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ABSTRACT
We study the problem of sub-threshold leakage current optimiza-
tion using dual threshold voltages under timing constraints. We
develop an analytical framework that addresses the more general
problem of gate implementation selection under timing constraints.
While NP-Complete in the general case, we present conditions un-
der which the problem of implementation selection from a library
with discrete delay choices can be optimally solved in polynomial
time. We also extend our methodology to handle situations that do
not satisfy the theoretical conditions. Experimental results show
that our algorithm reduces the leakage current by close to an order
of magnitude, with no or negligible delay penalty. More impor-
tantly, our approach can quickly obtain near-optimal solutions for
real life netlists. On average, our results are only 0.2% leakier
than the optimal solutions derived using MILP solvers, while our
tool runs 73 times faster than GLPK1 solver. Moreover, our algo-
rithm outperforms the result of a recent LP-based competitor by
33%.

1. INTRODUCTION
Power consumption is one of the most important quality metrics

for digital systems due to its significant impact on density, battery
life, robust operation and cooling costs. Traditionally, designers
have been less concerned with active-state leakage current due to its
negligible effect on total power consumption in previous technol-
ogy nodes. However, as feature sizes continue to shrink, the con-
tribution of leakage current to total power consumption grows sig-
nificantly. Figure 1 illustrates the growing impact of sub-threshold
leakage 2 across several technology nodes [7].

Exponential dependence of transistor leakage on its threshold
voltage has motivated the idea of manufacturing the designs with
two threshold voltages. In this approach, transistors (or standard
cells) on the critical path of the design will have low threshold
voltage to maintain their high performance operation, while some
of non-critical transistors (or standard cells) are fabricated with
high threshold voltage to improve design leakage under timing con-
straints. Although there has been several previous efforts to address
threshold voltage assignment, or its combination with other design
techniques such as dual Vdd and gate sizing [14, 20, 1, 13], to the
best of our knowledge there has been no analytical study of opti-
mality and power savings bounds in dual Vt technology. Hence,
it is hard to know if existing algorithms fully exploit the potential
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2Sub-threshold leakage is the dominant leakage mechanism. Con-
sequently, throughout this paper we focus on sub-threshold leak-
age, and will use the terms leakage and sub-threshold leakage in-
terchangeably.

benefits of design with two threshold voltages.
We study the problem of threshold voltage assignment as a spe-

cial case of the general implementation selection problem (aka cir-
cuit implementation [27]). We significantly extend the existing re-
sults in time budgeting to perform near optimal implementation se-
lection from a library of components with arbitrary delay choices.
We prove that arbitrary delay choices can make the problem NP-
Complete in the general case. Furthermore, we show that under
reasonable assumptions implementation selection from a library of
components with arbitrary delay choices can be solved efficiently,
and in some cases optimally.

 

Figure 1: Estimation of active and leakage power variation
across the technologies [7].

We apply our results to leakage optimization problem via thresh-
old voltage assignment in dual Vt technology. This problem has
been selected as the sample application domain due to its signifi-
cance in future technology nodes. Experimental results show 76.6%
and 82.4% reduction in leakage current of several MCNC bench-
marks, with no or 5% delay penalty, respectively. Our algorithm
outperforms a simultaneous Vt selection and assignment competi-
tor by 33%, while we are only less than 1% away from the optimal
solution obtained by solving the corresponding mixed integer linear
programming (MILP) problem. Our algorithm is also extensible to
Vt assignment in multi threshold voltage technologies. Although
such technologies might not be presently economical, their power
saving potentials can be simulated. We show that our technique can
produce near-optimal solutions for multi-threshold technologies as
well.

2. BACKGROUND
We adopt the standard representation of a gate-level netlist with

a directed acyclic graph (DAG). Similarly, we use the conventional
fanin, fanout, arrival time, critical path and timing constraint defi-
nitions for netlists [9]. Nodes of the DAG denote gates (or tasks at
the system-level) and edges model the interconnects (or task depen-



dencies at the system-level). Each gate takes a specific amount of
time to perform its computation (known as gate delay) and broad-
cast the result to all of its fanouts. The gate delay depends on the
gate structure and the output load capacitance. We assume that all
primary inputs arrive at time zero, and all primary outputs must be
ready by a given timing constraint, denoted by T .

