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Abstract flow edges. Nodes of the graph take a given amount of time to finish

Unlike their hard realtime counterparts, soft realtime applications ard€ir e>0<|ecution (calletd dlflay (ér latency). Eggteshof the grao;l)hl mogeltthﬁ]
only expected to guarantee their "expected delay” over input data spa pendency among tasks and are assumed to have zero delay. IWote tha

This paradigm shift calls for customized statistical design techniques%% model can capture edge delays by inserting a dummy node on the
replace the conventional pessimistic worst case analysis methodologfdg€ Whose delay is equal to the original edge delay. Therefore, our
Statistical design methods can provide a realistic assessment of dedliff€! is not restricted to ignore communication latency.

space, and improve the design quality by exploiting its stochastic bs
havior. We present a novel probabilistic time budgeting algorithm tha
translates the application expected delay constraint into its componen
delay constraints. Our algorithm which is based on mathematical prog
erties of the problem, determines the optimal maximum weighted timir
relaxation of an application under expected delay constraint. Experi
mental results on core-based synthesis of several multi-media applic
tions on FPGAs show abo@0% and 19% average energy and area
improvement, respectively.
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1. Introduction : :
Timing is traditionally treated as a hard constraint throughout the s fig. 1. Our synthesis scheme: a)An example CDFG: each node

tem design process. As a result, applications are often pessimisti(:)%sluit?;isc')% l;lfocgn%cr)gttganlhnagrdlwgrrgal data flow graph (DFG) b) An
analyzed for worst case scenarios and their slowest responsesidete 9 )
their performance. Although this is a necessity for hard realtime af Each basic block has an internal data flow graph (DFG), which is
plications, their soft realtime counterparts can occasionally take longgomposed of a number of basic operations. The compute mthéh
than the deadline to finish some tasks They are often expected to @ node (DFG) differs from the CDFG in that all of the DFG paths are
guarantee aaxpected de|a§pr |atency) rather than a worst case execq’iCth&ted at. runtime, and.therefore,.all of the paths have tQ meet the tim-
tion time over the input data space. Therefore, realistic statistical desiig constraint of the basic block (Figure 1). The synthesized hardware
techniques, as opposed to pessimistic worst case analysis, aredequs a pre-optimization design that has a separate datapath for each ba-
to automate the design process for such application domains. sic block. When the execution of a basic block is finished, depending on
In this paper, we present a probabilistic delay budgeting technique the computation result, it invokes another dependent basic block. Hence
soft realtime applications. Our technique, which is based on mathenfiepending on the input data, one and exactly one path in the graph is ex-
ical properties of our model, relaxes the timing constraints of differefcuted at runtime. Edges of the graph are annotated with the probability
components of a design, while guaranteeing that the expected dela@fdking that edge if its source node is executed. For example in Figure
the application does not violate a given constraint. We develop and elpbbl upon completion might invokiab2 or bb3 with probabilityC; or
ploy an optimal incremental delay relaxation algorithm for each compG4, respectively. The probabilities are profiled over the input data space
nent of the design. The incremental technique is integrated into a highed are assumed to be known a priori.
level probabilistic algorithm that performs time budgeting for the entire We assume that there is no backward edge in the CDFG. Loops and
design. Note that the output design might (and most probably will) haoéher type of backward edges are removed from the CDFG by pre-
a larger delay than the constraint for infrequent input patterns. Hemvevprocessing, which is performed by either putting loops into nodes and
it is guaranteed that the expected delay over the entire input data sgacming complex nodes, or completely unrolling the loops and remov-
meets the given constraint. ing them from the application. If neither complex node formation nor
We apply our algorithm to core-based synthesis of application CPemplete unrolling are possible, we focus on the body of the loop, which
FGs. The components with relaxed timing constraint are optimized ¢onstitutes the compute-intensive kernel of the application.
improve design energy and area. Experimental results on seveltal mu o
media applications show an average of about 20% and 19% energy al Motivating Example

area improvement over not using our technique, respectively. Figure 2 illustrates an example application, its execution traces, and
several examples of delay budget assignment under expectedcdalay
2. Background straint. In this example, task (basic bloaklupon completion might

invoke taskd or e with probability Q9 or 0.1, respectively. The dashed
2.1 Application and Execution Model paths demonstrate the possible execution traces of the application. Each
' %gce is annotated with the probability of its activation over the input data

