
Combined Throughput and Energy Optimization for Synthesis of
Streaming Applications on Multi-Core Architectures

Po-Kuan Huang Matin Hashemi Soheil Ghiasi
Department of Electrical and Computer Engineering

University of California, Davis�
pohuang, hashemi, soheil � @ece.ucdavis.edu

Abstract
We present a methodology for synthesizing streaming applications,
modeled as task graphs, on multi-core architectures. We develop
a task graph extraction and characterization framework that accu-
rately determines the structure, computation and communication
characteristics of application task graph using its specification in C.
Furthermore, we develop a provably effective algorithm that jointly
balances the workload assigned to each core, and minimizes inter-
core communication traffic. Consequently, both throughput and en-
ergy dissipation of implemented applications, that are of prime
significance in target application domain, are simultaneously op-
timized. Experiment results show that our method improves both
throughput and energy efficiency of streaming applications signifi-
cantly.

1. Introduction
An important class of applications, referred to as streaming appli-
cations, have to process virtually-infinite steady streams of input
data. Example arise in many different application domains rang-
ing from multimedia codecs in embedded applications to packet
classification in network switches. These application domains im-
pose increasingly-stringent throughput and energy constraints, es-
pecially in portable consumer electronics marketplace.

In this paper, we present a methodology for efficient synthe-
sis of streaming applications for pipelined execution on multi-core
architectures. We develop a simulation framework through which,
application task graphs are extracted and characterized for task la-
tency, task energy dissipation and inter-task communication traffic.
The simulation framework is cycle-accurate and hence, the cap-
tured information are very precise at system-level. Furthermore, we
develop a provably-efficient partitioning algorithm that jointly op-
timizes the computation load assigned to cores and inter-core com-
munication traffic.

To illustrate the concept of our work, we discuss its impact on
throughput and energy dissipation of an application using a simple
example. Figure 1 shows an example task graph. The motivation of
our design is to improve the throughput of the system by settling
for pipelined execution of streaming application. Once we can

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
LCTES’07 June 13–16, 2007, San Diego, California, USA.
Copyright c

�
2007 ACM 978-1-59593-632-5/07/0006. . . $5.00

Balanced cut

Partition B

Core A

Core B

Communication

bus

(b) (a)

T1

T2 T3

T4

T5

T6

T7

T8

T1

T2 T3

T4

T5

T6

T7

T8

Partition A

Figure 1. Pipelined execution of an example application

construct the task graph for the application and its control and
data dependencies are only in one direction, then we can efficiently
pipeline the input data stream and communication channel between
two processors.

A balanced cut separates the application graph into two par-
titions, which can be executed on different processing units of
the pipelined high throughput system. Since there are only one-
direction data/control dependencies from the up-partition to the
down-partition, we can pipeline the input data to the proposed sys-
tem architecture. According to our experiment result, our method
improved throughput by 19 � 87% and 18 � 15%, respectively. By trad-
ing performance to energy saving with voltage scaling mechanism,
our method enhances energy saving over the min-communication
algorithm and energy aware scheduling by 27 � 64% and 7 � 51%,
while delivering the same throughput.

In the following sections, we will introduce how our framework
constructs the direct acyclic task graph for the application at first.
Secondly, our optimization technique will be briefly introduced.
Then our proposed cascade multi-processor architecture will be
illustrated. Finally, the experiment environment and result will be
presented.

2. Task Graph Construction
2.1 Task Graph Model
In this section, We present a task graph model for the streaming
application. Our task graph can capture all necessary information
of the streaming application such as cycle-accurate latency number
for each task, byte-accurate inter-task communication amount, and
data/control dependency for each task.

Figure 2 illustrates our task graph model. We adopt the widely
used task graph model to represent the computation and communi-
cation involved in an application. Formally, an application is repre-

L1

L2 L3

L4

L5

L6

I1

I2 I3

I4

EA12 EA13

EA24 EA34
EA35

EA46

EA56

Figure 2. Task Graph Model

sented as a directed-acyclic graph (DAG) G. Vertices of G denote
the tasks or constituting computations of the application, and edges
of G represent inter-task communication. Each task can be fired
(executed on a processing resource) if all of its input data are avail-
able. We assume that input data from the environment are ready at
the beginning of the execution cycle.

Let Li denote the latency of task i in cycles. We use the terms la-
tency, delay, computation load or workload of a node interchange-
ably. Also, we use EAi j to refer to the amount of data that goes
from task i to task j over edge ei j in bytes. Ii represents the input
data received by i in bytes when executing task i.

Task graphs are typically used to model realtime applications
for which, latency is the primary design concern. Note that we
are using the model for streaming applications that demand high
throughput, and can tolerate large latencies.

