
Look Into Details: The Benefits of
Fine-Grain Streaming Buffer Analysis

Mohammad H. Foroozannejad Matin Hashemi Trevor L. Hodges Soheil Ghiasi
Department of Electrical and Computer Engineering

University of California, Davis, CA, USA
{mhforoozan,hashemi,tlhodges,ghiasi}@ucdavis.edu

Abstract
Many embedded applications demand processing of a seemingly
endless stream of input data in realtime. Productive development
of such applications is typically carried out by synthesizing soft-
ware from high-level specifications, such as dataflow graphs. In
this context, we study the problem of inter-actor buffer allocation,
which is a critical step during compilation of streaming applica-
tions. We argue that fine-grain analysis of buffers’ spatio-temporal
characteristics , as opposed to conventional live range analysis, en-
ables dramatic improvements in buffer sharing. Improved sharing
translates to reduction of the compiled binary memory footprint,
which is of prime concern in many embedded systems. We trans-
form the buffer allocation problem to two-dimensional packing us-
ing complex polygons. We develop an evolutionary packing algo-
rithm, which readily yields buffer allocations. Experimental results
show an average of over 7X and 2X improvement in total buffer
size, compared to baseline and conventional live range analysis
schemes, respectively.

Categories and Subject Descriptors D.3.4 [Processors]: Compil-
ers

General Terms Algorithms, Performance

Keywords Streaming applications, Software synthesis, Synchronous
Data Flow, Buffer management, Optimization

1. Introduction
Streaming applications are characterized by the need for process-
ing a seemingly endless steady stream of input data as they are pre-
sented to the system. Typically, the processing demands access to a
small window of input data and hence, the output can be generated
and streamed out, as the input flows into the system. Streaming
applications are abundant in the embedded and portable systems
space. Examples include various encoding, decoding, transforma-
tion and inspection protocols in signal processing, multi-media, se-
curity and networking domains.

Most streaming application either exhibit fixed-rate behavior,
or have fixed-rate kernels at the heart of the application [4]. Syn-
chronous data flow graphs (SDF) [10] and its variations such as

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
LCTES’10, April 13–15, 2010, Stockholm, Sweden.
Copyright c© 2010 ACM 978-1-60558-953-4/10/04. . . $10.00

cyclo-SDFs [14], are widely used to model fixed-rate streaming ap-
plications. In these models, the functionality is specified as a num-
ber of independent tasks that communicate using channels with in-
order data delivery. Among other purposes, the models are utilized
to synthesize software implementation of the application.

Synthesizing embedded software from the models involves a
number of challenges one of which, deals with implementation of
inter-task communication channels [13]. The channels are often
implemented as first-in-first-out (FIFO) buffers that are allocated
as contiguous regions in the memory. Since streaming applications
are data intensive, inter-task buffers tend to be large. As a result,
buffers account for a substantial portion of the memory footprint of
the synthesized programs.

In this paper, we study the problem of buffer management dur-
ing synthesis of embedded software from SDF models. We argue
that fine-grain perturbations to spatio-temporal behavior of individ-
ual buffers would enable aggressive sharing among buffers. That is,
the time-dependent details of variations in buffered data should not
be ignored. This is in contrast with conventional live range analysis
techniques that do not allow overlap between two buffers if both of
them happen to be alive at even one point in time.

Following the look into details principle, we transform the
buffer allocation problem into packing of complex polygons in
the two dimensional time-space plane. We develop an evolution-
ary algorithm for the packing problem, which readily allocates
buffers in the memory during compilation. The technique is im-
plemented within the MIT StreamIt compiler, which compiles a
specific variation of SDF. Experimental results on a number of
applications show significant improvement in buffer size over ex-
isting competitors. The improvements are as high as 95.8% and
62.5%, and on average 85.9% and 52%, compared to the baseline
and live range analysis-based approaches, respectively. This work
complements our previous results on code generation for embedded
multi-processors with limited memory [6].

2. Background
2.1 Application Model
Synchronous Data Flow (SDF) graphs are widely used to model
streaming applications. Let VG and EG denote the set of vertices
and directed edges of the SDF graph G, respectively. Vertices of
the SDF graph, also known as actors, model application tasks, and
directed edges represent inter-task communication channels. Edge
e starts from the actor src(e) (source), and ends at the actor snk(e)
(sink). Figure 1 depicts an example.

Upon execution, each task consumes a fixed number of data
items, also known as tokens, from each of its input channels. The
consumed tokens are processed to generate output data, which is
subsequently written to output channels of the task after completion

27

V= { A, B, C, D} E= { A_B, B_C, C_D }
S1: 6A 4B 4C 1D Flat SAS
S2: 2(3A 2(1B 1C)) 1D SAS
S3: 2A 1B 1C 4A 3(1B 1C) 1D non-SAS
sink (A_B) = B src (A_B) = A
cns (A_B) = 6 prod (A_B) = 4
q = [6, 4, 4, 1] q[A] = 6 q[B] = 4

A B C D
4 6 1 1 6 24

Figure 1. An example SDF graph, several valid schedules and
some definitions are illustrated. SDF edges are annotated with
corresponding production and consumption rates.

of the execution. The generated output also has fixed rate. Equiva-
lently, each edge e is annotated with two prod(e) and cns(e) num-
bers, which refer to the number of tokens produced by src(e) and
consumed by snk(e) upon execution, respectively.

Application tasks can be executed only after there are enough
tokens to consume on their incoming edges. The produced tokens
after execution of a task might enable execution of other tasks.
Execution of a task is also referred to as firing of the corresponding
actor in the model. Note that execution of a task implies that enough
tokens already existed at its inputs. The streaming assumption
implies that there are sufficiently-large number of tokens at the
primary input, input from outside the model, to be processed.

2.2 Static Task Scheduling
Task can be executed in different orders, also known as task sched-
ules. Due to production and consumption rates, task execution
changes the storage requirement of the inter-actor channels. If
repetitive execution of a fixed task schedule maintains the channels
storage requirement bounded, the schedule can be utilized to syn-
thesize an implementation at compile time. Such a schedule identi-
fies one period of execution of the application, which is iteratively
invoked to process the input stream.

