tasked with development of a design plan for 
accelerating the solver’s algorithm via hardware-enabled 
parallelization and HW-SW co-design of the system. The 
design plans are presented both in writing and orally to 
enable the instructors provide necessary feedback early in the 
design process. 

A. Profiling and Kernel Identification 
Stressing Amdahl’s law, students were asked to perform 

timing profiling of their software prototypes to identify 
compute-intensive kernels of their algorithms. Interestingly, 
the timing profiling and analysis helped the teams to 
optimize their software implementations to arrive at faster 
runtimes. The polished software prototypes are used as the 
baseline software implementation for each team. 

Most teams found out that simple logical inference 
routines form the kernels of the algorithm, as they should be 
applied iteratively to deterministically reduce the search 
space. Note that after sufficient application of a primary 
inference routine, a secondary logical inference or even a 
guess might enable the application of the primary inference 
again, although it could no longer advance the solving 
process on its own. 

B. Accelerator Design Blueprint 
Subsequently, each team developed a blue print of the 

accelerator hardware and its interface with software. The 
hardware blueprint has to include RTL-like details, and 
hence, should cover information on anticipated data 
encoding, HW-SW interface, and bus access arbitration 
between custom HW module and the processor. 
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C. Performance Estimation 
The last component of the design plan was performance 

estimation of the solver system based on the system blueprint 
and software timing profile. Specifically, teams were asked 
to estimate the latency of the HW-mapped kernel with semi 
cycle accuracy (cycle accurate for intensive loops), and 
estimate the performance of the system if it were to be 
implemented. Any team whose design plan did not meet the 
performance target (see Section VII) was sent back to the 
drawing board to improve their design plan.  

Our experience is that the design plan is likely to be the 
perfect stage for the instructor to step in, and provide 
feedback to steer students away from wasting excessive 
amount of time and energy on a design that is unlikely to 
meet the specification.  

VI. MILESTONE III: HW+SW CO-IMPLEMENTATION 
Following review, discussion and approval of the design 

plans, teams proceed with implementation and debugging of 
their proposed designs. The implementation process is 
typically the most time consuming milestone, as students 
have to debug many subtle issues that come up with 
interfacing HW and SW, access to shared resources, and 
synchronization of concurrent HW and SW modules. 

As part of this stage students get to practice many 
engineering techniques used for debugging. In addition to 
conventional simulation, and divide & conquer-based 
debugging approaches, teams found Altera SignalTap 
particularly helpful, as it enables monitoring of design 
signals after they are mapped to the FPGA. 

VII. PROJECT EVALUATION METHODOLOGY 
We specify a time budget for solving a testbench puzzle 

of a particular order, which specifies the expected runtime 
of the solver for finding the solution. The time budget for 
solving a puzzle of order N is 60*N3 µ-seconds, which is 
arrived at by a combination of solver complexity analysis, 
empirical adjustments, and expected HW speedup over 
software prototypes. Students found the expected speedup 
(time budget) to be about an order of magnitude relative to 
their polished software implementation (Milestone I). The 
formula limits the expected runtime for N=5 to be 7.5 
milliseconds, and for N=100 to be 1 minute.  

The designs are partially judged based on the time it takes 
to solve puzzles. In particular, the designs receive a 
Performance Score (PS), which is essentially the geometric 
mean of speedups over all puzzles relative to their expected 
time (time budget):  
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, where N refers to the puzzle order, Expected_Runtime(N) 
is the expected time for solving puzzles of order N, and tN is 
the time the solver needs to solve a given puzzle of order N. 
Both time budget and solver runtime are measured in tenths 

of millisecond. Note that a performance score of 1 indicates 
that on average, the solver clears the bar set for the class.  

The rational for using the geometric mean of the speed 
ups is to equally weigh the speedup for different puzzles, 
rather than an arithmetic mean which would be biased 
towards larger numbers [4]. Note that the slowdown of 
runtime relative to the expected runtime for a particular 
puzzle diminishes the contribution of the speedup over 
another puzzle to the overall performance score. 

If a solver fails to solve a given puzzle within 5X of the 
expected time budget, the partial contribution of that puzzle 
to the performance score is assumed to be 1/10. That is, the 
particular unsolved puzzle will penalize the geometric 
average of the speedups by a factor of 10. The rationale is to 
give a very high weight for correctly solving all puzzles, 
rather than giving up on a particular order and making up 
for it by over-optimizing another puzzle order. 