Figure 1illustrates the application model, and its corresponding hartg- ; :
o : . ace. Note that the number of execution traces can grow exponentially
ware realization that is used throughout this paper. We use the w th the number of edges in the graph.

known control data flow graph (CDFG) structure to model a given ap- - : : .

g : . - ) To motivate the idea of time budgeting undetpected delagon-
plication or its compute-intensive kernels, where nodes represelnt ap int. let us assume that the dela?/ of the tasks are as théwn in the
cation basic blocks (tasks), and outgoing edges of a hode denotelco ﬂagin’al delay” column of the table, and the application’s expected de-

1The argument Pertains to system/application level design as p;zPose@YOCOHStfaint is 5. Originally, the expected delay of the application is
gate/layout level, where critical paths determine the clock perio 4.52 over the input data space. We can slow down some tasks to optimize




visiting original budgeting | budgeting | budgeting t|m|ng Constraints.

node

prob. | delay i 2 i3 In this paper, we target the aforementioned class of applications and
a L : : ! ! hence, assume that the application demands a guarantee on the expected
b 02 ! 2 ! e delay. Furthermore, we assume that the input data, or a representativ
c 08 ! ! ! ! subset of it, is available at the design time. This is a reasonable assump-
Z z;: i i 1: 1: tion that allows us to profile the probability of each execution trace in
f 1 1

the application CDFG.

exp. orzsom [omsoor [omzsooe Tozsoo | 5 Formalizations and Problem Statement

delay i i =0 =49 A given applicatipn can be represented. as a direcped acyclic graph
Fig. 2: Probabilistic timing budget assignment under expected delay G = (V,E), whereV is a set of vertexes arfis a set of directed edges.
constraint Each vertew € V represents a task (basic block) of the application that

them further, and improve the quality of the synthesized design. THesdy units of time to perform its computation. Whenfinishes its
quality metric (power dissipation, area, accuracy, cost, etc) greatly d@mputation, it invokes exactly one of its successor (dependent) nodes
pends on the application domain. The table illustrates three delay bu%@aendlng on the computation results. Edgec E models the data
assignment examples that would all meet the expected delay constra#igendency betweenandv;, denoting that; can start its computation
This paper provides detailed formulation, property analysis, and &fly whenv; is finished andj is selected to continue the execution trace
ficient algorithms to address the delay budget management under @ithe application. Thereis a prp_bablllp]{(assouated with eaddy € E
pected delay constraint. We develop and utilize an optimal incremerif3dt corresponds to the probability of takiag when nodey; finishes its
delay budgeting algorithm for each node (basic block), which is used@@mputation, over the input data space. Similarly, for each npdés
maximize the utility function for the entire application. Note that afteprobability p;, is defined as the probability of the execution trace visiting
delay budget assignment, infrequent execution traces might takerlong@dei. It follows that for every vertey jcanouti) Pij = 1
than the expected delay. This makes the problem drastically differenfA source nodes €V, is a vertex without incoming edges, and a sink
from conventional pessimistic analysis, where all paths must meet thedet € V, is a vertex without outgoing edges. We assume that there

timing constraint. is exactly one source and exactly one sink nod&inA CDFG with
more than one source (sink) node can be transformed to comply with
3. Related Work this constraint by adding a dummy source (sink) with zero delay, and

nnecting it to all application source nodes (all application sink nodes

- . . C
The concepts of slack and timing relaxation have been extensivglyjy ~ an”execution trace (or simply a trace) of the application is a
studied in the synthesis community. Time budgeting on directed acyqligected path fronstot in G. Let XT be the set of execution traces of
graph, while different in principle, relates to the conventional slack idga \ote that| XT | can grow exponentially with respect {& |. A trace

[7]. However, our problem at hand is different due to the soft realti .n be represented by the edges that appear in the patrsirmm We
constraints, and the probabilistic nature of the required analysis. Th& the notioms — e — ... — ey to represent those edges.