2.2 Task Graph Extraction Framework
We use a simulation based framework to extract the task graph
from the application source code. Our simulation framework is
based on the Intel Xscale simulator, Xtrem[1]. At first, we mark the
application source code to different sections and insert the labels to
the source code as section boundaries. Each section means a task
node in the task graph. Our simulator can then measure and record
the executed cycles for each section. In general, we don not assign
different sections to one loop statement to avoid cyclic graph.

Section A

Section B

Write

Read

A

B

L1 Cache

Figure 3. Cache Monitor Mechanism

Control and data dependency can be captured by monitoring the
data cache and memory of the processor. We built a data cache and
memory monitoring mechanism in our simulator. This mechanism
monitors the load/store activities of each physical memory address
of data cache and memory. As shown in the figure 3, once a
task section B loads a physical memory address which was lastly
updated by task A, then task B has dependency on task A. By
using this mechanism, the edges in our task graph can be easily
constructed.

We also capture the communication volume for edges of the task
graph. We monitor the amount of memory traffic for each memory
load and store in bytes. Therefore, the communication amount from
task i to j can be estimated by aggregating the data amount loaded
by task j from the physical addresses lastly updated by task i.

Our extraction framework reflects the parallelism of the original
application implementation while it does not intend to exploit any
other parallelism from the application. If the extracted task graph is
cyclic, we merge the cyclic portion of the graph to one task node.
According to our experiment, most of the streaming application
kernel are highly parallel. Therefore our extraction framework is
suitable for constructing the task graph for streaming application.

3. Combined Throughput and Energy Aware
Partitioning

We propose a task-graph bi-partitioning algorithm that jointly con-
siders the maximum computation load assigned to a core, and inter-
core communication traffic. From a theoretical point of view, our
algorithm is optimal in minimizing the ratio of the communication
between the two partitions over the size of the smaller partition for
planar directed-acyclic graphs (DAG). Note that to minimize the
ratio, inter-partition communication has to be reduced while size of
the smaller partition has to be enlarged, i.e., the computation load
of the two partitions should be fairly balanced. Details of our algo-
rithm and its correctness proof are due to page limitation.

4. High Throughput Energy Efficient System
Architecture

4.1 System Configuration
Figure 4 illustrates our proposed high throughput energy efficient
system. It has three pipeline stages: computation stage 1, data trans-
mission stage, and computation stage 2. We use 32-bit computation
cores with the frequency/voltage scaling mechanism for each com-
putation stage. A voltage scaling(VS) regulator is used to set the
operating frequency and voltage for the computation core. It can
perform the frequency/voltage scaling statically.

By trading off the performance, quadratic energy saving can be
obtained to achieve high energy efficiency. The frequency/voltage
scaling mechanism will be discussed in the following subsection.
There is a 32-bit data bus connecting two processing unit and its
operating frequency is 100MHz. The behavior of our proposed
architecture is described as following. Computation stage 1 execute
the up-partitioned tasks of our task graph model. It receives the
input data from the system input(SI) buffers.

Core 1

VS
regulator

 Core 2

VS
regulator

SI

SO

SO

SI

32

Computation stage 1 Computation stage 2 Data transmission

Figure 4. High throughput energy efficient system architecture
After processing the input data, it writes the result to either out-

put buffers of the stage 1 or the system output(SO). As the output
buffer of the stage 1 is becoming full, it starts to send the stored
data to the computation stage 2 though the data bus. Then compu-
tation stage 2 will start to execute the down-partitioned tasks of our
task graph model and send the final result to the system output. Our
proposed architecture enhances the system performance by using
pipelining techniques. The pipeline period of our proposed system

is determined by the maximum value of the computation stage 1
latency, data transmission time, and computation stage 2 latency.

Since the enhancement of the system performance, our pro-
posed architecture can finish the whole task in a shorter period
of time compared to the traditional system. Thus it is energy ef-
ficient even without the voltage scaling technology. While the fre-
quency/voltage scaling technology provides higher energy saving
when the performance demanding is lower than the normal situ-
ation. We have built a simulator for our proposed architecture. It
can simulate the performance and energy consumption of the ap-
plication. In the energy simulation framework, we add the voltage
scaling mechanism to it and consider the energy consumption for
processing unit, data transmission line, and buffers.

5. Experimental Results
We briefly describe our experiment framework in follow. In order
to construct the task graph, we do task labeling to the source
code for task assignment at first. Then, after cross-compiling the
labeled source code, we use our task graph extraction simulator to
extract the task graph from the Xscale binary. The cycle-accurate
latency and byte-accurate inter-task communication amount can be
acquired at this step. If our task graph has cyclic or non-planar
part, planarization and acyclic pass will be applied to make the task
graph appropriate for our optimization technique.

