
Implementation-Aware Model Analysis: The Case of
Buffer-Throughput Tradeoff in Streaming Applications

Kamyar Mirzazad Barijough∗ Matin Hashemi∗ Volodymyr Khibin† Soheil Ghiasi†
∗ Sharif University of Technology
†University of California, Davis

kammirzazad@ee.sharif.edu, matin@sharif.edu 1, vykhibin@ucdavis.edu, ghiasi@ucdavis.edu

Abstract
Models of computation abstract away a number of imple-

mentation details in favor of well-defined semantics. While

this has unquestionable benefits, we argue that analysis of

models solely based on operational semantics (implementation-

oblivious analysis) is unfit to drive implementation de-

sign space exploration. Specifically, we study the trade-

off between buffer size and streaming throughput in appli-

cations modeled as synchronous data flow (SDF) graphs.

We demonstrate the inherent inaccuracy of implementation-

oblivious approach, which only considers SDF operational

semantic. We propose a rigorous transformation, which

equips the state of the art buffer-throughput tradeoff anal-

ysis technique with implementation awareness. Extensive

empirical evaluation show that our approach results in sig-

nificantly more accurate estimates in streaming throughput

at the model level, while running two orders of magnitude

faster than cycle-accurate simulation of implementations.

Categories and Subject Descriptors C.4 [Performance of
Systems]: Modeling Techniques

Keywords Synchronous DataFlow (SDF), Buffer-Throughput

Tradeoff Analysis, Embedded Multi-Processor

1. Introduction
The model-based design methodology advocates separation

of application specification from target implementation, and

representation of application behavior using formal models

of computation [18, 20]. Such models enable one to de-

velop or to utilize various analysis, optimization and syn-

thesis techniques for either exploration of implementation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

LCTES’15, June 18 - 19, 2015, Portland, OR, USA
c© ACM. ISBN 978-1-4503-3257-6// $15.00

http://dx.doi.org/10.1145/2670529.2754968

space or generation of efficient implementations. While this

approach has unquestionable benefits, we argue that in cer-

tain situations complete separation of specification from tar-

get platform obscures key pieces of information that are es-

sential for accurate characterization of the design space.

We study this rather general idea in the context of trade-

off analysis between buffer size and throughput of stream-

ing applications specified as synchronous dataflow (SDF)

graphs that are to be implemented on multiprocessor sys-

tem on chips (MPSoC). In the SDF model, the application is

represented as a set of concurrent tasks that communicate

by sending and receiving messages (tokens) via point-to-

point FIFO buffers [11, 23]. The rates at which tasks produce

and consume messages are constant and known at compile

time. This property enables utilization of a number of analy-

sis techniques at compile time, including scheduling of tasks

[10, 12] and characterization of the tradeoff between buffer

size requirement and streaming throughput [22].

SDF operational semantics specifies consumption of all

input messages to a task upon start of its execution, and pro-

duction of all its output messages upon completion of its

execution. An implementation-oblivious analysis technique

would have to follow model execution according to the op-

erational semantics. In actual implementations, however, not

all messages of a task are consumed or produced at exactly

the same time. Presence of limited information or mild as-

sumptions about the nature of target implementation would

increase the timing resolution during model execution. For

example, if one assumes that tasks are going to be imple-

mented as software modules running on parallel processors,

a sequential order would have to be imposed on the pro-

duction and consumption of messages. This breaks the pes-

simistic simultaneous message production and consumption

that is dictated by the operational semantics, and potentially

leads to more accurate analysis.

Specifically, we utilize the state of the art implementation-

oblivious buffer-throughput trade-off analysis technique de-

veloped by Stuijk et al. [22], and argue that in presence of

very mild MPSoC target platform assumptions, its character-

1 Contact author: Matin Hashemi, matin@sharif.edu

ization of buffer-throughput trade-off is overly pessimistic.

We propose transformations to the application SDF model

to capture the sequential nature of message production and

consumption by software, and to rigorously embed imple-

mentation awareness into the model. Subsequently, we lever-

age the method of Stuijk et al. to characterize the imple-

mentation space of the transformed model. The additional

information that we expose to our analysis algorithm are

quite limited in nature: merely sequential order between pro-

duction and consumption of messages, which is implied by

the assumption of implementation as software. As such, the

analysis is not tied to the details of target execution plat-

form, and would complement, rather than contradict with,

the model-based design paradigm.

Experiments with a number of streaming applications

show that implementation-awareness yields substantially

more accurate buffer sizes (9X smaller on average) for the

same throughput, compared to the conservative implementation-

oblivious analysis. Moreover, the proposed implementation-

aware trade-off analysis yields sufficiently accurate estima-

tions in significantly shorter time, compared to precise im-

plementation simulations. In comparison to cycle accurate

simulation of a specific MPSoC implementation, the error

of the proposed model-analysis method in throughput esti-

mation is merely 19%, while it runs over 100X faster. The

high degree of throughput estimation accuracy and substan-

tial savings in runtime are due to the fact that the proposed

approach considers only a relevant piece of information from

target implementations, as opposed to over-emphasizing or

ignoring implementation-specific information.

2. Preliminaries
2.1 Synchronous Dataflow (SDF) Model
SDF applications are modeled as a directed graph G(V,E),
where vertex v ∈ V represents an actor, and edge uv ∈ E
represents a logical point-to-point FIFO channel from actor

u to v. Actors communicate by sending and receiving mes-

sages, also known as tokens, via the channels. Actor v is a

tuple (In,Out, ε) and channel uv is a tuple (u, v, rp, rc).
In(v) ⊂ E and Out(v) ⊂ E are input and output channels

of v, and ε(v) is its execution time, i.e., the average time

actor v takes to perform its computation in the target imple-

mentation (Figure 1.A). For a channel uv ∈ E, the number

of tokens produced by u for channel uv, on every firing of u,

is called the production rate of uv and is denoted by rp(uv).
Consumption rate rc(uv) is defined similarly, with respect

to the tokens consumed by v. Data production and consump-

tion rates are specified statically, and application execution

is meant to continue indefinitely [12, 22].