budgeting problem on a graph (both temporal and spatial budgeting) hag, probability ofjan execution trace= e — &j — ... — ey or
been studied for many different applications. Timing-driven placémep s gefined as the probability of the application takingt runtime
and floor planning is one such example, during which the issue of 4&7.; the input data space. Hencexit es — & — ... — ey then’

lay budgeting has been addressed by several researchers P, BL1 p _ n 0" " The runtime or delay of trace or Dy, is defined
5]. Moreover, delay budgeting has been utilized to perform gate ag thgsé%bliceﬁlijé)n’s runtime when takir¥g tracand is e)aual tDy =
wire sizing for power optimization. Under a given fiming constrainty" g1 dy + . By definition: S xext Px — 1 anddexp(G) —
budget management can be applied to find a set of nodes/edges i 1€ 1 P«Dx. A partial execution trace refers to a subset of an execution
netlist graph such that their physical size or power dissipation can 58 at connects two nodes that lie on the trace. xljetlenote a
reduced by mapping to smaller, or power-efficient cell instances wi, 3| execution trace that starts from nddand finishes at nodg.

larger delays from a target library 3, 9, 16]. High-level synthesisiis a\ye ysex T;; to refer to the set of all possibbe; (all possible partial
other application, in which timing slack of the operations is utilized fog ) !

timization i d E | the alaorith dt ecution traces that startiaand finish atj). We defineP; andPR;j as
optimization In area and power. Examples are tné aigorithms and tegh; probability of the execution of a particular partial trageor one of
niques developed for area minimization in pipelined datapath [18] afid .. inXTjj, respectively. By definitiorPst = 1. Note that we use the
power minimization under timing constraint [11, 22]. : iiwer case variabled and p to refer to delay of a node, and probability

The techniques employed in above papers are sub optimal heuris ﬁ[é/an node/edge, respectively. The upper case variBtdesiP denote

driven from Zero Slack Algorithm [17] and MISA [2]. In our previ- o : L -
; . Pl : the delay and probability of a (partial) trace. Considering the notion of
ous result [19], we solved various non-probabilistic formulations of trgclrtial execution trace, we have:

problem through a unified theoretical framework. In this paper, we ex-
tend our previous work to incrementally solve the problem of delay bud-

get assignment for each basic block of the CDFG. Furthermore, we de Wi eV p= P (1
velop a probabilistic analysis framework that considers the stochastic X5 EX Ty
behavior of the application over the input data space. .
PP P P WiEV  degli)= Y PRqDy @
Xsi€EX Tsi

4. Target Application Domain
We focus on the class of soft realtime applications that perform inte

sive computations and demand hardware realizations for realtime p : ; o
formance. Examples include multimedia applications such as video &g2Y 10 such induced subgraphs. Thatlise(Gi) is the expected delay

coding/decoding, and image compression. Such applications are og éﬂfnzutﬁ%iafggﬁnndouﬂfeg\%fﬁﬁféng Sr(wli(tj‘:)sf ;Tgwshnngoﬂe&s"deélgs
characterized by theintensive, periodic, heavily input data dependent : : e > y
(content dependent), and loss toler@ehavior with weightw;. The problem of timing budget management for soft
While intensity and periodicity impose timing constraints on the dégzéti'vrgﬁ g?\?lg?u\?encstocgg bde g)r:(r:lnvslgnsat?ﬁdess:ected delay constraint
signs that target such applications, content-sensitivity and loss-toéerapc AT P o e O . '
allow occasional violations of the timing constraint for infrequent inr:%ma* the objective is to determine an integral delay relaxation bubiget

_Any nodei induces a subgraph da that is composed of nodes and
QQes that can be visited by somg We extend the notion of expected

put data. For example, a video decoder can occasionally skip a fraffie€acVi that maximizesy wi.b; (Note that the delay of node after
without affecting the user experience. For such application domai %‘9”'09 tfhe cri]elay bll.Jdg?t would Ge+bi) Subject to expected delay
guaranteeing an expected delay for each period of execution is as 988astra|nt or the application:

as maintaining a hard timing constraint. In practice, the former is of- dexp(G) = Z P..D. < Dmax

ten preferred due to the potentials of further optimizations under softer oEXT X =



WhereDj is the updated delay of traceafter slowing down the nodes
by vectorb. In practice, the application, its timing constraint, and the
library elements are the only available inputs. Hence, the remaining
input parameters, i.e., vectops d andw, have to be automatically de-
termined. Vectomp is determined by profiling the application over input
data space. In section 7 we prove properties by which, vedtarsiw

are determined.

