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Abstract
Unlike their hard realtime counterparts, soft realtime applications are
only expected to guarantee their ”expected delay” over input data space.
This paradigm shift calls for customized statistical design techniques to
replace the conventional pessimistic worst case analysis methodologies.
Statistical design methods can provide a realistic assessment of design
space, and improve the design quality by exploiting its stochastic be-
havior. We present a novel probabilistic time budgeting algorithm that
translates the application expected delay constraint into its components
delay constraints. Our algorithm which is based on mathematical prop-
erties of the problem, determines the optimal maximum weighted timing
relaxation of an application under expected delay constraint. Experi-
mental results on core-based synthesis of several multi-media applica-
tions on FPGAs show about20% and 19% average energy and area
improvement, respectively.

1. Introduction
Timing is traditionally treated as a hard constraint throughout the sys-

tem design process. As a result, applications are often pessimistically
analyzed for worst case scenarios and their slowest responses determine
their performance. Although this is a necessity for hard realtime ap-
plications, their soft realtime counterparts can occasionally take longer
than the deadline to finish some tasks1. They are often expected to
guarantee anexpected delay(or latency) rather than a worst case execu-
tion time over the input data space. Therefore, realistic statistical design
techniques, as opposed to pessimistic worst case analysis, are required
to automate the design process for such application domains.

In this paper, we present a probabilistic delay budgeting technique for
soft realtime applications. Our technique, which is based on mathemat-
ical properties of our model, relaxes the timing constraints of different
components of a design, while guaranteeing that the expected delay of
the application does not violate a given constraint. We develop and em-
ploy an optimal incremental delay relaxation algorithm for each compo-
nent of the design. The incremental technique is integrated into a higher
level probabilistic algorithm that performs time budgeting for the entire
design. Note that the output design might (and most probably will) have
a larger delay than the constraint for infrequent input patterns. However,
it is guaranteed that the expected delay over the entire input data space
meets the given constraint.

We apply our algorithm to core-based synthesis of application CD-
FGs. The components with relaxed timing constraint are optimized to
improve design energy and area. Experimental results on several multi-
media applications show an average of about 20% and 19% energy and
area improvement over not using our technique, respectively.

2. Background

2.1 Application and Execution Model
Figure 1 illustrates the application model, and its corresponding hard-

ware realization that is used throughout this paper. We use the well-
known control data flow graph (CDFG) structure to model a given ap-
plication or its compute-intensive kernels, where nodes represent appli-
cation basic blocks (tasks), and outgoing edges of a node denote control
1The argument pertains to system/application level design as opposed to
gate/layout level, where critical paths determine the clock period

flow edges. Nodes of the graph take a given amount of time to finish
their execution (called delay or latency). Edges of the graph model the
dependency among tasks and are assumed to have zero delay. Note that
our model can capture edge delays by inserting a dummy node on the
edge whose delay is equal to the original edge delay. Therefore, our
model is not restricted to ignore communication latency.
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Fig. 1: Our synthesis scheme: a)An example CDFG: each node
is a basic block containing internal data flow graph (DFG) b) An
illustration of generated hardware.

Each basic block has an internal data flow graph (DFG), which is
composed of a number of basic operations. The compute modelwithin
a node (DFG) differs from the CDFG in that all of the DFG paths are
activated at runtime, and therefore, all of the paths have to meet the tim-
ing constraint of the basic block (Figure 1). The synthesized hardware
is a pre-optimization design that has a separate datapath for each ba-
sic block. When the execution of a basic block is finished, depending on
the computation result, it invokes another dependent basic block. Hence,
depending on the input data, one and exactly one path in the graph is ex-
ecuted at runtime. Edges of the graph are annotated with the probability
of taking that edge if its source node is executed. For example in Figure
1, bb1 upon completion might invokebb2 or bb3 with probabilityC1 or
C1, respectively. The probabilities are profiled over the input data space
and are assumed to be known a priori.

We assume that there is no backward edge in the CDFG. Loops and
other type of backward edges are removed from the CDFG by pre-
processing, which is performed by either putting loops into nodes and
forming complex nodes, or completely unrolling the loops and remov-
ing them from the application. If neither complex node formation nor
complete unrolling are possible, we focus on the body of the loop, which
constitutes the compute-intensive kernel of the application.