It follows that a periodic task execution schedule has to meet
two conditions: 1) actors can be fired only after there is enough to-
kens to consume on their incoming edges, 2) all of the generated
tokens have to be consumed by the end of the period, to enable in-
finite repetition of the schedule using finite channel storage. It is
well-known that realistic application SDF can be scheduled stati-
cally [9].

Let vector q denote the number of repetition of actors in the
periodic schedule. Without loss of generality, we assume q refers to
the simplest such vectors, i.e., not all of its elements can be divided
by an integer larger than 1. To guarantee that all produced tokens
are consumed by the end of the period, any static schedule has to
guarantee the following for all edges of the SDF:

q[src(e)] × prod(e) = q[sink(e)] × cns(e)

The vector q is unique for real-life streaming applications [9].
Thus, the number of firings of actors in any static schedule is con-
stant, although their ordering might differ in the period. In partic-
ular, “Single Appearance” (SA) schedule refers to the ordering, in
which each actor appears exactly once. Figure 1 depicts an example
SDF graph, along with several example schedules and notations.

2.3 Software Synthesis from SDF
To synthesize software from a given SDF model, one needs to
determine a periodic ordering for execution of the tasks, which
can be infinitely repeated. In the baseline synthesis scheme, task
v appears in a loop whose iteration count is q[v]. Subsequently, the
loops are “stitched” together in the given order, with appropriate

Schedule: 2A 6B 4C D

for i = 1..2
 X[i] = S[i] + 1
for i = 3..7
 Y[j] = S[i] ̂ 2

3

4

1

2

X

Y

A

Z[i] = X[i] ̂ 3
B

T[i]=(Y[i*2]+Y[i*2+1])^0.5
C

1

1
6

4T

Z

D

P = 0
for i = 0..5
 P = Z[i] + P
if (P >= 0)
 Out(P+T[0]+T[2])
else
 Out(-P+T[1]+T[3])

7

S

while(1)
 for i = 0..1
 for j = 0..2
 X[i*3+j] = S[j] + 1
 for j = 3..6
 Y[i*4+j] = S[j] ^ 2
 for i = 0..5
 Z[i] = X[i] ^ 3
 for i = 0..3
 T[i]=(Y[i*2]+Y[i*2+1])^0.5

 P = 0
 for i = 0..5
 P = Z[i] + P
 if (P >= 0)
 Out(P+T[0]+T[2])
 else
 Out(-P+T[1]+T[3])
end While

Y T

ZX

Figure 2. An example SDF, and the corresponding baseline imple-
mentation. Channels are implemented as distinct buffers.

fixtures to implement inter-task communication. Figure 2 illustrates
the synthesized code for the depicted SDF.

SA task scheduling enables the synthesizer to save in applica-
tion code size by instantiating tasks’ internal computations exactly
once, possibly within nested loops. The code size overhead of loop-
ing constructs is negligible with respect to typical size of task in-
ternal computations. Therefore, SA schedules are widely used in
embedded systems, since they lead to small size synthesized soft-
ware. In this work, we assume the given schedule to be SA, unless
otherwise noted.

Recall that edge e in a SDF graph represents a FIFO communi-
cation channel between src(e) and sink(e). The channel stores the
produced data after firings of src(e), and its data is consumed dur-
ing firings of sink(e). Let MT (e, S) denote the maximum num-
ber of tokens stored in channel e during firing of tasks according
to schedule S. Clearly, MT (e, S) indicates the minimum memory
space required on this channel to implement the communication
functionality.

The channels are typically implemented as buffer arrays to
realize in-order communication with little cost. In the synthesized
software, src(e) writes into the buffer that implements channel e
by maintaining a write index, referred to as the Head. The Head is
reset at the beginning of the period, and is incremented after writing
every token. The initial resetting enables reusing the same buffer
memory in subsequent iterations. Similarly, snk(e) maintains its
own Tail index for reading from the buffer of channel e (buffer e
for short), which is also reset at the beginning of the period, and is
incremented after reading a token. Figure 2 illustrates the buffers in
the synthesized code for the example SDF.

3. Buffer Memory Management
Streaming applications tend to require fairly large channel buffers,
which is primarily due to the data intensive nature of their process-
ing. As a result, total size of the buffer arrays usually accounts for a
substantial portion of the application binary memory footprint. En-

28

hanced management of the buffer memory can potentially lead to
considerable reduction in memory requirement, which would be of
great value in the resource constrained embedded space.

3.1 Baseline Buffer Allocation
For a given schedule S, the minimum size of the buffer e would
be MT (e, S). Smaller buffers would lead to incorrect or infeasi-
ble execution under S, because at least at one point during execu-
tion MT (e, S) tokens need to be stored in the buffer e. In our dis-
cussions, therefore, we assume that the size of buffer e is exactly
MT (e, S).

The baseline synthesis scheme would be to allocate the buffers
as independent regions in the data memory. In the “baseline buffer
allocation” scheme, the buffers do not share any physical mem-
ory location at any point during execution. It follows that the over-
all buffer size would be the sum total of individual buffers, i.e.,
P

e∈EG
MT (e, S). Figure 2 depicts a simple example.

3.2 The Impact of Scheduling
Changes to task scheduling can impact individual buffer sizes,
which in turn, would influence total buffer memory requirement.
In case of Figure 1, for example, MT (A B, S1) = 24 and
MT (A B, S2) = 12. Note that under S2, following production
of 12 tokens by the actor A the consumer B gets fired, which
consumes all of the tokens in the channel. Thus, the maximum
number of tokens in the channel does not exceed 12. Unlike MT ,
the number of exchanged tokens over an edge does not depend on
the schedule, and is only a function of the SDF structure and rates.

It is known that finding the optimal task schedule to mini-
mize total buffer size is a NP-hard problem. Bhattacharyya et al.
present two effective algorithms for constructing a single appear-
ance schedule with emphasis on reducing the memory requirement
[2]. Furthermore, phased scheduling has been proposed as a method
for scheduling a SDF graph to minimize the memory size consid-
ering both code and data memory [8].