Execution (Firing) Condition: Actor v can execute, also

known as fire, at time t, if and only if (I) previous firings

of v have completed2, and (II) enough tokens are avail-

2 Auto-concurrency, i.e., multiple concurrent firings of an actor, is not allowed in our
discussion.

a
100

b
300 c

200

20
1050

20

10 50

P2

P3P1

Figure 1. A) Example SDF graph (actors and channels are an-

notated with execution times and data rates, respectively.) B) An

implied implementation of self-timed execution.

able on all of its input channels, that is ∀uv ∈ In(v) :
γ(uv, t) ≥ rc(uv), where γ(uv, t) quantifies the number of

tokens stored in uv at time t.
SDF Operational Semantics: Upon scheduling of actor v

for execution, it simultaneously consumes rc(uv) tokens

from all of its input channels uv ∈ In(v), then carries out its

computation in ε(v) time units, and finally it simultaneously

produces rp(vw) tokens on all of its output channels vw ∈
Out(v). Figure 1.A shows an example in which, ε(b) = 300,

rc(ab) = 50 and rp(bc) = 10. Thus, upon availability of at

least 50 tokens on ab, actor b can fire. In every firing of b,
50 tokens are simultaneously consumed from ab, then the

computation of actor b is carried out in 300 time units, and

finally 10 tokens are simultaneously written to bc.

2.2 Target Platform Model
We target MPSoC platforms whose abstract model for SDF

execution can be viewed as a distributed-memory message-

passing system with point-to-point interprocessor FIFO

buffers (Figure 1.B). This abstract view is directly imple-

mented in some platforms such as AsAP [24] and TILE64

static network [3]. Some other platforms implement the ab-

stract view via circular arrays that are allocated in the shared

memory, using proper producer-consumer synchronization

schemes. Regardless and for sake of our discussion, the plat-

form can be abstractly viewed as a multiprocessor with a

FIFO interconnection network.

We focus on self-timed execution, which implicitly as-

sumes allocation of dedicated execution resources to every

actor (Figure 1.B). Under self-timed execution, an actor fires

as soon as its firing conditions are satisfied [22]. In many

cases, an embedded application is developed on an MPSoC

target by splitting the application into many actors, and as-

signing each actor to its dedicated core (e.g., 1080p H.264

encoder on AsAP [24]). Otherwise, the collection of actors

allocated to the same processor under static schedule can be

viewed as a coarse-grain actor in an upscaled version of the

graph that conforms to our model.

2.3 Buffer-Throughput Tradeoff
Throughput3 is one of the most important quality metrics in

streaming applications. A number of factors, such as actor

execution times, actor allocation and scheduling on proces-

sor cores, interprocessor buffer capacities, SDF graph struc-

ture and SDF graph cycles impact steady-state throughput

[6, 8–10, 22].

3 In this paper, we use the terms “steady-state throughput” and “throughput” inter-
changeably.

a a a a a a a a a
b b b

c

0 100 200 300 400 500 600 700 800 900 1000 1100 1200
time

buffers are empty thus
= (ab,ac,bc)=(0,0,0)

a fires

a ends
=(40,20,0)

a fires

a ends (which puts
20 tokens on ab &
10 tokens on ac)
=(20,10,0)

a fires a ends
=(60,30,0)

a fires
b fires (which consumes
50 tokens from ab)
=(10,30,0)

a ends
=(30,40,0)

a fires

b ends
=(50,50,10)

b fires
=(0,50,10)

a stalls (not enough
empty space in ac)

a ends
=(50,50,0)

a fires

b ends
=(0,50,20)

c fires (which consumes 20 tokens
from bc and 50 from ac)
=(0,0,0)

a resumes (ac has enough space)
a ends
=(20,10,0)

a fires

a ends
=(40,20,0)

a fires

a ends
=(60,30,0)

c ends
a fires
b fires
=(10,30,0)

At t=1100, states of all
actors and channels
are the same as t=300.

Figure 2. Throughput Analysis based on SDF operational semantics when β(ab, ac, bc) = (60, 50, 20).

In practice, the FIFO channels must be implemented

with finite buffering capacity, which may limit the through-

put [22]. Characterizing the tradeoff between interprocessor

buffer sizes and application throughput is quite important, as

typical design scenarios require the implementation to meet

performance requirement at minimum buffer capacities.

Throughput: Throughput of an actor v is defined as the

average number of v firings per unit time [6], i.e., τ(v) =
limT→∞ 1

T × (
number of v firings from t = 0 to t = T

)
.

Since SDF data rates are constant, in the steady state, the

number of times different actors fire are a constant factor of

one another. Hence, normalized throughput, which decou-

ples the choice of actor from SDF throughput, is defined as

τ = τ(v) ÷ q(v) for an arbitrary actor v ∈ V , where, q(v)
is the number of times v fires in one iteration of the simplest

periodic schedule of the SDF application [6, 12]. In our ex-

ample, q(a, b, c) = (5, 2, 1).
Buffer size: Buffer size β(uv) is defined as capacity of

the interprocessor FIFO buffer which implements channel

uv ∈ E. In other words, β(uv) limits the maximum num-

ber of tokens that channel uv can hold at any time during

execution. Formally, γ(uv, t) ≤ β(uv). Total buffer size is

defined as |β| = ∑
∀uv∈E β(uv).

2.4 Tradeoff Analysis Based on SDF Operational
Semantics

According to SDF operational semantics, after actor u fires

and completes its computation, at least rp(uv) empty spaces

are required on every output channel uv ∈ Out(u) in order

to write tokens produced by u. Otherwise, since sufficient

space is not available, u is stalled at the end of its firing.

The actor will resume execution to complete its previously

stalled firing only after enough space becomes available.

Stall and Resume Conditions: Under self-timed execution

assumption, a running actor u ∈ V fired at time t1 stalls

at time t2 > t1 if and only if t2 − t1 ≤ ε(u) and ∃uv ∈
Out(u) : β(uv) − γ(uv, t2) < rp(uv). Actor u resumes

operation at a time t3 > t2 if and only if ∀uv ∈ Out(u) :
β(uv)− γ(uv, t3) ≥ rp(uv).