Edges are temporarily considered to have zero delay, however,
note that the model can easily capture interconnect delays by inser-
tion of dummy nodes with non-zero delays to edges. We assume
that there are a number of different ways to implement each gate.
For example, there might be several library elements that can re-
alize a particular gate, e.g., implementation with high-threshold or
low-threshold voltage. The problem of implementation selection is
to select each gate from a given number of implementations, such
that the timing constraint is met, and some objective function is
optimized.

To accelerate the quality assessment of different solutions, it is
reasonable to characterize the cost of each implementation sepa-
rately, and estimate the solution cost to be the sum total of the
selected nodes’ costs. Furthermore, the cost of a particular im-
plementation of a gate can be related to its delay. The estima-
tion process transforms the problem of implementation selection
to maximizing an easy-to-calculate function of gate delays, under
timing constraint. In addition, for many practical applications, de-
sign variables are either integers or can be transformed to integer
numbers with problem scaling. Therefore, it is often assumed that
the problem arises in integral domain, i.e, initial gate delays, pos-
sible lower and upper bounds on gate delays, and timing constraint
are non-negative integers.
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Figure 2: System-level implementation selection with discrete
delay choices. The table illustrates example optimal selections
under several timing constraints.

Figure 2 illustrates some examples of implementation selection
problem. Each node in the figure is annotated with its delay choices
corresponding to different possible implementations. In this exam-
ple, the gain function is assumed to be the sum of node delays, that
is node costs are inversely proportional to their delays. Each col-
umn of the table shows an optimal implementation of the netlist
subject to the given timing constraint. Note that the delay choices
of nodes b, c and d are discrete integers, while the delay choices
of nodes a and b are viewed as consecutive integers with proper
lower/upper bounds. In practical applications, however, the gain
associated with each implementation does not necessarily grow lin-
early with its delay.

In this paper, we discuss the problem of implementation selec-
tion under discrete integral delay choices. We leverage the existing
techniques for implementation selection from a library with contin-
uous integral delay choices to establish analytical bounds. Further-
more, we advance the state-of-the-art by developing polynomial-
time algorithms that efficiently solve the problem for realistic non-
linear gain-delay relations. We prove that our approach is effective

for any convex relation between the gain associated with a gate
and its delay. To validate our results, threshold voltage assignment
in dual Vt technology has been selected as a sample application.
However, our results are quite generic and applicable to many other
gate-level implementation selection problems.

3. RELATED WORK
Implementation selection or its closely related counterpart, time

budgeting, relate to the conventional slack distribution problem,
which has been studied extensively in the synthesis community.
However, almost all of the techniques developed in previous re-
search efforts, and employed in industrial tools utilize sub-optimal
heuristics with no guarantee on the solution quality. The majority
of previous work have used Zero Slack Algorithm (ZSA) [16] or
an extension of it, to assign timing constraints to components of
a design. ZSA selects a path of the graph, assigns delay budget
to the nodes on this path according to some criteria, and repeats
this procedure until no further delay relaxation is possible. Such an
approach is shown to be sub-optimal [8].

In our previous work, we presented a unified theoretical frame-
work that optimally and in polynomial time solves several widely-
used formulations of implementation selection under continuous
integral delay choices [18]. However, the framework is incapable
of addressing the problem under discrete delay choices. The prob-
lem under discrete delay choices has been investigated by several
researchers. However, they mainly considered the problem from a
particular application’s point of view and have not presented any
analytical results on their algorithm quality. We have showed that
the solution can be approximated within any given bound when the
application graph has the form of a rooted tree [19].

The problem of threshold voltage assignment for leakage opti-
mization has been investigated by several researchers. Wang et al.
[14] present an intuitive heuristic algorithm for Vt assignment. In
[21] a technique for leakage optimization via simultaneous Vt se-
lection and circuit sizing is presented. Khandelwal et al. focus
on simultaneous Vt selection and assignment [24]. However, to the
best of our knowledge all of the previous efforts utilize sub-optimal
heuristics and do not analyze the optimality of their results. Our
technique comes very close to the optimal, but exponentially ex-
pensive to compute, solution while running about two orders of
magnitude faster on selected benchmarks.