In addition to scheduling, the data memory requirement is im-
pacted by the scheme used to allocate individual buffers in the
memory. In this work, we direct our attention to this problem, i.e.,
minimizing overall buffer size through improved buffer analysis
and allocation techniques. That is, we seek to improve buffer man-
agement without perturbing the given schedule.

3.3 Buffer Sharing
In the baseline allocation scheme, separate portions of the memory
are allocated to implement the channels of the SDF graph. During
most of the execution time, however, the channel buffers are com-
pletely or partially empty. For example in figure 1, buffer A B is
completely empty during the firings of C and D in the first sched-
ule. Therefore, the memory allocated to this buffer can be reused to
implement buffer C D. That is, the two buffers can share at least
one physical memory location during execution, without compro-
mising the functionality of the streaming application.

Figure 3 illustrates the synthesized code, under the buffer shar-
ing assumption, for the example depicted in Figure 2. Note that
buffers X, Y, Z and T are allocated at different offsets of the same
array.

Extending the idea, any two channel buffers can be allocated to
allow sharing of physical memory locations (space) as long as the
two buffers do not conflict in time. In other words, the two buffers
must not need to maintain a token at the same memory location at
the same time.

The program synthesis framework, including its code gener-
ation protocol, impacts the possibility of sharing between two
buffers. In this work, we assume that code generation follows the
following rules:

while(1)
 for i = 0..1
 for j = 0..2
 SB[i*3+j] = S[j] + 1
 for j = 3..6
 SB[i*4+j+6] = S[j]^ 2
 for i = 0..5
 SB[i] = SB[i]^ 3
 for i = 0..3
 SB[i+6]=(SB[i*2+6]+SB[i*2+7])^0.5

 P = 0
 for i = 0..5
 P = SB[i] + P
 if (P >= 0)
 Out(P+SB[6]+SB[8])
 else
 Out(-P+SB[7]+SB[9])
end While

X Z

SB

6

0

Y

T

Figure 3. Shared buffer implementation of the SDF in Figure 2

1. None of the tokens of any buffer must be over-written or read by
another buffer at anytime during the execution of the program.

2. Buffers must be statically allocated as contiguous regions in the
application memory space.

3. The data should not be moved around within the buffer, i.e., data
production and consumption operations are the only primitives
to access FIFO channels. Token production and consumption
increment Head and Tail indexes, respectively.

The rules collectively guarantee that the generated code con-
forms to SDF semantics, and the generated code safely implements
the functionality. They eliminate the need for implementation of
a complex inter-actor communication mechanism, which would in-
cur large performance and code size penalty. Outstanding examples
of academic and commercial SDF synthesis frameworks follow the
same basic principles [1, 3].

4. Granularity in Buffer Analysis
The storage requirement (capacity) of any channel buffer changes
with progress in the execution. The changes to the capacity of a
buffer occur on execution of producer and consumer tasks of the
corresponding channel. Such temporal change, however, can be
captured at different levels of granularity [12].

The highest resolution temporal view of a buffer’s storage re-
quirement would need to follow the execution at the granularity of
firing individual actors. In this scheme, execution of a task forms
the unit of time for temporal analysis. We use the term fine-grain
buffer analysis to refer to this level of abstraction.

At the other end of the spectrum, temporal changes to required
capacity can be largely abstracted away. Specifically, buffers can
be viewed to require storage of the maximum number of tokens
during their lifetime. This leads to a coarse-grain temporal view of
the buffer storage requirement, in which the buffer has the capacity
MT (e, S) during its live range, and zero otherwise.

A middle ground between the two ends of the granularity spec-
trum would be to consider consecutive execution of the same task
as the time unit. In this level of abstraction, the storage requirement
of the buffer is viewed to change only when a different actor is fired
next. Among the consecutive firings of the same actor, the storage
requirement of the buffer is viewed to be its maximum value in the
range. Figure 4 illustrates a simple SDF, and the impact of granu-
larity in temporal analysis of the buffer capacity.

4.1 Visualizing Buffer Analysis and Allocation
Figure 5 illustrates an example SDF, a given flat SAS, and three
different buffer allocations. The allocations are visualized in a two-
dimensional plane, in which the X-axis shows actor firings in the

29

1 13

12

1 13

12

1 13

12

Fine-Grain Model In-Between Model Coarse-Grain Model

Figure 4. The impact of analysis granularity on the estimated
temporal behavior of buffer A B (Figure 1 under S2). X and Y axis
represent actor firings and buffer size, respectively.

schedule (time), and the Y -axis represents the buffer location in the
memory (space). The unit of time is firing of a single actor.

The gray area of each buffer illustrates the range between Head
and Tail indices that contain valid data. The temporal update in
the gray area is due to the production and consumption opera-
tions, which increment the Head and Tail indices, respectively. The
buffers are indexed relative to an offset. The offset indicates the
start of the buffer, which is determined after the allocation process.

For a given analysis granularity, the capacity requirement of
a buffer at any point in time is fixed. Thus, the X coordinate
of any buffer in the two dimensional time-memory plane cannot
be modified, i.e., the buffers can not be moved horizontally. The
Y coordinate, however, represents the physical location of the
allocated memory to implement the buffers.

The memory allocation problem can be viewed as a geometric
layout instance, in which a solution is valid of the laid out buffers
do not conflict in the time-memory plane. The only operation for
perturbing the layout is vertical movement of the buffers. The
geometric placement of a buffer in the plane readily gives its offset
in the memory space. The objective is to minimize the vertical
dimension of the layout, which represents the total size of the
buffers.

4.2 Granularity and Buffer Allocation
The granularity in buffer analysis compromises accuracy in tem-
poral behavior of buffers with analysis complexity. Our conviction
is that fine-grain analysis, though more expensive in terms of anal-
ysis complexity, provides temporal details that enable substantial
improvements in buffer sharing. The three layouts in the Figure 5
illustrate the idea.

Figure 5.A shows the baseline buffer allocation scheme, in
which every buffer is assumed to have maximum capacity through-
out the execution. Therefore, buffers have to be allocated in dedi-
cated locations in the memory. The figure shows that the total size
of channel buffers is 45.