Throughput is degraded if actors stall due to unavailable

space. For a given set of buffer sizes β, throughput can be

obtained by considering the firing, stall and resume condi-

tions. Stuijk et al. developed a Pareto point exploration algo-

rithm to find throughput vs. total buffer size of an SDF graph

[22]. The algorithm works by executing the SDF graph while

keeping track of the state of actors and channels. Each step of

application execution is modeled as a transition in the aug-

mented state space of actors and channels. When a state is

revisited for the first time, the execution arrives its steady-

state, as a cycle in the state space is formed. Subsequently,

throughput τ(v) is calculated as the number of v firings dur-

ing the cycle, divided by the amount of time lapsed in the

cycle. The above procedure is repeated for a judiciously se-

lected subset of buffer size allocations in order to evaluate

all Pareto points [22]. We later utilize this algorithm in our

experimentation in Section 4.

Figure 2 demonstrates throughput calculation for our run-

ning example of Figure 1 when β(ab, ac, bc) = (60, 50, 20).
At time t = 1100, the progress of all actors and number of

tokens stored on all channels are equal to those of time t =
300. Thus, the steady state is reached, and τ(b) = 2

1100−300

and τ = τ(b)
q(b) = 1

800 . If the buffer size of channel ac is in-

creased from 50 to 70, throughput improves from 1/800 to

1/600, because channel ac becomes full 200 time units later,

and actor a stalls for 200 fewer time units.

Deadlock: When at least one stalled actor never resumes

operation, deadlock happens and overall throughput τ be-

comes zero. By analyzing SDF operational semantics, Ade

et al. [1] proved the following theorem regarding deadlocks.

Theorem 2.1 If there exists a channel uv ∈ E with buffer

size β(uv) less than rp(uv)+ rc(uv)−gcd(rp(uv), rc(uv))
then deadlock happens between actors u and v. We de-

note the above formula with βmin(uv). In our example,

βmin(ab, ac, bc) = (60, 50, 20).

Note that the theorem does not make any statement if “for

all” channels uv ∈ E, β(uv) ≥ βmin(uv). In such a case,

more thorough deadlock analysis is required [25].

3. Implementation-Aware
Buffer-Throughput Analysis

We propose taking into account a key piece of informa-

tion about target MPSoC implementations by which, buffer-

throughput tradeoff analysis would become more accurate.

In our discussion, we adopt the following abstract view of

implementation for an application modeled as a SDF graph.

3.1 Abstract View of Implementation
Figure 3.A demonstrates our abstract view of embedded

software that implements the SDF application on a MPSoC.

First, the required tokens are read from input FIFO buffers,

next the actor’s specific computation is executed, and finally,

the generated data is written to output buffers. This sequence

is repeated indefinitely. Let us define “task” as “implemen-

tation of actor” according to this abstract view.

Figure 3.B shows the typical implementation of commu-

nication API calls. The SDF model allows tokens of arbi-

trary size, hence, one may define a large block of data, such

as a video frame, as a single token. However, interconnect

networks have limited bandwidth and they are not neces-

sarily capable of transferring one token at a time (e.g., one

video frame takes multiple clock cycles). In practice, each

token may need to be split into s = � sizeof(token)
sizeof(packet)	 pack-

ets, which have to be transferred sequentially as shown in the

inner loop of Figure 3.B. The outer loop repeats this process

for every token in the array. For brevity, we assume s = 1
in the rest of this paper. Our approach, however, is readily

extensible to other packet sizes.

Note that this abstract view refers to very general im-

plementation guidelines, rather than a specific platform or

software coding style. A number of different concrete im-

plementations conform to the abstract view, albeit with dif-

ferent parameters. For example, many interprocessor API

calls, which appear atomic to the programmers, are im-

plemented by splitting large data into smaller pieces and

transferring them sequentially. As another example, in soft-

ware implementations conceptually-concurrent token trans-

fer would have to be implemented in some sequential order.

3.2 Implications of Implementation-Awareness
In practice, when SDF graph is implemented in a form that

conforms to our abstract implementation, the simultaneity in

reading and writing tokens at arbitrary rates is not faithfully

implemented. The sequential nature of instruction execution

on single-issue processor cores implies that a task can write

(read) only one token to (from) only one channel at a time.

This additional information about implementations leads to

an operation that is quite different from the pure SDF model,

in which actors write to (read from) all channels simultane-

ously at specified rates.

As shown in Figure 2, analysis based on SDF model

concluded that throughput for buffer size β(ab, ac, bc) =
(60, 50, 20) is τ = 1

800 . Actor c waits for data from b and

// task a on P1
token ab[20];
token ac[10];

while(){
a(ab,ac);
write(ab,20,P2);
write(ac,10,P3);

}

// task b on P2
token ab[50];
token bc[10];

while(){
read(ab,50,P1);
b(ab,bc);
write(bc,10,P3);

}

// task c on P3
token bc[20];
token ac[50];

while(){
read(bc,20,P2);
read(ac,50,P1);
c(bc,ac);

}

void write (token x [],
int n,
int dst){

for i=[0,n)
for j=[0,s)
writePacket(x[i],j,dst);

}

void read (token x [],
int n,
int src){

for i=[0,n)
for j=[0,s)
readPacket(x[i],j,src);

}

Figure 3. Abstract view of A) software implementation, and B)

communication APIs.

upon availability of sufficient number of tokens produced by

b, actor c fires and immediately consumes all of them.

The implementation, however, behaves differently by al-

lowing tasks to only read and write one token at a time (Fig-

ure 3). Task c (processor P3) stalls when it tries to read for

the first time, since there is no token available on channel

bc. Once task b (processor P2) places the first token on bc,
the stalled readPacket function in c resumes execution and

reads that token. In this setting, therefore, β(bc) = 1 would

be sufficient to achieve the same throughput as shown in Fig-

ure 2. This amounts to a substantial 20X reduction in buffer

size of bc without any throughput degradation. The exam-

ple underscores the inaccuracy of implementation-oblivious

analysis, and motivates us to consider the implications of

software implementation in buffer-throughput analysis.