2.2 Motivating Example
Figure 2 illustrates an example application, its execution traces, and

several examples of delay budget assignment under expected delaycon-
straint. In this example, task (basic block)c upon completion might
invoke taskd or e with probability 0.9 or 0.1, respectively. The dashed
paths demonstrate the possible execution traces of the application. Each
trace is annotated with the probability of its activation over the input data
space. Note that the number of execution traces can grow exponentially
with the number of edges in the graph.

To motivate the idea of time budgeting underexpected delaycon-
straint, let us assume that the delay of the tasks are as shown in the
”original delay” column of the table, and the application’s expected de-
lay constraint is 5. Originally, the expected delay of the application is
4.52 over the input data space. We can slow down some tasks to optimize
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Fig. 2: Probabilistic timing budget assignment under expected delay
constraint
them further, and improve the quality of the synthesized design. The
quality metric (power dissipation, area, accuracy, cost, etc) greatly de-
pends on the application domain. The table illustrates three delay budget
assignment examples that would all meet the expected delay constraint.

This paper provides detailed formulation, property analysis, and ef-
ficient algorithms to address the delay budget management under ex-
pected delay constraint. We develop and utilize an optimal incremental
delay budgeting algorithm for each node (basic block), which is used to
maximize the utility function for the entire application. Note that after
delay budget assignment, infrequent execution traces might take longer
than the expected delay. This makes the problem drastically different
from conventional pessimistic analysis, where all paths must meet the
timing constraint.

3. Related Work
The concepts of slack and timing relaxation have been extensively

studied in the synthesis community. Time budgeting on directed acyclic
graph, while different in principle, relates to the conventional slack idea
[7]. However, our problem at hand is different due to the soft realtime
constraints, and the probabilistic nature of the required analysis. The
budgeting problem on a graph (both temporal and spatial budgeting) has
been studied for many different applications. Timing-driven placement
and floor planning is one such example, during which the issue of de-
lay budgeting has been addressed by several researchers [1, 3, 12, 14,
5]. Moreover, delay budgeting has been utilized to perform gate and
wire sizing for power optimization. Under a given timing constraint,
budget management can be applied to find a set of nodes/edges in the
netlist graph such that their physical size or power dissipation can be
reduced by mapping to smaller, or power-efficient cell instances with
larger delays from a target library [3, 9, 16]. High-level synthesis is an-
other application, in which timing slack of the operations is utilized for
optimization in area and power. Examples are the algorithms and tech-
niques developed for area minimization in pipelined datapath [18] and
power minimization under timing constraint [11, 22].

The techniques employed in above papers are sub optimal heuristics
driven from Zero Slack Algorithm [17] and MISA [2]. In our previ-
ous result [19], we solved various non-probabilistic formulations of the
problem through a unified theoretical framework. In this paper, we ex-
tend our previous work to incrementally solve the problem of delay bud-
get assignment for each basic block of the CDFG. Furthermore, we de-
velop a probabilistic analysis framework that considers the stochastic
behavior of the application over the input data space.

4. Target Application Domain
We focus on the class of soft realtime applications that perform inten-

sive computations and demand hardware realizations for realtime per-
formance. Examples include multimedia applications such as video en-
coding/decoding, and image compression. Such applications are often
characterized by theirintensive, periodic, heavily input data dependent
(content dependent), and loss tolerantbehavior.

While intensity and periodicity impose timing constraints on the de-
signs that target such applications, content-sensitivity and loss-tolerance
allow occasional violations of the timing constraint for infrequent in-
put data. For example, a video decoder can occasionally skip a frame
without affecting the user experience. For such application domains,
guaranteeing an expected delay for each period of execution is as good
as maintaining a hard timing constraint. In practice, the former is of-
ten preferred due to the potentials of further optimizations under softer

timing constraints.
In this paper, we target the aforementioned class of applications and

hence, assume that the application demands a guarantee on the expected
delay. Furthermore, we assume that the input data, or a representative
subset of it, is available at the design time. This is a reasonable assump-
tion that allows us to profile the probability of each execution trace in
the application CDFG.