After forming the appropriate task graph, we apply our parti-
tioning algorithm to find a cut in the planar DAG. This balanced
cut separates the application graph into two sections: up-partition
and down-partition. The up-partition and down-partition will be ex-
ecuted on different processing units of the pipelined high through-
put system. Since there are only one-direction data/control depen-
dencies from the up-partition to the down-partition, we can pipeline
the input data to the proposed system architecture. Once the com-
putation capability exceeds the computation requirement, voltage
scaling mechanism can scale down the frequency and supply volt-
age of the processor in order to save energy.

In order to verify the effectiveness of our proposed technique,
we compare the throughput and energy consumption of our design
to the traditional double-core architecture with two scheduling al-
gorithm: minimal communication scheduling[2] and energy mini-
mization scheduling[5]. We select five well-known streaming ap-
plication from ALPBench[4] and Mediabench[3] as our testbench.

Figure 5 reports the experiment results for system perfor-
mance. According to our experiment results, the throughput of
our hardware/software co-design scheme outperforms the min-
communication scheduling and energy minimization scheduling
by 19 � 87% and 18 � 15% respectively in average. Since our parti-
tioning algorithm cut the application into two balanced partitions,
our pipelined double-core architecture can be fully utilized. While
the traditional scheduling algorithm can be significantly limited by
structure of the DAG. Therefore, the utilization of the traditional
double-core architecture is lower than our proposed architecture.

��� ���	�

 � ���	�
����� ���	�
�
 � ���	�

���� ���	�

 � ���	�
����� ���	�

���
�������� �
�������� ��� � ����� �
���� �!�"��# � $&% �

'�� () *�(�,+ ���"�.- ����(*�%�� �/����0�1 �/234# ��5 67*��/� 34# �	5 89����(��:

 Figure 5. Performance Improvement

Figure 6 shows the results of simulating the energy consump-
tion. Since the proposed scheme has a higher performance, the
frequencies/voltages of the two processor units are scaled down to
match the performance of other approaches. However, we save
more energy because of the voltage scaling mechanism. Our
experiment results show that this design outperform the min-
communication algorithm and energy aware scheduling by 27 � 64%
and 7 � 51% respectively in average.

; < =�> =�=9?
=�> =�=9?

< =�> =�=9?
@ =�> =�=9?
A =�> =�=9?
B =�> =�=9?
C =�> =�=9?

D�E @ <GFIH�J D @ J�K�L�M H�J D FNH�J D @�O J LPJ H�Q L R.S D

T K�J�U D�V&W F�H�U X�S�J�F�J K�Y�Z ?N[\ Q K	;]7X�FIF \ Q K	; T K�J�U D�V

 Figure 6. Energy Improvement
According to the experiment result, our proposed scheme can

achieve higher performance for all of the testbench. Traditional
competitors are designed to minimize the inter-task communication
amount and system energy consumption respectively. Although our
inter-partition communication is greater than the summation of to-
tal inter-task communication of the min-communication schedul-
ing, the performance of our pipeline architecture is not affected
significantly since the pipeline period is determined by the maxi-
mal value of the stage 1 latency, data transmission time, and stage
2 latency.

6. Conclusion
We present a task graph extraction and partitioning flow for enhanc-
ing throughput of streaming applications running on a pipeline of
processors. Our main contribution includes the development of the
task graph extraction framework, software optimization technique
for min-quotient partitioning problem, and specific system archi-
tecture design achieving high throughput and energy efficiency and
its performance/energy simulator.

Simulation result shows that our design consistently outper-
form the cooperation of the traditional double-core processor
and scheduling algorithm in both system throughput and energy
consumption. Future work include extension to generic multi-
processor architectures, and validation of our simulation results
on real hardware.

References
[1] G. Contreras, M. Martonosi, J. Peng, R. Ju, and G. Lueh. Xtrem: a

power simulator for the intel xscale core. ACM SIGPLAN Notices,
39(7):115–125, July 2004.

[2] C. M. Krishna and K. G. Shin. Real-time Systems. WCB/McGraw-Hill,
1997.

[3] C. Lee, M. Potkonjak, and W. Mangione-Smith. Mediabench: A
tool for evaluating and synthesizing multimedia and communications
systems. In International Symposium on Microarchitecture, pages
34–41, 1997.

[4] M.-L. Li, R. Sasanka, S. V. Adve, Y.-K. Chen, and E. Debes. The
alpbench benchmark suite for complex multimedia applications.
In Proceedings of the IEEE International Symposium on Workload
Characterization, 2005.

[5] G. Varatkar and R. Marculescu. Communication-aware task scheduling
and voltage selection for total systems energy minimization. In Proc.
Intl. Conf. on Computer-Aided Design (ICCAD), November 2003.