Figure 5.B depicts the optimal buffer allocations under coarse-
grain analysis of their temporal behavior. In this scheme, buffers
are assumed to have maximum capacity throughout their live range
in the schedule. Therefore, two buffers would conflict if they are
alive in at least one point in time in which case, they cannot share
any physical memory location and have to be allocated in distinct
memory spaces [12].

For example MT (A B, S) = 6, and under the coarse-grain
analysis model six memory cells have to be allocated during its
entire life time (three time steps) to implement this buffer. The gray
areas in the picture illustrate the actual storage requirement, and the
border lines represent the memory assignments for each buffer. The
white space inside the borders represent memory space that is left
unused at the corresponding point during execution. In the example
of figure 5.B, the total size of channel buffers is 24.

Finally, figure 5.C shows the optimal allocation of buffers un-
der fine-grain analysis scheme, in which, buffers’ temporal behav-
ior is updated at the granularity of actor firings. Intuitively, fine-
grain view of the buffers’ spatiotemporal patterns enables more

A B C
3 3 3 2

2
1

E G

D

F

H1

1

1

1

1

1

1

2
1

1

3 9

S: 2A 2B 3C 3(2D 1E 1F) 3G 1H

B.

1 22

24

D_G

C_D

E_G

F_G

G_HC_E

C_FA_B

B_C

1 22

A_B

B_C

C_D

C_E

C_F

F_G

E_G

D_G

G_H

45

A.

1 22

F_G

G_H

A_B B_C
C_D

C_E

C_F

D_G

E_G

14

C.

Figure 5. A. Baseline, B. Coarse-grain, and C. Fine-grain alloca-
tion schemes for the illustrated example. X and Y axis show actor
firings in the schedule, and the offset within the memory space,
respectively.

condensed packing of the buffers in the memory, which translates
into smaller code size. In this example, the total size of channel
buffers is 14.

5. Fine-Grain Buffer Allocation
The temporal behavior of FIFO buffers can be characterized as a
pair of two Head and taiL vectors. H keeps the head index He[t]
and L keeps the tail index Le[t] at the time step t of the program.
The concept of time here is the same as that we described in 3,
therefore the length of H and L is the maximum time steps in one
iteration of the program which is the summation of the elements in
qG.

∀e ∈ E : Be = (He, Le)

Be : The Buffer on edge e which we call it buffer e in short
He[t] : Head index at time 0 ≤ t ≤ T for the buffer on e

Le[t] : Tail index at time 0 ≤ t ≤ T for the buffer on e

T =
X

v∈qG

q[v]

In this definition of buffers head and tail indices start from zero
and go up to their maximum level and go back to zero again after
getting to the end. In the notion of buffer sharing, each buffer is
allocated within the shared buffer which means an offset will be
assigned to each buffer and will be added to the head and tail of
the buffer in a way that no conflict would occur. Note that H and
L keep the value of head and tail for each individual buffer without
considering the sharing scheme. The offset which will be assigned
to each buffer indicates the true location of them within shared

30

buffer. Assume tuple O keeps the offsets for all the buffers on all
the edges of the graph:

O = {(oe1
, oe2

, oe3
, . . . , oeN

) | e1 : eN ∈ E , N = |E|}

oe is the offset for the buffer on edge e

The following is the definition of SBS as ”Shared-Buffer Size”
and the objective of the problem is to minimize SBS:

SBS = max
∀e∈E

{oe + H
max
e | Hmax

e = max
0≤t≤T

(He[t])}

The following lemma gives us one of the advantages of using
SA scheduling and will help us to specify the constraints of the
problem:

LEMMA 5.1. In SA schedules the head index at the time t is always
greater than equal the tail index at the same time:

∀t ≤ T : He[t] ≥ Le[t]

Proof: The opposite situation might occur when there have been
already some tokens written in and read from the buffer, thus both
head and tail are pointing to a place in the middle of the buffer.
If there are more tokens to be written in the buffer and head has
already hit the end, it will start from the beginning of the queue
to fill up the empty spots (head never surpasses tail because we
assume the size of the buffer is big enough to keep all the required
tokens). In this situation, head will be pointing to a location in the
vicinity of zero while tail is still somewhere around the maximum
size of the buffer.

The claim is obvious for a flat SA schedule. The producer gets
the chance to fill up the buffer and it is when head starts going up
to its maximum position and stays there. Later on the consumer
comes in and empties the buffer and now this is the turn for the
tail index to go up. Eventually tail meets head at the end point
of the buffer and they both go to zero. Since both the producer
and the consumer appear only once in the schedule without being
repeated in nesting loops, head and tail never change again in the
current iteration of the program. The next iteration will start with
an empty buffer exactly the same as the first iteration. However
when we have nesting loops, both producer and consumer might be
repeatedly fired one after each other.

Let the Round of the edge e and schedule S which we denote
R(e, S) be a sequence of actors in schedule s from when src(e)
starts being fired to when sink(e) is fired and we are back to
src(e) again. This sequence includes the direct repetitions of the
both source and sink actors. Because S is a SA schedule, every
time src(e) is fired, the same path will be taken to sink(e). In fact
if we replace this sequence of actors with the notation R(e, S) in
our schedule, none of the src(e) nor sink(e) will appear alone out
of R(e, S) in the schedule.

Figure 6 depict an example of this replacement for the given
edge and schedule. Therefore all the tokens produced on the edge
e during R(e, S) should be consumed by the end of each round,
otherwise they will be accumulated at the end of the schedule which
is against the definition of a valid schedule. Therefore we only need
to prove the claim within a round, which is true because based on
the definition of a round, src(e) appears only in the first portion of
the round and does not appear again after sink(e) is fired.�

In the problem of buffer sharing, the vectors H and L are known
and given. We also have a consistent SDF graph and a valid SA
schedule which means at any given time we know the number of
tokens exist on each edge of the graph and the relative value of
head and tail. Therefore lemma 5.1 does not impose any constraint

S: 6A 2 (3 (2 (B C) 1E 3 (D F)) 3G) 3H
R(B_D, S) = B C B C E D F D F D F
New Sequence with R: 6A 3R 3G 3R 3G 3H

A B
2 1

1

D
3

1

2 1
1

C E
1 2

F G
1 3

1

3

G
1 2

Figure 6. SA schedule with nested loops and the notion of
“Round”. The example is for buffer B D

to the problem. However by using this lemma we can specify the
constraint and the objective of the problem as the following:
Constraint:

∀ e, b ∈ E ∀ 0 ≤ t ≤ T :

He[t] + oe ≤ Lb[t] + ob OR Hb[t] + ob ≤ Le[t] + oe

Objective:

minimize SBS

The constraint suggest that no buffer can write in or read from the
significant data of another buffer. Therefore for buffer e at any given
time the meaningful data of other buffers have to be assigned after
or before this buffer. The real location of head and tail within the
shared buffer is relative to the assigned offsets (oe and ob). Since
these offsets will not change in time, thus a place in shared-buffer is
assigned to the buffer only once, and the data will be written in and
read from this location in the entire program without conflicting
with any other buffer nor requiring any data to be relocated.