5. Formalizations and Problem Statement
A given application can be represented as a directed acyclic graph

G = (V,E), whereV is a set of vertexes andE is a set of directed edges.
Each vertexv∈V represents a task (basic block) of the application that
takesdv units of time to perform its computation. Whenvi finishes its
computation, it invokes exactly one of its successor (dependent) nodes
depending on the computation results. Edgeei j ∈ E models the data
dependency betweenvi andv j , denoting thatv j can start its computation
only whenvi is finished andei j is selected to continue the execution trace
of the application. There is a probabilitypi j associated with eachei j ∈E
that corresponds to the probability of takingei j when nodevi finishes its
computation, over the input data space. Similarly, for each nodevi , its
probabilitypi , is defined as the probability of the execution trace visiting
nodei. It follows that for every vertex∑ j∈ f anout(i) pi j = 1.

A source nodes∈V, is a vertex without incoming edges, and a sink
nodet ∈ V, is a vertex without outgoing edges. We assume that there
is exactly one source and exactly one sink node inG. A CDFG with
more than one source (sink) node can be transformed to comply with
this constraint by adding a dummy source (sink) with zero delay, and
connecting it to all application source nodes (all application sink nodes
to it). An execution trace (or simply a trace) of the application is a
directed path froms to t in G. Let XT be the set of execution traces of
G. Note that| XT | can grow exponentially with respect to| E |. A trace
can be represented by the edges that appear in the path froms to t. We
use the notionesi → ei j → . . . → eut to represent those edges.

The probability of an execution tracex = esi → ei j → . . . → eut or
Px is defined as the probability of the application takingx at runtime,
over the input data space. Hence, ifx = esi → ei j → . . . → eut then
Px = psipi j . . . put. The runtime or delay of tracex or Dx, is defined
as the application’s runtime when taking tracex and is equal toDx =
ds+di +d j + . . .+du +dt . By definition:∑x∈XT Px = 1 anddexp(G) =
∑x∈XT PxDx. A partial execution trace refers to a subset of an execution
trace that connects two nodes that lie on the trace. Letxi j denote a
partial execution trace that starts from nodei and finishes at nodej.
We useXTi j to refer to the set of all possiblexi j (all possible partial
execution traces that start ati and finish atj). We definePxi j andPi j as
the probability of the execution of a particular partial tracexi j , or one of
traces inXTi j , respectively. By definition,Pst = 1. Note that we use the
lower case variablesd andp to refer to delay of a node, and probability
of a/an node/edge, respectively. The upper case variablesD andPdenote
the delay and probability of a (partial) trace. Considering the notion of
partial execution trace, we have:

∀vi ∈V pi = ∑
xsi∈XTsi

Pxsi (1)

∀vi ∈V dexp(i) = ∑
xsi∈XTsi

Pxsi.Dxsi (2)

Any nodei induces a subgraph onG that is composed of nodes and
edges that can be visited by somexsi. We extend the notion of expected
delay to such induced subgraphs. That is,dexp(Gi) is the expected delay
of the subgraph, induced by treating nodei as the sink node. Let us
assume that each nodevi ∈ V utilizes a unit of slow down in its delay
with weight wi . The problem of timing budget management for soft
realtime applications can be formally stated as:

GivenG(V,E), vectorsp, d, andw, and an expected delay constraint,
Dmax, the objective is to determine an integral delay relaxation budgetbi
for eachvi that maximizes∑wi .bi (Note that the delay of nodevi after
assigning the delay budget would bedi + bi) Subject to expected delay
constraint for the application:

dexp(G) = ∑
∀x∈XT

Px.D
′
x ≤ Dmax



WhereD′
x is the updated delay of tracex after slowing down the nodes

by vectorb. In practice, the application, its timing constraint, and the
library elements are the only available inputs. Hence, the remaining
input parameters, i.e., vectorsp, d andw, have to be automatically de-
termined. Vectorp is determined by profiling the application over input
data space. In section 7 we prove properties by which, vectorsd andw
are determined.