3.3 Implementation-Aware SDF Graph
Transformation

We take a two step approach to bring implementation-

awareness into characterization of buffer-throughput trade-

off. First, we transform the original SDF graph G by em-

bedding implementation-dictated sequential data production

and consumption into the graph. Clearly, the transforma-

tion must preserve the function and other relevant aspects

of the original application. Subsequently, the transformed

SDF graph G′ is analyzed by leveraging an implementation-

oblivious technique, described in Section 2.4, to obtain its

buffer-throughput Pareto tradeoff points (Figure 6.B).

Based on the abstract view of implementation, tasks can

read (write) only one token at a time (property I), and from

(to) only one channel at a time (property II). Our proposed

SDF graph transformation models these two properties by

adding virtual actors and channels to the SDF graph. Specif-

ically, property I is modeled by adding virtual reader and

writer actors, and property II is captured by adding virtual

sync actors to the SDF graph.

Reader and Writer Actors: For every channel uv ∈ E,

a virtual writer actor W is added at the output of actor u,

and a virtual reader actor R is added at the input of actor

v, such that the output of W feeds data into the input of R
(Figure 4.A). All reader and writer actors have identity data

transformation functionality and thus, do not alter the data.

Reader and writer actors have production and consump-

tion rates of 1. Thus, for every firing of u, W has to fire

rp(uv) times sequentially to consume the tokens produced

by u one at a time. Recall that auto-concurrency is disal-

lowed in our discussion. Similarly, for every rc(uv) firings

of R, actor v fires once. Buffer sizes for channels uW and

Rv are set to rp(uv) and rc(uv), respectively. Buffer size of

channel uv in the original graph determines the buffer size

of channel WR in the transformed graph (Figure 4.A).

Writer actor W models behavior of the writePacket

function call (Figure 3.B). rp(uv) firings of W , which pro-

duce rp(uv) tokens, model the loop and iterative calls to

writePacket function in the write API call in execution

of task u. Intuitively, virtual channel uW models the local

processor memory that temporarily stores the output tokens

of u (e.g., token ab[20] in task a in Figure 3.A). Similarly,

actor R models the readPacket call, and channel Rv mod-

els the local memory that temporarily stores the input tokens

of a task v (e.g., token ab[50] in task b in Figure 3.A).

As a result of the above transformation, every actor v ∈ V
is transformed into a subgraph Gv (Figure 4.B). Let |In(v)|
and |Out(v)| denote the number of input and output chan-

nels of v. Let ci for i ∈ [1, |In(v)|] denote the consumption

rates for input channels of v, and let pj for j ∈ [1, |Out(v)|]
denote the production rates for output channels of v. Sub-

graph Gv has |In(v)| reader actors R1, R2, . . . R|In(v)|, and

|Out(v)| writer actors W1, W2, . . . W|Out(v)|. Data produc-

tion (rp) and consumption rates (rc), and buffer sizes (β) of

virtual channels in Gv are set as:

virtual channel rp rc β

Riv 1 ci ci
vWj pj 1 pj

A firing of actor v in G corresponds to the following

sequence of events in subgraph Gv in the transformed graph

G′. Reader actor Ri fires ci times. As a result, it reads

ci tokens from the corresponding input channel of Gv and

writes them to virtual channel Riv. At this point, actor v
fires once and consumes all of the input tokens and produces

pj tokens on virtual channels vWj . Next, virtual actor Wj

fires pj times, and copies the tokens to the corresponding

output channel of Gv . Note that input channels of Gv have

consumption rates of 1 because they are connected to reader

actors. Similarly, output channels of Gv have production

rates of 1. Thus, subgraph Gv models the execution of task v
based on the implementation view discussed in Section 3.1.

Theorem 3.1 Addition of reader and writer actors preserves
SDF functionality.

Proof: SDF functionality is independent of task execution

order (scheduling), and merely depends on the value and or-

der of data tokens in channels [5]. Both reader and writer

actors have the identity transfer function and do not alter

data. Moreover, they preserve the order of data tokens deliv-

ered from the producer to the consumer. Therefore, the end

to end functionality of the SDF graph remains intact. �

W
11 11

u
rp(uv)

v
rc(uv)(A) rp(uv) rc(uv)

v

R1

R2

W1

W2

W3

v

c1

c2

p1

p3

p2
c1

c2

p1

p3

p2

11

1 1

11

1 1

11(B)

(uv) = (uv)
u vR

Gv

 =rp(uv) =rc(uv)

Figure 4. A) Writer & reader actors for channel uv ∈ E. Virtual

actors and channels are shown in green. B) The transformed sub-

graph Gv for an actor v with 2 incoming and 3 outgoing channels.

v

R1

R2

W1

W2

S2

S1

S3

W3

S4

c1

c2

p1

p3

p2

11

1 1

1
1

1 1

11
1

1

1

c1

c2

p1

p2

1

1

p2

p3

1

1

1p3c1

c1 initial tokensGv

v

R1

R2

W1

W2

S2

S1

S3

W3

c1

c2

p1

p3

p2

11

1 1

1
1

1 1

11

1

1

c1

c2

p1

p2

1

1

p2

p3

1

1

Gv

(A) (B)

Figure 5. A) Sync actors S1, S2 and S3 enforce the sequential

order R1, R2, v,W1,W2,W3 in subgraph Gv of Figure 4.B. The

newly added virtual actors & channels are shown in blue. B) Sync

actor S4 prohibits auto-concurrency.

Sync Actors: In subgraph Gv developed above, reader ac-

tors, writer actors and actor v can potentially fire simulta-

neously. In order to correctly model the sequential nature of

data consumption, computation and data production based

on the abstract implementation view, we need to eliminate

the simultaneity. Our approach is to add a number of virtual

sync actors to every subgraph Gv in order to enforce the fol-

lowing sequential ordering on the execution of actors.