6. ILP Formulation
Integer Linear Programming (ILP) provides a mechanism to obtain
the optimal solution of a problem as long as its constraints and
objective can be described as linear constraints of integer variables.
Since there are many commercial ILP solvers available, one only
has to cast the problem in ILP formulation to solve a specific
instance. In case of the buffer sharing problem, linear constraints
have to ensure that all buffers are allocated without any conflict.

The subtle difficulty in such formulation is to avoid buffer
conflicts using linear constraints, because two conflicting buffers
can be allocated in either order in the shared buffer. In other words,
formulation of the ”OR” logic is non-trivial, since a buffer can be
allocated either before or after another conflicting buffer as long as
there is no violations of the stated guidelines.

Because linear constraints cannot be easily used to articulate the
”OR” logic, we had to reformulate the problem. For each buffer and
each location in the shared memory space, specifically, we define
a binary variables, whose ’1’ value would indicate allocation of
the corresponding buffer in the corresponding memory location.
Subsequently, buffer conflict constraints can be formulated as a
large number of linear constraints. Note that the constraints have
to be generated for all time steps. We do not include the details of
the formulation for brevity.

The complexity of buffer sharing instance, and ILP runtime
grows exponentially. Therefore, it does not provide a scalable ap-
proach to solving the buffer sharing problem. Nevertheless, we uti-
lize ILP to obtain the optimal solution to problem instances, al-
though at the cost of unreasonably long solver runtime, primarily
for measurement of the optimality gap using other techniques (Sec-
tion 10).

31

B.A.

1 22

19

G_H

D_G

C_D

E_G

F_G

C_F

B_C

A_B C_E

1 22

19

G_H

D_G

C_D

E_G

F_G

C_F

B_C

A_B

C_E

Skyline

Skyline

Figure 7. For the SDF graph of Figure 5: A. A non-optimal permu-
tation: (G H, C D, A B, E G, C F, F G, C E, D G, B C). The line
in bold is the final skyline. B. MDA is moving down the buffers in
following order: (G H, E G, C D, F G, B C, C F, D G, A B, C E).
Each step forms a skyline with the placed buffers.

7. Strip Packing Problem and Buffer-Sharing
In several industries there is a need for packing a set of 2-
dimensional objects on a larger rectangular unit of material by
minimizing the waste. This larger unit can be a standardized sheet
of material, from which the set of objects have to be cut. The ob-
jective is to pack all the items into the minimum number of units.
This problem is a variation of the well-known bin-packing (BP)
problem, and is used in some industrial applications such as wood
or glass industries.

In other contexts the standardized unit is a roll of material
such as a roll of paper or cloth and the objective is to use the
minimum roll length. This problem is called strip-packing (SP)
problem and we will be using it in this paper to realize the buffer-
sharing problem. These two problems are known as NP-complete
and there has been various attempts to solve them in the algorithms
community. [11] provides a survey on some of the two-dimensional
packing problems and solutions.

In the context of buffer sharing one can realize a large array
of memory (which we call shared-buffer) analogous to the roll of
material in the SP problems, and the different buffers on different
edges of the graph could be the set of objects. Figure 5 shows the
geometrical aspect of buffers where we have time on one axis and
the indices of shared-buffer on the other axis. In this model the ob-
jects are being constructed from the number of tokens that exist in
the buffer during the run time of the program. Subsequently, we
adopt a SP packing algorithm proposed in [7] with some adjust-
ments specific to the buffer-sharing problem.

8. Move-Down Algorithm
Move Down Algorithm (MDA) is the main piece of our method and
will be most repeated during the run time of the main algorithm. It
also gives us the ability to make sequences among our input which
is essential for Genetic Algorithms. The idea is very simple. we
push each buffer toward the beginning of the shared-buffer array as
much as possible so that they will take less space after all being
allocated. As we can see in figure 5 the order of moving down
the buffers matters and some of the sequences take less space than
others. Figure 7A. shows another sequence of buffers from the SDF
graph of figure 5 which is not optimal.

To understand how far a buffer can go down we introduce
another vector which is called skyline and denoted V sk[t]. In this
section we consider buffers as solid geometrical shapes which can
stand on the top of each other to construct a wall. Looking this way,
skyline is the highest level of the constructed wall in each time step.

Figure 7 shows two different skylines for different situations while
running MDA.

To construct the skyline vector we introduce skyline function
which takes a V sk and buffer Be and also an offset o to place the
buffer, and it will calculate the skyline vector V́ sk constructed from
adding the new buffer at the point o to the existing skyline.