6. Tractable Expected Delay Calculation
The expected delay of an application isdexp(G) = ∑x∈XT PxDx, by

definition. However, the number of execution traces of an application
can grow exponentially with respect to the problem size (number of
nodes or edges in the graph). Therefore, the complexity of definition-
based approach to calculating the expected delay can be prohibitive. In
this section, we prove some interesting properties of the problem by
which, we can rapidly relate the expected delay of the application to pa-
rameters that are easy to calculate from problem inputs. To do so, we
break the execution traces over fanins oft. Figure 3 assists in visualizing
the following equations:

dexp(G) = ∑
x∈XT

PxDx = ∑
xsi∈XTsi

∑
eit

[(Pxsi.pit )(Dxsi +dt)]

= dt . ∑
xsi∈XTsi

∑
eit

(Pxsi.pit )+ ∑
xsi∈XTsi

∑
eit

(Pxsi.pit .Dxsi)

= dt .Pst +∑
eit

∑
xsi∈XTsi

(Pxsi.pit .Dxsi) = dt .Pst +∑
eit

pit . ∑
xsi∈XTsi

(Pxsi.Dxsi)

= dt .Pst +∑
eit

pit .dexp(Gi) (3)

Equation 3 presents a recursive method to calculate the expected delay
of G based on the partial expected delay at fanins oft. We can reuse
equation 3 for subgraphs induced by fanins oft, to plug in the expanded
forms fordexp(Gi) and eliminate the recursion. A non-recursive solution
is favorable due to its practicality and improved complexity, especially
if it results in a simple fast method to calculate the expected delay.

When expanding equation 3, each edge is accounted for exactly once
in reverse topological order. For each edgeei j , the source nodei, con-
tributes todexp(G) with the termpi j .dexp(Gi). Interestingly, the addi-
tion of all such terms for fanouts of a node, is equal todexp(Gi) (note
that∑ j∈ f anout(i) pi j = 1). We can reuse equation 3 to expanddexp(Gi),
which would contribute todexp(G) with the termdi .Psi. However,Psi is
the probability of the execution trace going through nodei over the input
data space, which is equivalent topi , by definition. Therefore:

Theorem 1. The expected delay of an application under execution
model explained in Section 5 can be calculated using the following equa-
tion in O(E). Note that each edge has to be traversed once to determine
node visiting probabilities.

dexp(G) = ∑
vi∈V

di .pi

Detailed proof is omitted for brevity, however, an outline of the proof
is sketched in the aforementioned arguments. Theorem 1 provides a very
intuitive expression for the expected delay: The contribution of a node
to the application’s expected delay, is its intrinsic delay times the like-
lihood of that node being visited during application runtime (no matter
what trace is taken as long as the node is executed). This can be easily
verified on small examples and special cases such as paths, or symmet-
ric graphs. In addition, it raises the point that infrequently visited nodes
can be assigned large delay budgets with little effect on application’s ex-
pected delay. This property is further analyzed in subsequent sections.

7. Timing Budget Management for Basic Blocks
The problem of delay budget management for CDFGs has two stages.

First, the extra delay budget (timing constraint relaxation) has to be as-
signed to each node of the graph (basic block). Subsequently, it has to be
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Fig. 3: Nodes are visited once per each outgoing edge during ex-
pansion of the recursive equation 3. Nodew contributes (p1 + p2 +
p3).dexp(Gw) = dexp(Gw) to the application’s expected delay.

distributed onto functional units inside the basic block to improve design
utility. In this section, we discuss the problem of intra basic block delay
budgeting, and its connection with the problem formulated in Section
5. We leverage the existing techniques for basic block level time bud-
geting, and present properties of the problem that allow us to quickly
and efficiently determine the appropriate weights for each basic block
(vectorw in Section 5).

The execution model for the data flow graph (DFG) of each basic
block is different from the CDFG model we presented for soft realtime
applications (Figure 1). Specifically, all of the execution traces of a DFG
are activated at runtime and therefore, all of them have to meet the tim-
ing constraint. Existing techniques offer polynomial-time algorithms to
maximize the total delay budget assigned to operations of a DFG under
delay constraints [19, 7]. The most efficient existing technique, converts
the problem into a weighted edge budgeting instance, and injects delay
units ontoselectededges, until all of the edges become critical.

7.1 Incremental Time Budgeting for Basic Blocks
The timing constraint for each basic block cannot be less than its crit-

ical path. The weight assigned to each basic block (vectorw in Section
5) determines its potential for utilizing additional units of relaxation in
its timing constraint. Ideally, we would like the weight to be an easy-
to-calculate function of DFG’s structure. In this subsection, we use an
existing optimal method for edge budgeting on DFGs to determine the
weight vector,w, for basic blocks.