From the application point of view, the increase in implementa-
tion delay at the task level (where nodes are not necessarily gates)
has been utilized to improve system utility, optimization runtime
and product time to market. Design timing closure [6, 12], voltage
assignment [22], power optimization via gate and wire sizing [5,
4], high-level synthesis [11, 26], and software optimizations [10,
19] are only a few examples of the applications that have been con-
sidered by researchers.

4. SUBTHRESHOLD LEAKAGE AND DE-
LAY MODEL

According to the BSIM model [3], subthreshold leakage current
of a MOS transistor can be approximated as follows:

Ileak = Aeq(Vgs−Vt)/nkT (1− e−qVds/kT ) (1)

where A = µoCox(We f f /Le f f )(kT/q)2e1.8 and Cox is the gate ox-
ide capacitance per unit area and Vt is the threshold voltage. Equa-
tion 1 exhibits a exponential increase in the leakage current with
increase of the threshold voltage. However, decreasing the thresh-
old voltage would slow down the transistors. Specifically, delay of



a MOS transistor follows the following approximate relation with
respect to Vt [25, 3, 17]:

td = 2CloadVdd/(β)(Vdd −Vt)
α (2)

where α is a technology dependent factor, which is around 1.3
for short channel and 2 for long channel devices.

The leakage of a CMOS gate depends on the number and topol-
ogy of transistors that are turned off and hence on the inputs. For
example the NMOS transistors of a NAND gate are in a stack, while
its PMOS transistors are in parallel. Consequently, a NAND gate
that has both NMOS transistors off (input = 00) has smaller leak-
age current compared to the case of having both PMOSs off (input
= 11).

We model the leakage of a gate as a weighted average of its leak-
age under various input patterns. Thus, the input patterns that are
more likely to occur contribute more to the average leakage of a
gate. To estimate the delay, we simulated the delay of a gate over
a range of output loads. Then, a linear fit is carried out to approx-
imate the gate delay as a linear function of its structure and output
load. These two models are rather standard and are widely used in
the community.

In this paper, we use a lookup-table (LUT) based approach to
store the average leakage, intrinsic delay and slope for the load
dependent delay of gates. We lookup the parameters and quickly
estimate the leakage and delay of each gate throughout the op-
timization process. Many other researchers have utilized similar
LUT-based techniques, and have analyzed its decent accuracy, and
accuracy-storage tradeoff [2, 20]. Leakage current of a CMOS cir-
cuit is calculated simply as sum total of the leakage currents of all
gates. The leakage and delay entries of the lookup table are adopted
from [24] to allow a fair comparison in Section 6.

5. LEAKAGE OPTIMIZATION VIA THRESH-
OLD ASSIGNMENT

5.1 Problem Transformation
We formulate the problem of gate-level Vt assignment in dual Vt

technology as an instance of implementation selection with discrete
delay choices. The two delay choices for a gate are its delay under
low and high threshold voltages considering its load. The objec-
tive is to maximize the savings in leakage current, through assign-
ment of selected gates to high threshold voltage, while meeting the
timing constraint. We explain our methodology using dual imple-
mentation choices. In next subsection, we show that our approach
is extensible to some of the cases where multiple implementations
are present, including multi threshold voltage technologies.

In dual Vt technology, gates have exactly two delay choices, i.e.,
there exist exactly two possible implementation points in the ”leak-
age savings-delay” plane for each gate. We temporarily relax the
assumption of discrete integral delay choices. The two points can
be assumed to form a line with a fixed slope. The slope represents
the increase of the leakage savings by replacing an implementa-
tion with another implementation with additional unit delay. Note
that neither the points on the line are valid implementations of the
gate nor the relation between the gate leakage and its delay is lin-
ear. Nevertheless, the slope of the line forms an intuitive basis for
leakage savings per unit delay increase of a gate.