R1, R2, . . . R|In(v)|, v,W1,W2, . . .W|Out(v)|
This sequential ordering conforms to the implementation

of task v, where first the read API calls, next the computa-

tion of actor v, and finally the write API calls are executed

on the processing core (Figure 3.A).

Specifically, to enforce the above ordering in Gv , we add

virtual sync actors SR
i,i+1 between Ri and Ri+1, and virtual

sync actors SW
j,j+1 between Wj and Wj+1 (e.g., S1, S2 and

S3 in Figure 5.A), and set data production (rp) and consump-

tion (rc) rates, and buffer size (β) of the newly added virtual

channels (marked blue in the figure) as follows:

virtual channel rp rc β
RiS

R
i,i+1 1 ci ci

SR
i,i+1Ri+1 ci+1 1 ci+1

WjS
W
j,j+1 1 pj pj

SW
j,j+1Wj+1 pj+1 1 pj+1

The parameters are carefully selected such that upon ci
firings of Ri, S

R
i,i+1 fires once, and then Ri+1 can fire ci+1

times. Similarly, upon pj firings of Wj , SW
j,j+1 fires once,

and then Wj+1 can fire pj+1 times. By creating appropri-

ate dependencies, the construction ensures that the desired

ordering is enforced.

Lastly, we add a sync actor between W|Out(v)| and R1

(e.g., S4 in Figure 5.B). This creates a cycle in Gv and

prohibits concurrent execution of a reader actor and a writer

actor. Specifically, it stops R1 from firing until W|Out(v)|
fires p|Out(v)| times. Note that c1 initial tokens are required

on this cycle in order to avoid deadlock, since R1 fires c1
times for every firing of v.

Sync actors have no effect on the transfer function of

reader/writer actors. In particular, the reader and writer ac-

tors continue to copy application data (black and green chan-

nels in Figure 5.B), and do not mix up the data with depen-

dency channels of the sync actors (blue channels in Figure

5.B). It follows that the transformed subgraph Gv in G′ cor-

rectly models the execution of task v according to the ab-

stract view discussed in Section 3.1.

Theorem 3.2 Addition of sync actors preserves the original
SDF functionality.

Proof: By construction, read and write actors do not mix

up application data tokens (green channels) with synchro-

nization tokens (blue channels). The application functional-

ity merely depends on the data values and their ordering on

green channels, which is isolated from sync actors. As such,

sync actors have no impact on original SDF functionality. �

3.4 Throughput Analysis
Since sync actors are added to only enforce a sequential or-

der among read and write operations, they must not have any

impact on the total execution time of Gv . We conservatively

assume that the information regarding platform-dependent

latency of read and write operations are unavailable. Hence,

the execution times of read and write API calls and the

data transformation computation of a task are viewed to be

inseparable. To capture this in subgraph Gv , we set the ex-

ecution times of reader and writer actors to zero (ε = 0),

and assign the entire execution time of the original actor to

v. In case of access to specific parameters of the target archi-

tecture, one could improve the model fidelity by separating

the latency of read and write operations from data transfor-

mation computation, and assigning more accurate execution

times to actors in Gv .

Theorem 3.3 Assume that the set of actors in Gv in the
transformed graph and actor v in the graph G start execu-
tion at the same time and from the same buffer state in G. In
that case, if Gv stalls during execution, the corresponding
actor v in the graph G must also stall.

Proof: Stalling execution occurs because at least one

channel does not have enough capacity to receive the pro-

duced tokens at that point in time. By construction, stalling

Gv implies that at least one of output channels of the write

actors does not have sufficient capacity during execution of

Gv , as channels internal to Gv are allocated sufficient ca-

pacity to execute Gv . Since production rate of write actors

is one (the smallest possible rate), at least one of the out-

put channels of Gv must be entirely full. Execution of Gv

takes exactly the same time as execution of v, and thus, the

corresponding output channel of v in G is also full during

execution of v, which would stall the execution of v. �
The following theorem articulates the pessimistic nature

of implementation-oblivious analysis.

Theorem 3.4 Given an SDF graph G and a set of buffer
size choices β for channels in G, throughput of transformed
graph G′ is not less than G.

Proof: Assume that the theorem does not hold. Then,

there must be a time t at which, for the first time the execu-

tion of an actor v in G starts earlier than the corresponding

execution of the graph Gv in the transformed graph. Execu-

tion of v at t implies that both conditions I and II discussed

in Section 2.1 are satisfied at t.
Condition I indicates that no other firing of v is stalled.

Based on theorem 3.3 there cannot be a stalled version of Gv ,

since t is the first point in time at which, G supposedly runs

ahead of the transformed graph. Hence, condition I is also

satisfied for Gv . Condition II indicates that all of the input

channels of v have sufficient number of tokens available

at time t. Input channels of v form input channels of the

read actors in Gv . Moreover, the consumption rate of read

actors is one, which is the smallest possible valid rate. Thus,

there must be sufficient number of tokens for read actors of

Gv at time t, and its execution should not be stalled. The

contradiction proves the theorem. �
As one would expect, the two original and transformed

graphs should yield the same throughput if buffer capacity

constraint is relaxed.

Theorem 3.5 The maximum throughput of G and G′, which
is obtained when all channels of G have infinite buffer size,
are equal.

Proof: If buffer sizes are sufficiently large, throughput

would be limited by the slowest actor or the iteration bound

of the corresponding “homogeneous” SDF graph (HSDF).

The iteration bound of an HSDF graph is equal to its max-

imum cycle mean, which is defined as the cycle latency di-

vided by the number of initial tokens in the cycle [6, 17].