SI

SO

a) b) c)

Fig. 4: a)A sample DFG and a sample cut are shown. b)The cor-
responding edge graph. The edges in the cut correspond to dark
nodes. c) The transitive closure of the edge graph. The cut corre-
sponds to the maximum independent set here.

Formally, a data flow graphH(V,E) is a directed acyclic graph. As-
sume that two dummy nodes called super input (SI) and super output
(SO) are connected to the primary inputs and primary outputs ofH to
make it single input/output. We can state the following [19]:

Definitions: A subset of edges ofH, is called acut if and only if ev-
ery SI to SOpath contains exactly one edge of the set (Figure 4).



GraphH∗(V∗
,E∗) is called the intersection graph (or edge graph)

of H(V,E), if there is a nodev∗i j ∈V∗ for everyei j ∈ E; and there
is an edgee∗i jk betweenv∗i j andv∗jk.

Lemma 2. A cut in H corresponds to anindependent setin transi-
tive closure of H∗ (H∗t ). In transitive closure, if there is an edge from
node vx to vy and from vy to vz, there is also an edge from vx to vz. We
use Ht to represent the transitive closure of H. Similarly, a weighted cut
in H corresponds to aweighted independent setof the transitive closure
of H∗ (H∗t ). The cut with the maximum weight in H (weighted max cut)
corresponds to the maximum weighted independent set (MWIS) in H∗t .
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Fig. 5: Maximum total slow down of basic block operations

Note that although finding the maximum (weighted) independent set
of an arbitrary graph is known to be NP-complete, it can be solved in
polynomial time for transitive graphs [6].

Definitions: Let Gain = OPT(H,T) denote the maximum amount of
weighted delay budget that can be added to the edges of data flow
graphH under timing constraintT. Let GraphHb be the new data
flow graph that is formed by adding the delay budgets to the edges
of H. Hence,Hb has the same structure asH, however the delay
of its edges are different.

There is a polynomial combinatorial algorithm for determiningGain=
OPT(H,T) andHb [19], however we are not concerned with the algo-
rithm details and treat it as a black box here.

Lemma 3. For a given instance of the weighted edge budgeting prob-
lem with critical path equal to T :

Gain= OPT(H,T +∆T)= OPT(H,T)+OPT(Hb,∆T)= OPT(H,T)+
∆T | MWIS(H∗t

b ) |= OPT(H,T)+∆T | MWIS(H∗t) |

Lemma 3 states that if the timing constraintT is increased by∆T ,
we do not need to recalculate the solution from scratch. It provides an
optimal incremental method to extend the solution under timing con-
straintT, to another solution under timing constraintT + ∆T . To ex-
tend the solution, more specifically, the budget of the edges that form a
weighted-max-cut (a cut with the maximum weight) will be increased
by ∆T . Such edges correspond to the maximum weighted independent
set (MWIS) in the transitive intersection graph of the problem instance
(Figure 4). Therefore, incremental calculation of the edge delay budgets
for various values of timing constraint can be performed quite rapidly.

Caution has to be taken when applying delay budget to MWIS of a
problem instance. Although MWIS can be used to augment an existing
solution under timing constraintT to T + ∆T , it cannotcorrectly solve
the instance forT. Previous work has discussed and investigated this
issue [2].

Corollary 4. The maximum total delay budget that can be added to
the edges of a DFG H under timing constraint, is a linear function of
the timing constraint. Namely:

OPT(H,T ′) = OPT(H,T)+(T ′−T) | MWIS(H∗t) | T ′ ≥ T
In other words, the gain vs. timing constraint graph, is a line with

slope of|MWIS(H∗t) |. Figure 5 visualizes the relation between OPT(H,T ′)
and T′.

Corollary 5. For problem presented in Section 5, the minimum de-
lay of each node, di , is equal to the critical path of the corresponding ba-
sic block. The weight of each basic block, wi , is equal to| MWIS(H∗t) |,
where H represents the data flow graph of the basic block. The cardi-
nality of the maximum weighted independent set of transitive closure of
H, or | MWIS(H∗t) |, can be determined using existing results [6].