Figure 3.d illustrates the situation. The two end points corre-
sponding to Vt,low and Vt,high are the two possible implementations
of a gate. The other points on the line segment are temporarily
added to the implementation choices of the gate, and do not ac-
tually exist in the library. Hence, they cannot appear in the final
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Figure 3: Implementation choices in the gain-delay plane. Case
d) is temporarily relaxed to get an instance of case b).

solution. However, they allow us to temporarily assume that the
implementations are selected from a library of continuous integral
delay choices.

The corresponding implementation selection from a library of
continuous integral delay choices is to select the proper implemen-
tation for each node (from all of the points on the line segment)
such that the total weighted delay is maximized under timing con-
straint. This corresponds to the case illustrated by Figure 3.b, which
is a natural extension of the case with unbounded implementation
choices and identical nodes (Figure 3.a). Note that the imaginary
implementations have linear delay-leakage relation and hence, the
total weighted delay objective function captures the total leakage
savings. The delay-leakage relation is accurate at the two realistic
implementation points, i.e, end points of the line

In the next subsection, we utilize our previous results to show
that the temporarily relaxed problem (the case for Figures 3.a and
.b) is optimally solvable in polynomial time. Then, we present
properties of the delay choices, under which, a library with discrete
delay choices (Figure Figures 3.c) can be transformed to continu-
ous integral delay choices. In case a problem transformation is not
possible, we round down the solution of relaxed problem to arrive
at a feasible solution. For threshold voltage assignment problem,
this means that all of the implementation choices between the two
end points of the line segment will be assigned Vt,low in the final
solution.

We show that the proper assignment of weights guides the al-
gorithm to select one of the two end points from implementation
choices, so that almost none of the gates need rounding legaliza-
tion. As a result, only a small amount of leakage savings is elimi-
nated by rounding down the continuous integral solution.

5.2 Implementation Selection with Continu-
ous Integral Delays

The design model that we considered so far, assumes that nodes
incur some delay to perform their associated computations, and
edges have zero delay. More generally, we can assume that edges
incur some delay, and nodes have zero delay. A netlist with imple-
mentation choices for nodes can be transformed to an edge imple-



mentation instance by 1)splitting each node to two nodes that are
connected by an internal edge, and 2) assigning proper weights to
internal, and 3) zero weight to external edges. The transformation
of Figure 4.a to 4.b depicts the idea. It follows that the problem of
implementation selection for nodes is a special case of implemen-
tation selection for edges.

Previously, we have shown that the problem of edge implemen-
tation selection with continuous integral delay choices is the dual
of a min-cost flow instance [18]. This problem aims to maximize
the sum of weighted edge implementation delays in which, each
edge of the DAG is associated with a constant weight. Moreover,
the technique can handle lower and/or upper bounds on the delay
of an edge. This corresponds to the case illustrated in Figure 3.b.

To summarize part of the previous result that relates to this paper,
the primal edge implementation selection on a DAG formulates a
dual min-cost flow problem on an extended DAG. The cost of the
unit flow on edge ei j of the DAG in the min-cost flow instance is
the negative of the minimum delay choice possible for that edge.
In addition, edges e ji with cost ui j are added to the original DAG,
where ui j is the upper bound of the delay choices of the edge ei j . In
the dual min-cost flow instance, the amount of flow supply at node
i is equal to the difference of incoming and outgoing edge weights
(weightin(i)−weightout (i)). The transformation of Figure 4.b to 4.c
visualizes this process.

It follows that the primal problem (edge implementation selec-
tion) can be solved optimally in polynomial time, using any of the
well-known min-cost flow algorithms [15]. Figures 5.a and 5.b il-
lustrate the dual min-cost flow problem and its solution for an ex-
ample graph whose edges have a lower bound of one and upper
bound of three units of delay, and its timing constraint is four delay
units. All of the edges are assumed to have identical unit weights.
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Figure 4: Implementation selection with continuous integral
delays can be solved using its dual min-cost flow instance [18].