The transformation only adds actors with zero execution

time to the graph, and hence, the slowest actor would have

the same execution time in both graphs. The transformation

creates cycles within the subgraph Gv , however, all such

cycles have latency of ε(v). There is at least one initial

token in all cycles inside Gv , as the feedback edge from

the last writer actor to the first reader actor must be part of

the cycle. Thus, the cycle mean for cycles that are created

inside Gv is not more than ε(v), which would not limit

the throughput. Finally, for cycles in the transformed graph

that are not inside Gv , neither the cycle latency nor the

number of initial tokens in the cycle are changed under the

transformation, and hence, the two graphs will have the same

limit throughput. �

3.5 Related Work
Many previous analysis algorithms are solely based on SDF

operational semantics [2, 6, 15, 22]. To increase accuracy

in throughput analysis, Moonen et al. [14] proposed to con-

struct a cyclo-static dataflow (CSDF) graph from the given

SDF graph by splitting the computation of a SDF task into

multiple phases (white box actor model). Our proposed tech-

nique, however, focuses on accurate modeling of token pro-

duction and consumption order (black box actor model), and

does not require manual decomposition of task computation.

Oh and Ha [16] proposed a fractional rate model to reduce

the buffer size requirement. For applications that work on

large blocks of data, e.g., video frames, the dataflow graph

is manually transformed into another graph in which, actors

operate on smaller pieces of data, e.g., one row of a video

frame. As a result the buffer requirement is reduced (white

box actor model). Our proposed technique does not require

modification of tasks’ functional behavior, and treats them

as unknown black boxes.

Cycle-accurate simulation of MPSoC platforms is accu-

rate but takes very long, even using multicore processors

or GPGPU [13, 19] mainly because it considers almost ev-

ery architectural detail. Our proposed technique, however,

incorporates limited information on the target implementa-

tion in order to provide high accuracy without the often pro-

hibitive runtime of cycle-accurate simulations or the need to

use many computing resources for simulation acceleration.

4. Experiments
4.1 Setup and benchmark applications
To evaluate the proposed technique we employ StreamIt

benchmark applications. StreamIt is a programming lan-

guage and compiler for stream programs [23]. For every

benchmark application, we execute StreamIt compiler (Fig-

ure 6, top left) and then extract SDF graph topology, data

rates (rp and rc) and estimates of actor execution time (ε).

Actor execution times are estimated by the StreamIt com-

piler based on rough mapping between high-level StreamIt

language constructs and typical processor instruction sets.

Original cycle per instruction (CPI) estimates of StreamIt

compiler are based on the RAW processor. We have modi-

fied StreamIt source code such that its CPI estimates match

Graphite processor model [7]. Graphite is a cycle-accurate

MPSoC simulator, and is used as the target platform in our

experimentation.

The above procedure yields a series of SDF graphs which

are used as benchmarks in our experimentation. We have

released the generated SDF graphs along with details of the

above procedure on the web [4].

StreamIt Compiler

Parallel
Code

(.c files)

SDF
Graph G

(C) Cycle-Accurate Simulation

Graphite
Simulator

Measured
Throughput

Implementation-Aware
Graph Transformation

SDF
Graph G’ Tradeoff Analysis

based on SDF
Operational Semantics

Tradeoff Analysis
based on SDF

Operational Semantics

(A) Implementation Oblivious Analysis

(B) Implementation-Aware Analysis

StreamIt Benchmark (.str file)

Compile
(gcc -O2)

Binary

Pareto
Points

Pareto
Points

Buffer Size

Extract
SDF

Graphite
Comm.

API

Graphite
CPI

Reader
& Writer
Actors

Sync
Actors

Implementation
Model

Figure 6. Experimentation flow: A) Baseline implementation-

oblivious buffer-throughput tradeoff analysis based on SDF oper-

ational semantics. B) Proposed implementation-aware analysis. C)

Cycle-accurate simulation of the compiled binary code.

4.2 Implementation-aware vs.
implementation-oblivious analysis

The proposed implementation-aware tradeoff analysis in-

volves two steps (Figure 6.B). First, we apply the proposed

transformation discussed in Section 3 and transform the SDF

graph G into another SDF graph G′. The transformation is

based on our abstract view of target implementation as dis-

cussed in Section 3.1, which includes very limited infor-

mation on the target (sequentially-ordered read/write oper-

ations) into SDF graph G′.
Next, we perform buffer-throughput tradeoff analysis on

G′ based on SDF operational semantics, as discussed in Sec-

tion 2.4. In this part, we utilize SDF3 [21, 22], which im-

plements the tradeoff analysis algorithm explained in Sec-

tion 2.4. We modified SDF3 to force it to ignore the vir-

tual channels introduced by the transformation, while ex-

ploring the search space. Buffer size of the virtual chan-

nels are also omitted from the reported total buffer size. The

analysis yields a set of Pareto optimal points between to-

tal interprocessor buffer size, |β|, and corresponding overall

throughput, τ . To compare the proposed approach against an

established standard, we also perform the implementation-

oblivious analysis directly on graph G (Figure 6.A).

Figure 7 shows the result of tradeoff analysis for both

the proposed implementation aware and the baseline im-

plementation oblivious techniques. The experimental re-

sults show that for all benchmarks the implementation-

aware tradeoff analysis yields much smaller buffer sizes than

the implementation-oblivious analysis for the same level of

throughput. This confirms our claim that the analysis solely

based on SDF operational semantics is overly conservative

and yields far larger buffer sizes than required. In addition,

it empirically confirms Theorem 3.5, since both approaches

always result in the same maximum throughput.

beamformer bitonicsort

dct des

fft matmul

mergesort mpeg

serpent

7

9

11

13

0 100 200 300| |
30

50

70

90

0 70 140 210| |

9

11

13

15

0 250 500 750| |
0

1.1

2.2

3.3

0 8000 16000 24000| |

0.22

0.24

0.26

0.28

0 1600 3200 4800| |
0.0

0.1

0.2

0.3

0 2000 4000 6000| |

9

11

13

15

0 250 500 750| |
0.1

0.2

0.3

0.4

0 5000 10000 15000| |

0.2

0.4

0.6

0.8

0 900 1800 2700| |

Implementation-Oblivious
Implementation-Aware

Figure 7. Pareto points between total interprocessor buffer size,

|β|, and the corresponding throughput, τ , for both the baseline

implementation-oblivious and the proposed implementation-aware

tradeoff analysis techniques. The proposed method yields substan-

tially improved buffer size estimates under identical throughput

constraints.