In summary, the linear increase of the maximum total weighted de-
lay budget with the timing relaxation for each basic block, provides a
fast, accurate method to determine the delay vector,d, and the weight
vector,w, for the original problem (delay budgeting for soft realtime ap-
plications). Once the original problem is solved and timing constraints
for basic blocks are determined (di +bi), existing basic block level tech-
niques can be utilized to assign the delay budget to operations.

8. Timing Budget Management for CDFGs
In this section, we reformulate the CDFG time budgeting problem

and present our solution. Note that vectorsd, w, p (node probabilities)
can be determined using polynomial efficient algorithms from problem
structure and characteristics of the operations in the library (Sections
6 and 7). The problem of timing budget management for CDFGs pre-
sented in Section 5 is equivalent to the following problem:

GivenG(V,E), a library of functional units for implementing opera-
tions in G, vector p for edges, and an expected delay constraintDmax,
and determined (using aforementioned techniques) vectorsd, w and p
for nodes; The objective is to determine an integer delay budgetbi for
eachvi that maximizes∑wi .bi subject to meeting the expected delay
constraint of the application. The constraint isdexp(G) = ∑vi

pi .d′i =

∑vi
pi .(di +bi) ≤ Dmax, or equivalently,∑vi

pi .bi ≤ Dmax−∑vi
pi .di =

D∗
max, wherepi is the probability of nodevi being executed over input

data space (on any trace), andd′ = d+b is the updated delay of nodes
(basic blocks) after slowing them down by vectorb.

Interestingly, the problem is transformed into maximizing a linear ex-
pression of budget variables, under the constraint of another linear ex-
pression of budget variables. For arbitraryG, Dmax, and edgep vec-
tor, the coefficients of the linear expressions (w and nodep vectors)
are arbitrary. Therefore, the problem is equivalent to the general inte-
ger knapsack problem, which is proved to be NP-complete [8]. Hence,
standard dynamic programming solutions with pseudo polynomial com-
plexity (with respect to timing constraint), and strongly polynomialε-
approximation algorithms are both applicable to the problem at hand
[8, 21]. For real life CAD problems with practical graph size, and tim-
ing constraints, exact pseudo polynomial algorithms reflect reasonable
performance. For example, integer linear programming (ILP) only took
0.06 second on an ordinary PC to solve our largest problem instance.
Section 9 discusses the details of our experience in practice.

After solving the problem and determining the vectorb, each basic
block is assigned a local timing constraint, namely, basic blocki is as-
signed the timing constraintdi +bi . Then, the existing DFG-based tim-
ing budget management algorithm [19] can be applied to all of the basic
blocks to assign delay budgets to the operations in each DFG. The delay
budget of an operation allows optimization of the operation, or smart
selection of the operation from the given library.

9. Experimental Results
We utilize our delay budgeting technique during core-based synthesis

of application CDFGs. Figure 6 illustrates our synthesis flow for map-
ping the applications to an FPGA device. We implemented the afore-
mentioned probabilistic time budgeting algorithm to evaluate its impact
on data-path energy dissipation and area. We compare its effectiveness
against max-budgeting, a pessimistic optimal competitor (optimal under
hard realtime constraint), and not performing delay budgeting. These
algorithms correspond to the three application to analysis paths in Fig-
ure 6. We extract the application control data flow graphs (CDFG) from
MediaBench [4] test suite using SUIF compiler [15] and Machine-suif
[13]. To locate the computation kernel of each application, we apply
call graph profiling on MediaBench to estimate the time spent in each
sub-program of the application. Based on the the call graph profiling re-
sults and the CDFG structure of each subprogram, we choose ten func-
tions as testbenches of our experiments. The testbenches are profiled



to compute the edge probabilities required to perform probabilistic time
budgeting. Note that the MediaBench is comprised of multi-media ap-
plications, which cope with our intensity, periodicity, loss-tolerance, and
content-sensitivity assumptions quite well (Section 4). The characteris-
tics of benchmarks are shown in Table 1.