Once the flow variables along edges ei j and e ji are determined,
we construct the residual graph. For any edge in the graph with
non-zero flow along it, there are two forward and backward edges
in the residual graph. The cost of each backward edge is negative
of the forward edge cost. Let δi be the shortest distance of node
i to SO in the residual graph. There is no negative cost cycles in
the residual graph and hence, δi variables are well defined. δi vari-

ables can be determined by utilizing any well-known shortest path
algorithm, such as Bellman-Ford [23], that is applicable to graphs
with negative edge costs. The proper implementation of edge ei j is
determined by selecting the implementation whose delay is equal
to δ j − δi. Figure 5.c shows the optimal solution for the example
graph in which, edges are annotated with their implementation de-
lay.

Theorem 1. δ j −δi forms an optimal implementation for edge
ei j , where δi is the shortest path of node i to SO in the residual
graph. The residual graph is formed by solving the aforementioned
min-cost flow instance.

Proof: Based on the LP duality theorem and complementary
slackness condition. Details are omitted for brevity [18, 15].

�

The time complexity of the algorithm is determined by the min-
cost flow step, which functions on the extended graph with O(n)
nodes. Therefore, the min-cost flow instance can be solved in
O(m.log(n).(m + n.log(n))) via enhanced capacity scaling algo-
rithm [15], where m is the number of edges in the graph. For practi-
cal CAD problems, the graphs are usually sparse in which case, the
degree of nodes is bound by a small constant. Thus, the number of
edges is O(n) and the time complexity is reduced to O(n2.log2(n)),
which is quite affordable for many problem instances. Section 6
reports the experimental observations including runtime measure-
ments of our approach. The experimental results verify the fast
runtime of our algorithm on commercial problem instances, and
advocate its practicality.
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plementation selection. b)Min-cost flow solution. Flow supply
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5.3 Threshold Voltage Assignment via Imple-
mentation Selection with Discrete Delays

In this section, we remove the relaxation assumption of continu-
ous integral delay choices for each gate, and focus on discrete delay
budgeting. We present our results on the complexity of the problem
and conditions, under which, the problem can be solved optimally.

If each node has arbitrary delay choices, the problem of imple-
mentation selection to maximize total delay is NP-complete. Even
under very restrictive assumptions of two arbitrary delay choices
for each node, and an application graph in the form of a path, the
problem is NP-complete.

Theorem 2. The problem of implementation selection from a
library of discrete delay choices for maximization of total delay is
NP-complete.

Proof: We reduce a given instance of subset sum problem to an
instance of implementation selection on a path. For each element
ei of the set, we add a node with two delay choices of zero and



ei to the path. The question of ”is there a subset of the set such
that the total value of elements in the subset is equal to B?” can be
answered in polynomial time if the corresponding implementation
selection problem on the constructed path, with timing constraint B,
can be solved in polynomial time. Therefore, the implementation
selection problem with arbitrary delay choices is NP-complete.

�

Although the implementation selection problem is NP-complete
in the general case, a special relation between the delay choices, or
the structure of the graph, allows efficient solution of the problem.
For example, under arbitrary delay choices, the optimal solution
can be approximated to any given accuracy if the graph forms a
rooted tree [19]. We show that the problem can be efficiently solved
for the general graph structure under some special relation between
the node delay choices.

Let us assume that the delay choices are consecutive multiples
of an integer d. That is, the delay choices of a given node are
m.d,(m+1)d . . . (m+n).d for given integers m and n, and the tim-
ing constraint is T . The following lemma proves that the aforemen-
tioned instance of the problem can be transformed into implemen-
tation selection from continuous integral delay choices, and hence,
can be optimally solved through the technique explained in Sub-
section 5.2:

Lemma 3. The implementation selection problem instances, and
solutions are scalable by an arbitrary positive integer. That is, an
optimal integral solution for a given problem instance, if multiplied
by d, forms an optimal solution for a new discrete implementation
selection instance. The new instance is created by multiplying de-
lay choices, lower bounds, upper bounds and timing constraint by
d.

It follows that the aforementioned instance can be scaled down
by the factor d to create an implementation selection instance under
continuous integral delay choices with lower and upper bounds of
m and n for the given node, respectively. The timing constraint is
reduced to bT/dc. Note that the timing constraint does not neces-
sarily have to be an integral multiple of d.