∀e ∈ E ∀0 ≤ o ≤ BBS ∀0 ≤ t < T :

V́ sk = skyline(V sk, e, o) =

V sk if Se[t] = 0
he[t] + o otherwise

MDA takes a skyline vector and a buffer, and returns the lowest
offset it can get from pushing down this buffer before hitting the
skyline.

oe = MDA(V sk, Be)

The algorithm first places the buffer on the first level of the skyline
by setting the offset to V sk[0]. Then moving to the right, it com-
pares the skyline to the seated buffer to see if there is any conflict
and if there is one, it will adjust the offset to remove the conflict.
Move Down Algorithm:

oe := V sk[0]

for i := 0 → T :

if(Se[t] 6= 0) and (He[t] − Se[t] + oe < V sk[t]) :

oe := V sk[t] − He[t] + Se[t]

return oe

If we run MDA on all the buffers in a pre-defined order, and also
calculate the skyline on each step and use it for the next step, we
have done the buffer allocation. If we call the pre-defined order a
permutation of buffers and denote it with π, then we have:

O = P laceAll(π)

π = (B1, B2, B3, . . . , BN)(any order of buffres)
O = (oe1, oe2, oe3, . . . , oeN)

The function P laceAll will place each buffer in the same order
they have in π as follows:

oe1 = MDA(V sk1, B1) = 0

oe2 = MDA(V sk2, B2)

. . .

oeN = MDA(V skN , BN)

The first buffer always gets zero for the offset, and it is because
we are pushing down the buffers as much as possible and there is
nothing in the shared-buffer yet so it goes all the way down. For the
skyline vectors we have:

V sk1 = Vzero(the vector zero)
V sk2 = skyline(Vzero, B1, 0) = He1

V sk3 = skyline(V sk2, B2, oe2)

. . .

V skN = skyline(V skN−1, BN−1, oen−1)

V skN+1 = skyline(V skN , BN , oeN)

The very first skyline vector is Vzero = [0, 0, . . . , 0] which we
can consider the ground. The second skyline forms when we push
the first buffer down to the ground. Therefore skyline forms exactly
on the top of this buffer which is the vector H .

The final skyline is V skN+1 and determines the height of the
wall which is actually the size of shared-buffer:

32

S: 6A 5B 2A 4C

A B
1 1

C
1 1

A_B A_B

Figure 8. Part of a SDF graph with a non-SA schedule. The figure
shows that for the buffer A B the striped space is not reachable by
MDA.

SBS = max
0≤t≤T

(V skN+1[t])

The size of shared-buffer depends on the sequence of buffers
we are using, and P laceAll itself does not guarantee that it will
give us the optimal solution. However because it uses the notion of
sequence in placing the buffers, it reduces the search space from
(BBS)N (all the possible places for buffers to be in an array
with the size of BBS) to N ! (the number of different sequence
of buffers that we can have). Moreover having a sequence of data
as the input, is one of the fundamentals of a genetic algorithm and
enables us to use them to find the optimal or near optimal solution.

Lastly in this section, the following lemma shows weather MDA
is capable of giving us the optimal solution or not. In fact this is
another advantage of using SAS:

LEMMA 8.1. The optimal solution can be found by using MDA in
SA schedules. It is only the matter of finding the right sequence of
buffers.

Proof: Figure 8 depicts a buffer in a non-SA Schedule and as
we can see there is an area inside buffer A B which MDA can not
reach. However because of lemma 5.1, in a SA schedule the head
index is always greater than the tail index, thus any empty space
inside a buffer is open from the top or the bottom of the buffer and
can be reached by MDA.�

9. Evolutionary Optimization using MDA
In this section, we utilize the move-down algorithm to construct an
evolutionary genetic optimization technique. Genetic optimization
is composed of several key components, including chromosome,
inheritance and fitness function. Chromosome provides an abstract
representation of solutions in the search space, and is normally rep-
resented as a sequence of numbers. Inheritance models the basic
operations through which, chromosomes are perturbed to improve
the solution quality. Typically, there are two crossover and muta-
tion inheritance operations in a genetic optimization framework.
Finally, the fitness function quantifies the “quality” of candidate so-
lutions, and determines survival of selected candidates. Our objec-
tive is to define the notions of chromosome, inheritance and fitness,
in the context of buffer sharing, and subsequently, utilize genetic
optimization to solve our problem at hand.

MDA provides the ability to work on a sequence of buffers as
the input and to allocate all of them inside the shared buffer ac-
cording to their order in the sequence (Section 8). The size of the
shared-buffer is the height of the final structure, in the correspond-
ing packing instance. We propose to use different permutations of
buffers as chromosomes, or individuals of a population, and the
height of the final skyline as the fitness function, in the genetic op-
timization framework. Consequently, the algorithm will work in the
following steps:

To initialize the algorithm with a sample population, we ran-
domly select a set of permutations. The size of the sample popu-

lation is a pre-defined parameter. We used the number of buffers
(N = |E|) to be the size of the population in our algorithm.

Sample set = {π1, π2, π3, . . . , πN}

Since genetic algorithm keeps track of different lines of breeding
patterns, having a larger sample population gives us the ability to
keep track of more candidate solutions. On the other hand, having
a very large population slows down the algorithm, and reduces the
chance of finding the optimal solution in a reasonable time.

Now we can run P laceAll algorithm and calculate the height
of the final solution in every individual permutation in the set. We
choose the height of each permutation (denoted as height(π)) to
be the fitness function (denoted as f(π)) as follows:

f(π) =
1

height(π)

For any permutation there is a chance that part of its sequence
matches the sequence in the optimal solution. Basically, we would
like to find these parts from different members and concatenate
them, so that we can get closer to the optimum. The mechanism
to recognize if we are getting closer to this goal is the fitness
function. To generate new members first we need to select two of
the existing members, which we refer to as parents. We select the
parents depending on their fitness. The fitter individuals (shorter in
height), have a higher chance of being selected. The probability of
selection of an individual permutation (denoted as p(π) is likely
to change in each iteration of the algorithm due to changes to the
fitness of the other members of the group.

p(πi) =
f(πi)

PN

j=1
f(πj)

In practice we can divide the interval [0, 1) into N sub-intervals as
follows:

[0, p(π1)) , [p(π1), p(π2)) , . . . , [p(πN−1), p(πN))

Two random numbers from the interval [0, 1) will determine the
selected permutations.

Subsequently, the parent chromosomes are used to create the
children using the crossover operation. Our crossover function gen-
erates two random numbers 1 ≤ p ≤ q ≤ N . Then it copies the
sub-sequence of the first parent from position p to q, and place it at
the beginning of the child’s chromosome. The sequence from p to q
is the part that we would like to preserve, hoping that the same se-
quence exists in the optimal solution. Finally, we fill the rest of the
offspring with the remaining genes (buffers) in the second parent in
the same order that they appear in the second parent. The following
example shows how crossover function works:

p = 2 q = 4

πparent1 = (Be1, Be2, Be3, Be4
| {z }

, Be5, Be6)

πparent2 = (Be6, Be5, Be4, Be3, Be2, Be1)

πchild = (Be2, Be3, Be4, Be6, Be5, Be1)

Copying and matching different sequences from existing per-
mutation may lead the process to stay in a local minimum region.
To avoid this situation we can mutate the child based on the prob-
ability pmutation, which is another parameter of the algorithm. If
the child is to be mutated, then the function generates two random
numbers 1 ≤ i, j ≤ N , and swaps the buffers in those positions
within the sequence.