SUIF Compiler

Media Bench (C code)

CDFG Profiling Max  Budgeting

Probabilistic 
Budgeting

XPower power estimation

XST Synthesis

Xilinx Place and Route
CoreGen 
Library

No  Budgeting

Energy &
Area Analysis

Fig. 6: Experimental flow to compare delay budgeting schemes

For experimentation purpose, we assumed that all of the operands are
8-bit wide. Furthermore, we assumed that the timing constraint for each
application is equal to its critical path latency. For probabilistic budget-
ing, timing is treated as a soft constraint, and the application’s expected
latency is guaranteed not to exceed the timing constraint. However, for
max budgeting, which performs worst case analysis, the timing con-
straint is met for all of the input samples. We used Xilinx CoreGen [10]
to generate parameterized hardware modules (cores) with different la-
tencies. Xilinx synthesis (XST) and placement and routing tools [10]
are used in our flow to implement the designs and measure their area
requirement. Xilnx XPower tool is utilized for power estimation. Our
target platform is XCV3200V from Xilinx VirtexE FPGA series.

CDFG Application # of Basic # of ALU Critical Path
Blocks Operations (cycles)

wrjpeg jpeg 37 49 48
decode-mcu jpeg 37 66 52
process-opt mpeg2dec 47 59 50
mpeg-dec-1 mpeg2dec 26 47 51
mpeg-dec-2 mpeg2dec 36 69 56

reference-idct mpeg2dec 10 29 33
readparmfile mpeg2enc 84 112 82
smooth-color mesa 36 61 54

comp-row mesa 17 39 34
comp-noise rasta 72 192 168

Table 1: Characteristics of benchmark control data flow graphs

We characterized the area variations of the CoreGen library modules
with respect to their latency. Figure 7 demonstrates the area character-
istic of the CoreGen sequential multiplier cores. In our experiment, we
assigned the timing budget only to multipliers of the application CDFG,
because CoreGen shifting, addition and subtraction cores implement la-
tency variation by inserting registers and pipelining the operation, which
increases their area. We also synthesize multiplexers to implement func-
tional unit input sharing [20]. The multiplexers are not targeted for delay
budget assignment in our experiments.

For further efficiency of the budgeting policies, we impose the upper
bound of two times the critical path on the delay relaxation of each ba-
sic block. This prevents the assignment of large delay relaxation to a
few basic blocks, and provides a rather fair distribution of delay bud-
get over them. Multipliers are the only candidates for intra basic block
delay budgeting. Therefore, they are assigned the weight 1, while every
other operation has the weight 0 for determining the maximum weighted
independent set (MWIS) of basic blocks.

Our experiment results are summarized in Table 2. For each bench-
mark, the design area in LUT and slice count, the energy dissipation
in nanojoule, total delay budget (∑bi) and the number of basic blocks

8-bit Multiplier-Area vs Latency

0

10

20

30

40

50

60

70

80

90

5 6 7 11

Latency (clk cycles)

N
u

m
b

er
 o

f 
R

es
o

u
rc

es
 

Slices

4-LUTs

 

Fig. 7: Area characteristics of library multiplier cores

with delay relaxation (bi 6= 0) are reported. The applications timing con-
straint are equal to their corresponding critical path latency. Our results
highlight that total delay budget correlates well with design utility (en-
ergy and area in our study). It also shows that probabilistic budgeting
always outperforms the other two competitors. On Average, we improve
the energy consumption by 20.3% and 13.8%, and the area requirement
(LUT count) by 18.9% and 10.4% compared to not using budgeting or
using the maximum budgeting, respectively.

Unlike maximum budgeting (optimal under hard timing constraint),
probabilistic budgeting assigns the delay budget to basic blocks based
on the characteristics of control flow. The associated cost is occasional
timing violation for infrequent input data patterns, which would sporad-
ically hinder the realtime quality. Assuming this cost is tolerable for soft
realtime applications, probabilistic budget assignment approach consis-
tently outperforms the other two competitors.

Similar to other delay budgeting algorithms, the topology and con-
nectivity of the applications CDFG affect the effectiveness of proba-
bilistic budgeting. However, unlike other competitors the control flow
behavior of the application can either provide additional opportunity, or
limit the performance of probabilistic budgeting. For example, there is
a small difference between the area associated with the two algorithms
for reference-idct. This is mainly attributed to the fact that control flow
structure visits all of the basic blocks with multiplier operations in most
of the execution traces.
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