For the case of Vt assignment, the two delay choices, and their
relation completely depends on the choice of threshold voltages.
Although threshold voltages might be selected to enable exact scal-
ing, it should not be generally assumed that they follow this pattern.
Therefore, we solve the threshold voltage assignment problem by
relaxing it into implementation selection from continuous integral
delay choices, followed by solution round down to the closest fea-
sible implementation for each gate. This scheme works very effec-
tively in practice, and most of the gates with enough timing slack
are assigned to high threshold voltage.

In case of multi threshold voltages, more than two implementa-
tions are available for each edge 3. We observe that the leakage
current exponentially decreases with increase of Vt . Hence, the
gain slopes determining the edge weights, decrease with addition
of implementation choices for each gate. Figure 6 illustrates the
case, and shows how we can transform it to a conventional imple-
mentation selection instance. The partial graph on the right part of
Figure 6 replaces one of the split nodes shown in Figure 4.b. This
technique is extensible to piece-wise linear approximation of cost
functions, and finds the optimal solution (or near-optimal solution
for discrete case) via purely combinatorial algorithms. Note that
similar linear programming based methods employ numeric opti-
mizations, which exhibit slow runtimes and occasional numerical
instability.

3Recall that nodes are modeled using edges by node splitting (Fig-
ure 4)

It is noteworthy that the condition w1 >= w2 guarantees that
starting with the implementation A, limited available slack would
be spent to select the implementation B rather than C. In the general
piece-wise linear approximation scheme, the condition wi >= wi+1
implies the convexity of the cost function, which is a necessary
condition for optimality of our analysis in the continuous domain.
The transformation does not work if weight is not a non-increasing
function of Vt in which case, the cost function will not be convex.
The continuous integral version of the problem is NP-Complete in
that case.
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6. EXPERIMENTAL RESULTS
We implemented our min-cost flow based algorithm for solving

the relaxed implementation selection from a library of continuous
integral delay choices in SIS [9]. Since the relaxed solution might
not be feasible in dual Vt technology, we perform round down on
the relaxed solution to arrive at a feasible discrete budgeting solu-
tion.

The round down process assigns Vt,low as the threshold voltage
of any gate whose delay is determined to be less than delay under
Vt,high, in the relaxed version of the problem. That is, all of the de-
sign points between two valid implementation will be realized us-
ing the faster implementation in order to meet the timing constraint.
We used the experimental framework developed by Khandelwal et
al. [24] to estimate the gate leakage and delay variations with re-
spect to Vt for gates in lib2.genlib library. Similar to their approach,
all leakage and delay curves are normalized with respect to a basic
inverter in the library.

The MCNC benchmarks are mapped to the lib2.genlib library
under default settings. In one set of experiments, the timing con-
straint is set to the netlists critical path under Vt,low. In another
experiment 5% relaxation is allowed to this timing constraint. The
Vt,low and Vt,high values are adopted from [24] to allow a fair com-
parison. The threshold values depend on the benchmark and vary
in the range of 0.3 to 0.5 volts. Nevertheless, our algorithm and
approach is quite generic and applicable to other threshold values.

After assigning low and high threshold voltages to gates, another
timing analysis is performed to assure the validity of results. In all
cases, our algorithm did meet the required timing constraint. For
each benchmark, the netlists are processed without applying any
SIS optimization. They are mapped using the built-in ”map” com-
mand with no switches. The choice of benchmarks, SIS optimiza-
tion and mapping switches have been merely duplicated from [24]
to maintain consistency, and create a fair ground for comparison.

Table 1 summarizes our experimental results for dual Vt technol-
ogy. The first column of the table illustrates the selected bench-
marks. Second and third columns of the table show the value of
low and high threshold voltage for each benchmark. We also re-



peated the same experiment with three threshold voltage whose re-
sults are reported in Table 2. Although fabrication processes with
three threshold voltages are not economical today, we performed
this experiment to demonstrate the effectiveness and extensibility
of our methodology, in case such processes become viable in the
future.