In case of mpeg application, for example, the implemen-

tation oblivious technique reports that a total buffer size of

|β| = 15243 is required to achieve the maximum through-

put, while the implementation aware analysis reduces this to

|β| = 326, which is 46X smaller.

Figure 8 highlights the substantial reduction in total

buffer size requirement, using the same data of Figure 7. The

horizontal axis is in logarithmic scale (base 2) and compares

the implementation oblivious vs. implementation aware ra-

tio of total buffer size, |β|, required to achieve the maximum

throughput, 80% of the maximum throughput, 50% of the

maximum throughput, and to avoid deadlock, respectively.

On average (geometric mean), using the proposed imple-

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

beamformer
bitonicsort

dct
des

fft
matmul

mergesort
mpeg

serpent
Imp. Oblivious Imp. Aware Cycle-Accurate Simulation

1 2 4 8 16 32 64 128 256

beamformer
bitonicsort

dct
des

fft
matmul

mergesort
mpeg

serpent
Average

max throughput 80% of max 50% of max avoid deadlock

Figure 8. Reduction in total buffer size estimates, i.e., the imple-

mentation oblivious over implementation aware ratio of total buffer

size, |β|, required to achieve the maximum throughput, 80% of the

maximum throughput, 50% of the maximum throughput, and to

avoid deadlock. X-axis shows the ratio in base 2 logarithmic scale.

7.3

0.1

1

10

100

Figure 9. Runtime of implementation aware over implementation

oblivious analysis.

mentation aware technique, total buffer size |β| required to

achieve the maximum throughput, 80% of the maximum

throughput, 50% of the maximum throughput, and to avoid

deadlock is reduced by a factor of 8.5X, 9.0X, 8.5X and

9.3X, respectively.

Figure 9 shows how the increase in complexity of the

model translates into an increase in the runtime of the analy-

sis. Specifically, it shows the ratio of the time it takes to run

the proposed implementation aware tradeoff analysis tech-

nique over the time it takes to run the baseline implemen-

tation oblivious technique. The ratio heavily depends on the

application, e.g., 98X for mpeg and 0.11X for fft bench-

mark. On average (geometric mean), the ratio is 7.3X. The

workstation employed in our experiments has 8 GB of mem-

ory and 3.4 GHz Core i7 processor with 8 MB of cache.

4.3 Comparison against cycle accurate simulation
To quantify the accuracy of estimates produced by the base-

line and proposed techniques, we set out to generate exe-

cutable binaries and simulate their performance under differ-

ent buffer sizes using the Graphite [7] cycle-accurate simu-

lator (Figure 6.C).

Specifically, we utilize StreamIt compiler (RAW proces-

sor backend) and generate parallel software code in form

of multiple C files from StreamIt SDF applications4. We

parse the C files and replace generated RAW interproces-

sor communications with Graphite interprocessor communi-

cation API calls. Next, we compile the generated code into

binary using gcc -O2 command, and pass the binaries to

Graphite for cycle-accurate simulation (Figure 6.C).

For every benchmark, we adjust the buffer size distribu-

tion (β(uv) for all channels uv) to match buffers that result

in the maximum throughput according to implementation-

aware model analysis. That is, we select buffer size distri-

bution of the orange diamond-shaped point with the high-

est throughput in every Pareto chart in Figure 7. We have

slightly modified Graphite to simulate interprocessor chan-

nels with limited buffer size. Since the simulated number of

cycles can vary from one application iteration to the next

(due to control flow variations, cache effects, etc), we mea-

sure throughput by examining its steady-state long term av-

erage. That is, we continue the simulation until no signifi-

cant change (no more than 1%) in long term throughput is

observed.

Figure 10 compares the throughput estimated by im-

plementation aware and implementation oblivious analysis

techniques for the selected buffer size distribution, against

cycle-accurate simulated throughput. The numbers are nor-

malized with respect to the throughput given by Graphite

cycle-accurate simulator. Hence, a value of 1.0 means zero

error in estimation of throughput, in comparison with cycle-

accurate simulation.

The implementation oblivious analysis falsely reports

deadlock (τ = 0) in six out of nine benchmarks. This

occurs because the selected buffer sizes are smaller than

what implementation oblivious analysis believes to be re-

quired for avoiding deadlock. In the other three benchmarks

(bitonicsort, dct and mergesort), the average error is

23%. The overall average error across all the nine bench-

marks using the implementation oblivious analysis tech-

nique is 74%.

The implementation aware analysis, however, estimates

the throughput very closely. Compare the orange and green

bars in Figure 10. The error in estimation of throughput

is less than 5% in beamformer, dct, fft and mergesort

benchmarks. On average, the error of implementation aware

analysis in estimation of throughput is 19%, compared to

cycle-accurate simulation.

Figure 11 shows runtime of cycle-accurate simulation

over runtime of implementation aware analysis for all bench-

marks. The runtime ratio is higher than 100X in six out of

4 We also experimented with SDF3 benchmarks in Section 4.2. However SDF3 bench-
marks merely include graph parameters and not task implementations. Thus, we
could only perform the experiments shown in Figure 6.A and 6.B and not 6.C.
Detailed results are omitted due space limits. For SDF3 benchmarks, on average,
buffer size reduction using implementation-aware analysis is 6X, and runtime ratio
of implementation-aware over implementation-oblivious is 5X.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

beamformer
bitonicsort

dct
des

fft
matmul

mergesort
mpeg

serpent
Imp. Oblivious Imp. Aware Cycle-Accurate Simulation

Figure 10. Comparison of (normalized) throughput estimated by

implementation aware and implementation oblivious techniques

against cycle-accurate simulation. Implementation oblivious tech-

nique inaccurately predicts deadlock in most cases, and is less ac-

curate in the remaining cases.

102

1

10

100

1000

Figure 11. Runtime of cycle-accurate simulation over the pro-

posed implementation aware analysis technique.

nine benchmarks. In the fft benchmark the ratio is 606X .

On average (geometric mean), it takes about 102X longer

to run cycle-accurate simulations than to run the proposed

implementation aware analysis.