33

Pipeline

Child1

Child2

Child3

Splitjoin

C
hild3

C
hild2

C
hild1

Feedback Loop

Body

Loop

Figure 9. The composite objects of StreamIt language

pmutation = 0.4 : the probability of being mutated
i = 2 j = 4

πchild Before = (Be2, Be3, Be4, Be6, Be5, Be1)

πchild After = (Be2, Be6, Be4, Be3, Be5, Be1)

The P laceAll algorithm is run on the newly generated child
to calculate the height of the offspring. The child is then added to
the population set. To maintain the pre-defined population of the
sample set we kill (remove) the weakest (highest) member of the
sample set. Therefore the offspring will be compared against the
weakest member of the population, and may or may not remain in
the sample set.

Iteratively, we generate new children and compare them to the
existing members until the termination point where we can return
the best solution found. Termination can be an acceptable size of
the shared buffer (the height of the best permutation). Alternatively,
the optimization can be terminated at a time limit. We selected the
number of iterations as the termination criterion. We set the value
to be the product of N and an iteration parameter.

10. Experimental Evaluation
10.1 Setup
We have integrated our algorithm into the MIT StreamIt compiler
[5]. StreamIt refers to both a programming language developed for
specifying the streaming applications, and a java-based compiler.
The StreamIt language conforms to the SDF semantics, by mod-
eling an application as a graph of interconnected but independent
“filters” with statically-defined input and output rates that commu-
nicate via FIFO channels.

StreamIt utilizes four stream objects to hierarchically build the
application graph: filters form the basic data processing unit, while
the other three objects, pipeline, split-join, and feedback loop (Fig-
ure 9), are composite objects that contain children stream objects.
The children are recursively constructed out of the four different
object types. In other words, the three composite stream objects
(pipeline, split-join, and feedback loop) act as containers to build
different graph structures, and the filter specifies data processing.
The design ensures that the graph is highly structured while pro-
viding the programmers with a simple, yet flexible, set of objects
to construct the stream graph for their streaming application.

We used the built-in single appearance scheduler to construct
task execution order. The StreamIt scheduler is designed based on
the hierarchical nature of the language. Specifically, the composite
objects form virtual tasks, under which its children are scheduled. If
any of the children happens to be a composite object itself, its firing
in the schedule will be replaced by its own children. Consequently,
only filters appear in the schedule as data processing actors. Figure
10 depicts a simple example.

S: 1(5A 5B 4(1C 1D 2(1E 1F)) 10G 5H)

A B
1 1 4 5

2

1
D G

C

F

H12

2

1

2

1
2

1
2 1 2

E
1 3 3

25

buffer1

buffer2Pipeline

PipelineSplitjoin

Filter

C C D E E C C D E E C C D E E C C D E E

C C D F F C C D F F C C D F F C C D F F

Figure 10. The split-joins share a buffer at their start and end ter-
minals. The split-join in this picture works in round robin fashion.
The letters inside buffer1 and buffer2 illustrate the mapping of array
elements to the actors.

Figure 11. Benchmark characteristics and experimental results

The StreamIt compiler translates stream programs to C, which
can be passed to any standard C compiler to generate executable
binaries. The compiler defaults to the baseline buffer allocation
scheme, in which channels in the stream graph are implemented
with distinct arrays. We instrumented the compiler to allocate all
the buffers within the same array, though at different indices. The
baseline and instrumented synthesized codes were compiled and
executed on a Unix machine to ensure that functional correctness
is preserved after our transformation.

10.1.1 Benchmark Applications
We selected six different streaming kernels as our benchmarks to
evaluate the proposed technique. They include two sorting algo-
rithms, two different implementation of the fast Fourier transform
(FFT), time delay estimation (TDE) and matrix multiplication ker-
nels. These kernels frequently appear in many higher-level applica-
tion that are used in portable and handheld embedded systems.

The table in Figure 11 shows the benchmarks. The benchmarks
are implemented in the StreamIt language. The second and third
column of the table list the complexity of each application in terms
of number of channel buffers and actors (tasks), respectively. The
fourth column of the table shows the number of time steps, i.e.
sum total of task executions in the periodic schedule, for each
benchmark.

Note that unlike generic SDF tasks, StreamIt filters have only
one input and one output buffer. More complex inter-actor com-
munications are modeled using split-join objects. In synthesizing
split-joins, one large buffer is used to implement multiple channels
that either split to or join from several actors. The sinks of a split
(or sources of a join) read from (write to) the corresponding loca-
tions in the large buffer (Figure 10). The size of the large buffer
is the sum total of the individual channel buffers, i.e., no sharing
between channels is performed when allocating them in the same

34

Figure 12. The Improvement of coarse-grain and fine-grain meth-
ods compared to the baseline.

buffer. Consequently, the number of buffers in the StreamIt pro-
gram tends to be less than the number of actors. Figure 10 depicts
a split-join and the buffers in its terminals.

In general, stream programs might have two different initial-
ization and steady state execution phases. The initialization phase
might be needed if a non-trivial buffer content configuration has to
be created to enter the steady state phase. In this work, we have
focused on the steady state buffer analysis of the stream programs.

10.1.2 System and Algorithm Configuration
Our proposed genetic algorithm for buffer optimization uses a
number of configurable parameters. In our experiments, we have
set the iteration number of the algorithm to 1000× number of
buffers in the application. In addition, the sample population in
the genetic algorithm is configured to be equal to the number of
buffers in the application, and the probably of mutation operation is
0.4. The parameters are configured with very small effort to create
a reasonable balance between optimization runtime and solution
quality. The experiments are performed on a Unix PC with Intel
Pentium 4 CPU running at 2.80GHz, 1024KB of cache, and 3GB
of main memory.