A. Puzzle Generation  
Since scaled puzzles are solely meaningful for 

computerized solution (and hence they are publicly 
unavailable), we had to develop a mechanism for generation 
of puzzles of different orders and difficulty levels to 
sufficiently evaluate students’ designs. Subsequently, we 
developed algorithms for puzzle generation, which were 
implemented in a software program by the teaching staff. 

The generated testbench puzzles were divided into two 
sets: the debug set and the evaluation set. The debug set 
puzzles were released to class to assist students in 
development, debugging, and benchmarking of their designs. 
The evaluation set was not disclosed to the students, and was 
merely used to evaluate their final designs. The objective 
was to eliminate the possibility of over-optimizing solvers to 
better fit particular puzzle testbenches. 

B. Evaluation Software 
We developed a software module that runs on a host PC 

that is interfaced with the FPGA board via a standard RS-
232 connection. The software communicates with the design 
with a well-documented protocol. It sends puzzles of 
different orders to the FPGA, receives the solved puzzles and 
checks the solution for correctness. Also, it measures the 
solver runtime for each puzzles by which, it calculates the 
performance score (PS) of each participating team. 

VIII. TEAMS’ PERFORMANCE AND FEEDBACK 
All seven participating teams in the course were 

successful in developing designs that correctly and 
efficiently solved the input puzzles of different difficulty 
levels within the expected runtime. We evaluated the 
performance of the designs with four undisclosed puzzles of 
each order (5, 8, 12, 20, 50, and 100). The four puzzles of the 
same order represented a range of difficulty levels. 

Out of 168 tests that we ran (7 teams, 6 orders and 4 
puzzles per order), only one test failed due to the solver 
generating an invalid solution. It turned out that a particular 
input triggered a synchronization bug in one of the designs, 
which had not appeared previously when students tested with 
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debug benchmarks and it also did not appear with the 
remaining 23 tests of the evaluation benchmarks. Similarly, 
we had to stop only one test because the solver did not return 
any solution within the 5X timeout that we had specified for 
solver runtime. All the remaining 166 tests returned correct 
solutions within the 5X timeout with the overwhelming 
majority running significantly faster than the expected time. 
In fact, some puzzles were solved about 30X faster than the 
expected runtime (50X in case of debug benchmarks). 

Table I reports the summary of performance scores, the 
geometric mean of measured speedups relative to the 
expected runtime, as obtained with both testbench (disclosed 
to students and used for design development) and evaluation 
(undisclosed and solely used for evaluation upon submission 
of designs) puzzles. The results are sorted with respect to PS 
under evaluation puzzles. 

The first observation is that all teams achieved the 
performance target of the class by successfully accelerating 
their baseline software prototype using application-specific 
accelerators. The average speedups were as high as 7X more 
than the expected runtime, which was set to translate to 
about 10X improvement over baseline software 
implementation. Moreover, with the exception of team 5, the 
performance score measured over a wide range of shared 
testbench puzzles followed the same trend as PS over 
evaluation puzzles.  

Our contention is that the large number and diversity of 
testbench puzzles (and evaluation puzzles) did not allow easy 
utilization of puzzle-specific hacks and to a large degree 
eliminated the indeterminacy of runtime with respect to input 
puzzles. This in turn, translated to a more fair and predictable 
contest, which was appreciated by students. Before the final 
evaluation, many students were concerned that a specific 
choice of evaluation benchmarks might render their design 
decisions unjustified (as is the case in real life!). We were 
happy to see that the ordering of teams was mostly 
preserved, while the important point about benchmark-driven 
design decisions hit home with students. 

Students’ feedback was quite encouraging. Many 
students made positive comments about the wealth of topics 
that were involved in the course of project, its contest setup, 
use of puzzle solvers as an appealing design problem, and 

the end-to-end nature of the project, which enabled them to 
practice their knowledge. 

TABLE I.  PERFORMANCE SCORES OF THE PARTICIPATING TEAMS 

Team PS (testbench puzzles) PS (evaluation puzzles)
1 7.54 7.31
2 7.17 6.11
3 5.73 4.94
4 4.77 4.44
5 6.45 4.40
6 4.55 3.89
7 2.43 2.37
 

IX. CONCLUSIONS 
We presented a computer engineering capstone project 
course on HW-SW co-design that utilizes puzzle solvers as a 
computationally-intensive application driver. The course 
allows students to practice a large number of fundamental 
concepts that are covered in a typical computer engineering 
curriculum. We showcase the use of a series of milestones 
that balance students’ freedom and creativity with ensuring 
their timely progress towards the end goal. 
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Figure 1.  A)An example Hitori puzzle of order 5. B)A valid solution. C)An incorrect solution (not a single connected component)
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