Let us highlight the key benefits offered by the pro-

posed approach. In comparison with implementation obliv-

ious analysis (analysis solely based on SDF operational se-

mantics), it offers substantially more accurate (9X smaller)

buffer size estimates for the same level of throughput. This is

achieved by taking into account very limited information on

target implementation. In comparison with cycle-accurate

simulation, the implementation aware analysis offers 102X

speedup in runtime and relatively low error (19%) in estima-

tion of throughput. As such, our proposed technique offers

a very favorable tradeoff point for early design space ex-

ploration. Note that the proposed method is performed at a

high-level on SDF graphs, while the cycle-accurate simula-

tion is performed on compiled binary codes and thus, has

access to all relevant details, such as processors’ instruction

set, cache and program control flow.

5. Conclusion
Restricting the analysis to SDF operational semantics and ig-

noring implications of software implementation are likely to

yield inaccurate conclusions. In particular, we investigated

the trade-off between buffer size requirement and through-

put of streaming applications modeled as SDF graphs. We

demonstrated that the quality of model-based tradeoff ex-

ploration algorithms can be considerably improved if one

incorporates very mild assumptions about the target im-

plementation into analysis. Consequently, we proposed an

implementation-aware buffer-throughput trade-off analy-

sis algorithm. Experimental results show that model anal-

ysis solely based on SDF operational semantics yields

much more pessimistic buffer sizes than is actually re-

quired to achieve a desired level of throughput. More-

over, implementation-aware SDF model analysis yields suf-

ficiently accurate throughput estimates, in comparison to

cycle accurate simulation of target implementations, while

running two orders of magnitude faster. Thus, we have made

a strong case for identification of key relevant platform in-

formation, and integrating them into high-level model-based

analysis techniques.

References
[1] M. Ade, R. Lauwereins, and J. Peperstraete. Data memory

minimisation for synchronous data flow graphs emulated on

DSP-FPGA targets. Design Automation Conference, 1997.

[2] M. A. Bamakhrama and T. P. Stefanov. On the hard-real-

time scheduling of embedded streaming applications. Design
Automation for Embedded Systems, 2012.

[3] S. Bell et al. Tile64 - processor: A 64-core soc with mesh

interconnect. International Solid-State Circuits Conference,

2008.

[4] Benchmarks. http://sharif.edu/~matin and

http://leps.ece.ucdavis.edu.

[5] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee. Software
Synthesis from Dataflow Graphs. Springer, 1996. ISBN

1461286018.

[6] A. H. Ghamarian et al. Throughput analysis of synchronous

data flow graphs. International Conference on Application of
Concurrency to System Design, 2006.

[7] Graphite. http://graphite.csail.mit.edu.

[8] M. Hashemi and S. Ghiasi. Versatile task assignment for het-

erogeneous soft dual-processor platforms. IEEE Transactions
on Computer Aided Design of Integrated Circuits and Sys-
tems, 29(3), 2010.

[9] M. Hashemi, M. H. Foroozannejad, S. Ghiasi, and C. Et-

zel. Formless: Scalable utilization of embedded manycores

in streaming applications. International Conference on Lan-
guages, Compilers, Tools and Theory for Embedded Systems,

pages 71–78, 2012.

[10] M. Hashemi, M. H. Foroozannejad, and S. Ghiasi.

Throughput-memory footprint trade-off in synthesis of

streaming software on embedded multiprocessors. ACM
Transactions on Embedded Computing Systems, 13(3), 2013.

[11] E. A. Lee and D. G. Messerschmitt. Synchronous data flow.

Proceedings of the IEEE, 75(9):1235–1245, 1987.

[12] E. A. Lee and D. G. Messerschmitt. Static scheduling of

synchronous data flow programs for digital signal processing.

IEEE Transactions on Computers, 1987.

[13] J. Miller et al. Graphite: A distributed parallel simulator for

multicores. International Symposium on High-Performance
Computer Architecture, January 2010.

[14] A. Moonen et al. Practical and accurate throughput analysis

with the cyclo static dataflow model. International Sympo-
sium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems, 2007.

[15] O. M. Moreira and M. J. Bekooij. Self-timed scheduling

analysis for real-time applications. EURASIP Journal on
Advances in Signal Processing, 2007.

[16] H. Oh and S. Ha. Fractional rate dataflow model for efficient

code synthesis. Journal of VLSI signal processing systems for
signal, image and video technology, 2004.

[17] K. Parhi. VLSI Digital Signal Processing Systems: De-
sign and Implementation. Wiley-Interscience, 2008. ISBN

B000UGR930.

[18] A. Pinto, A. Bonivento, A. L. Sangiovanni-Vincentelli,

R. Passerone, and M. Sgroi. System level design paradigms:

Platform-based design and communication synthesis. ACM
Transactions on Design Automation of Electronic Systems, 11

(3):537–563, 2006.

[19] S. Raghav, A. Marongiu, C. Pinto, M. Ruggiero,

D. Atienza Alonso, and L. Benini. SIMinG-1k: A thousand-

core simulator running on GPGPUs. Concurrency and
Computation: Practice and Experience, 25(10):1443–1461,

2013.

[20] A. Sangiovanni-Vincentelli and G. Martin. A vision for em-

bedded systems: platform-based design and software method-

ology. Design Test of Computers, 18(6):23 –33, 2001.

[21] SDF3. http://www.es.ele.tue.nl/sdf3.

[22] S. Stuijk et al. Exploring trade-offs in buffer requirements

and throughput constraints for synchronous dataflow graphs.

Design Automation Conference, 2006.

[23] W. Thies et al. Streamit: A language for streaming applica-

tions. International Conference on Compiler Construction,

2002.

[24] Z. Xiao and B. Baas. 1080p h.264/avc baseline residual en-

coder for a fine-grained many-core system. IEEE Transac-
tions on Circuits and Systems for Video Tech., 2011.

[25] Y. Zhou and E. A. Lee. A causality interface for deadlock

analysis in dataflow. International Conference on Embedded
Software, pages 44–52, 2006.