10.2 Results
Figure 11 shows the result of baseline, coarse-grain and our
genetic-algorithm based fine-grain buffer allocation on the bench-
mark applications. The genetic algorithm is intrinsically non-
deterministic. We report the worst and the best buffer size that
we observed in 10 runs.

The coarse-grain analysis is done according to the buffer life-
time analysis principle, developed by Murthy and Bhattacharyya
[12]. The first fit heuristic is used to allocate the buffers in the
shared buffer, under the same SA schedule. Note that first fit algo-
rithm is concluded to perform well under coarse-grain buffer anal-
ysis model [12].

We also generated ILP instances for the benchmark application,
according to the formulation developed in Section 6. Due to the
exponential growth of the ILP complexity with respect to time steps
for the problem, our system was unable to load the enormous-sized
ILP instances of FFT2, TDE, and Matrix Mult. The ILP approach
is clearly not scalable, nevertheless, it is helpful in establishing an
optimality gap for the selected benchmarks.

Figure 12 visualizes the performance of coarse grain and fine
grain buffer allocation, in terms of savings in total buffer size over
the baseline scheme. Our evolutionary allocation method reduces
the buffer size by 86% on average. The improvements are as dra-
matic as 24X in case of Bitonic Sort.

Figure 13 compares the performance of fine-grain analysis, ei-
ther via using ILP or our proposed algorithm, versus the conven-

Figure 13. The Improvement in all fine-grain cases: GA worst
case, GA best case, and ILP, compared to the coarse-grain method.

tional live range analysis coarse-grain method. The data shows that
both the best and worst case results of our scheme outperform the
coarse-grain results. Considering the best case, our allocator im-
proves the result of coarse-grain allocation by about 52%, and is
only marginally inferior to the theoretically optimal ILP solution.
Note that the best and worst case results are collected over only
10 different runs. Thus, it is reasonable to consider best case per-
formance for comparison purposes, given our algorithms’ decent
latency and the small number of required repetitions.

The complete compile time in our experiments varied from a
few seconds to a few minutes depending on the complexity of the
program. We believe that the compilation latencies are quite rea-
sonable, considering their absolute value, our old experimentation
platform, and the fact that compile-time analysis latency is justified
given the gains in application memory footprint.

Varying the analysis granularity involves a natural tradeoff be-
tween buffer size and optimization latency (compiler runtime). It is
important to strike a balance between the two competing elements.
Our study has showed that not only fine-grain analysis is not to be
dismissed due to its complexity [12], but it can be the method of
choice in a large number of application scenarios.

11. Conclusions
Streaming kernels and applications are abundant in the embedded
systems domain, where underlying hardware platforms have to deal
with strict resource constraints. It is critical to optimize the stream-
ing applications for resource requirement, such as their memory
footprint. We contribute to this important goal by developing a
novel buffer allocation technique during synthesis of streaming ap-
plications from synchronous dataflow specifications.
We argue that fine-grain analysis of buffers’ temporal behavior,
as opposed to conventional coarse-grain live range analysis, en-
ables dramatic improvements in buffer sharing. We transform the
buffer allocation problem into packing of complex polygons in the
two-dimensional space, and present an evolutionary algorithm to
solve the problem. Experimental results demonstrate the superior-
ity of our approach compared to existing competitors in terms of
the memory footprint of the synthesized applications. We conclude
that the benefits of considering buffers’ fine-grain temporal behav-
ior outweighs the reasonable increase in static analysis latency for
a large class of resource-constrained embedded systems.

Acknowledgments
The support of National Science Foundation, under grant CCF-
0903549, and Semiconductor Research Corporation, under contract
2009-HJ-1971, is gratefully acknowledged.

35

References
[1] Mathworks simulink - simulation and model-based design. available

online at http://www.mathworks.com/products/simulink/.
[2] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee. Software Synthesis

from Dataflow Graphs. Kluwer, 1996.
[3] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuen-

dorffer, S. Sachs, and Y. Xiong. Taming heterogeneity - the ptolemy
approach. Proceedings of the IEEE, 91(1):127–144, 2003.

[4] M. Geilen and T. Basten. Reactive process networks. In International
Conference on Embedded Software, pages 137–146, 2004.

[5] M. I. Gordon, W. Thies, M. Karczmarek, J. Lin, A. S. Meli, A. A.
Lamb, C. Leger, J. Wong, H. Hoffmann, D. Maze, and S. P. Amaras-
inghe. A stream compiler for communication-exposed architectures.
In International Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages 291–303, 2002.

[6] M. Hashemi and S. Ghiasi. Versatile task assignment for heteroge-
neous soft dual-processor platforms. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (TCAD), 2010.

[7] S. Jakobs. On the genetic algorithms for the packing of polygons.
European Journal of Operational Research, 88:165–181, 1996.

[8] M. Karczmarek, W. Thies, and S. Amarasinghe. Phased scheduling of
stream programs. In Conference on Languages, Compilers and Tools
for Embedded Systems, pages 103–112, 2003.

[9] E. A. Lee and D. G. Messerschmitt. Static scheduling of synchronous
data flow programs for digital signal processing. IEEE Transactions
on Computers, 36(1), 1987.

[10] E. A. Lee and D. G. Messerschmitt. Synchronous data flow. Proceed-
ings of the IEEE, 75(9):1235–1245, September 1987.

[11] A. Lodi, S. Martello, and M. Monaci. Two-dimensional packing
problems: a survey. European Journal of Operational Research, 141
(2):241–252, 2003.

[12] P. K. Murthy and S. S. Bhattacharyya. Shared buffer implementations
of signal processing systems using lifetime analysis techniques. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 20(2), 2001.

[13] S. Stuijk, M. Geilen, and T. Basten. Throughput-buffering trade-off
exploration for cyclo-static and synchronous dataflow graphs. IEEE
Transactions on Computers, 57(10):1331–1345, 2008.

[14] M. Wiggers, M. Bekooij, and G. J. M. Smit. Efficient computation of
buffer capacities for cyclo-static dataflow graphs. In Design Automa-
tion Conference, pages 658–663, 2007.

36