The ”Initial leakage” column shows the leakage of benchmarks
when all of the gates are fabricated with low threshold voltage
(Vt,low). The next three columns report the result of applying ”si-
multaneous Vt selection and assignment” [24], our min-cost flow
based (MCF-based) algorithm with tight timing constraint, and our
algorithm with 5% relaxation in the timing constraint. In each case,
we report the optimal results obtained from solving the correspond-
ing MILP problem instance. Note that MILP formulations are NP-
hard in general, and finding the optimal solution by solving the
MILP instance is inefficient for large problem instances. However,
we report the optimal solutions to show the limits on power savings
using dual threshold voltages.

Column ”Simultaneous” was calculated with 5% relaxation in
the timing constraint (5% delay penalty). Hence, our algorithm re-
sults with relaxed timing constraint should be considered for fair
comparison. The comparison among normalized leakage current
of the four methods is visualized in Figure 7. For each benchmark,
initial leakage, optimized leakage after application of ”simultane-
ous Vt selection and assignment”, our min-cost flow based results
and the optimal MILP-based results are illustrated. The figure de-
picts the substantial leakage savings of MCF-based method over
baseline and ”simul” algorithm results. More importantly, it shows
that our result are very close to the best feasible solution.
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Figure 7: Comparison of normalized leakage current with 5%
delay penalty. Our algorithm (MCF-based) comes very close to
the optimal solution obtained by MILP solvers.

Under no delay penalty, the reduction in leakage current of the
selected benchmarks is as high as 85% and, 76.6% on average.
The improvement can be further magnified with extra relaxation
in delay constraint. When 5% relaxation in timing is tolerated, the
reduction in leakage is 82.4% on average, for the selected bench-
marks. With the same timing constraint, simultaneous Vt selection
and assignment [24] reduces the leakage 49.3%, compared to base-
line implementation of assigning all of the gates to Vt,low. If the
result of simultaneous Vt selection and assignment is considered as
the basis for comparison, our algorithm improves the leakage by
factors of 50.2% and 62.2% under no delay penalty, and 5% delay
penalty, respectively. The sub-columns titled as ”vs. init” and ”vs.
simul.” illustrate the comparison of the corresponding results, with
initial leakage, and leakage after applying simultaneous Vt selection
and assignment. Our algorithm comes extremely close to the op-
timal solution, by generating results that are occasionally optimal,

and on average only 0.2% worse than the optimal MILP solution.
The MILP solvers are known to have slow runtimes. Due to ex-

ponential dependence of solution space to problem size, MILP op-
timization runtime particularly becomes problematic for complex
netlists. The testbenches used in the aforementioned set of experi-
ments have at most a thousand gates for which, the runtime of our
algorithm and MILP solvers are both negligible (on the order of
tenths of a second for most cases). Note that the choice of test-
benches was rather imposed to us to allow a fair comparison with a
recent competitor [24].

In order to highlight the runtime improvement of our algorithm
over MILP solvers and further evaluate its quality, we performed
another set of experiments with nine of larger MCNC benchmarks.
These testbenches are roughly one order of magnitude larger than
the netlists of Table 1.

We summarize the important observations of the experiment in
Figure 8. The figure shows that our algorithm is on the average 73
times faster than MILP solver for the selected benchmarks. The
speedup was as large as 160 times for pdc, and as expected, it in-
creased with the growth of the netlist complexity. Moreover, we
were able to find the optimal MILP solution in most of the cases,
and came extremely close (0.02% deviation on average) to the so-
lution of MILP solver.
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Figure 8: Error percentage and speedup comparison between
MCF-based and optimal MILP solutions. The error percentage
is multiplied by 1000 for better visualization.

7. CONCLUSIONS
We presented an analytical framework to address several ver-

sions of the implementation selection problems. We examined con-
ditions under which, the implementation selection from a library of
discrete delay choices can be optimally or very efficiently solved.

Under such conditions, the problem is transformed to an instance
of implementation selection with continuous integral delay choices
for maximization of total weighted delay. A simple rounding pro-
cedure might be required to legalize the intermediate solution. We
showed that for practical CAD problems and with proper assign-
ment of weights, the error introduced by rounding is negligible.

We leveraged the developed methodology and applied it to the
problem of threshold voltage assignment in dual Vt technology. Our
technique reduces the design leakage current by 76.6% or 82.4%,
with no or 5% relaxation in timing constraint, respectively. It out-
performs a recent simultaneous Vt selection and assignment tech-
nique by 33%. More importantly, our results are very close (less
than 0.2%) to the optimal solution obtained by MILP solvers, while
our algorithm ran about two orders of magnitude faster than GLPK
MILP solver.



Benchmark Vtl Vth Initial Simul. Tight timing constraint 5% relaxed timing
leakage leakage MILP leakage vs. init vs. simul. MILP leakage vs. init. vs. simul

9symml 0.40 0.50 515.70 159.24 132.3 132.3 74.35 16.92 94.86 94.86 81.61 40.43
C1355 0.40 0.50 2913.40 1985.08 848.3 883.4 69.68 55.50 503.75 521.28 82.11 73.74
apex6 0.41 0.50 3870.40 1720.33 746.6 746.6 80.71 56.60 692.60 698.41 81.96 59.40
apex7 0.41 0.50 1235.10 1116.24 290.0 290.0 76.52 74.02 231.19 233.12 81.13 79.12
C2670 0.38 0.49 6440.30 1885.21 1008.3 1022.3 84.13 45.77 848.84 865.79 86.56 54.07
C499 0.40 0.47 3062.60 1989.22 982.6 986.4 67.79 50.41 801.23 803.34 73.77 59.62
b9 0.41 0.50 590.50 357.61 142.1 142.1 75.94 60.26 110.42 110.42 81.30 69.12
pair 0.41 0.50 7014.71 3954.37 1373.5 1387.4 80.22 64.91 1268.20 1268.20 81.92 67.93
rot 0.39 0.50 4585.10 1692.89 686.6 686.6 85.03 59.44 585.12 596.07 87.00 64.79
x4 0.40 0.50 2881.30 1267.31 999.1 999.1 65.32 21.16 423.56 423.56 85.30 66.58
too large 0.40 0.50 2413.50 768.16 408.5 408.5 83.07 46.82 385.38 385.38 84.03 49.83
Average 3229.33 1535.97 692.54 698.61 76.61% 50.17% 540.47 545.49 82.42% 62.24%

Table 1: The experimental results for design with two threshold voltages

Benchmark Vt1 Vt2 Vt3 Initial Simul. Tight timing constraint 5% relaxed timing
leakage leakage MILP leakage vs. init vs. simul. MILP leakage vs. init. vs. simul

9symml 0.40 0.46 0.50 515.7 137.54 117.3 117.8 77.16 14.35 86.4 88.3 82.88 35.80
C1355 0.40 0.42 0.50 2913.4 1812.07 761.9 783.5 73.11 56.76 455.5 462.8 84.11 74.46
apex6 0.39 0.42 0.50 3870.4 1539.98 722.6 734.3 81.03 52.32 693.8 693.8 82.07 54.95
apex7 0.39 0.42 0.50 1235.1 777.9 256.5 258.1 79.10 66.82 228.5 230.1 81.37 70.42
C2670 0.37 0.46 0.50 6440.3 1545.1 810.5 813.6 87.37 47.34 668.4 669.3 89.61 56.68
C499 0.37 0.47 0.48 3062.6 1595.34 778.6 786.1 74.33 50.73 666.5 667 78.22 58.19
b9 0.40 0.42 0.50 590.5 308.72 136.9 138.4 76.56 55.17 109.2 109.2 81.51 64.63
pair 0.39 0.41 0.50 7014.7 3236.29 1343.2 1363.1 80.57 57.88 1261.5 1276.4 81.80 60.56
rot 0.38 0.41 0.50 4585.1 1194.89 632 632 86.22 47.11 567.5 569.5 87.58 52.34
x4 0.39 0.41 0.50 2881.3 1043.98 431.6 431.6 85.02 58.66 423.1 423.1 85.32 59.47
too large 0.38 0.41 0.50 2413.5 527.19 408 413 82.89 21.66 371.5 371.5 84.61 29.53
Average 3229.33 1247.18 581.74 588.32 80.30 48.07 502.90 505.55 83.55 56.09

Table 2: The experimental results for design with three threshold voltages
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