6. Tractable Expected Delay Calculation
The expected delay of an applicationdgp(G) = 5 xexT PxDx, by

definition. However, the number of execution traces of an application
can grow exponentially with respect to the problem size (number of
nodes or edges in the graph). Therefore, the complexity of definition-
based approach to calculating the expected delay can be prohibitive. In
this section, we prove some interesting properties of the problem by
which, we can rapidly relate the expected delay of the application to pa-
rameters that are easy to calculate from problem inputs. To do so, we

break the execution traces over fanins.dfigure 3 assists in visualizing
the following equations:

dexp(G) = PDx = Py Pit) (Dxg
p( ) XEXT Xsi;Tsig[( P +d[)]

= . szi' it ) + szi' i 'DXSi
. Xsi;-rsi Z( plt) Xsi';Tsi Z( . )

it Sit

=0.Pst+ (P -Pit-Dxg) = 0k .Pst+ Y pit- (P -Dxg)
;Xsi;-rsi ; Xsi;Tsi

=0.Pst+ z Pit -Oexp(Gi) (3
€t

Fig. 3: Nodes are visited once per each outgoing edge during ex-
pansion of the recursive equation 3. Nodev contributes (p1 + p2 +
P3)-Oexp(Gw) = dexp(Gw) to the application’s expected delay.

distributed onto functional units inside the basic block to improve design
utility. In this section, we discuss the problem of intra basic block delay
budgeting, and its connection with the problem formulated in Section
5. We leverage the existing techniques for basic block level time bud-
geting, and present properties of the problem that allow us to quickly
and efficiently determine the appropriate weights for each basic block
(vectorw in Section 5).

The execution model for the data flow graph (DFG) of each basic
block is different from the CDFG model we presented for soft realtime
applications (Figure 1). Specifically, all of the execution traces of a DFG
are activated at runtime and therefore, all of them have to meet the tim-

Equation 3 presents a recursive method to calculate the expected dglgyconstraint. Existing techniques offer polynomial-time algorithms to

of G based on the partial expected delay at fanins. ofe can reuse
equation 3 for subgraphs induced by fanins, @b plug in the expanded

maximize the total delay budget assigned to operations of a DFG under
delay constraints [19, 7]. The most efficient existing technique, ¢tswe

forms fordexp(Gi) and eliminate the recursion. A non-recursive solutiothe problem into a weighted edge budgeting instance, and injects delay
is favorable due to its practicality and improved complexity, especiallyhits ontoselectecedges, until all of the edges become critical.

if it results in a simple fast method to calculate the expected delay.

When expanding equation 3, each edge is accounted for exactly ofice Incremental Time Budgeting for Basic Blocks

in reverse topological order. For each edyge the source nodg con-
tributes todexp(G) with the termpij.dexp(Gi). Interestingly, the addi-
tion of all such terms for fanouts of a node, is equatiégy(Gi) (note
that 3 jc fanouti) Pij = 1). We can reuse equation 3 to expahdy(Gi),
which would contribute talexp(G) with the termd;.Psj. However,Ps; is
the probability of the execution trace going through nodeer the input
data space, which is equivalentpg by definition. Therefore:

Theorem 1. The expected delay of an application under execution a) @ b)
model explained in Section 5 can be calculated using the following equa-
tion in O(E). Note that each edge has to be traversed once to determine

node visiting probabilities.

Oexp(G) = V.gv di.pi

Detailed proof is omitted for brevity, however, an outline of the proof

The timing constraint for each basic block cannot be less than its crit-
ical path. The weight assigned to each basic block (vegtior Section
5) determines its potential for utilizing additional units of relaxation in
its timing constraint. Ideally, we would like the weight to be an easy-
to-calculate function of DFG's structure. In this subsection, we use an
existing optimal method for edge budgeting on DFGs to determine the
weight vectorw, for basic blocks.

is sketched in the aforementioned arguments. Theorem 1 provideg a ver
intuitive expression for the expected delay: The contribution of a node
to the application’s expected delay, is its intrinsic delay times the like-

lihood of that node being visited during application runtime (no mattétig. 4: a)A sample DFG and a sample cut are shown. b)The cor-
what trace is taken as long as the node is executed). This can be eas#ponding edge graph. The edges in the cut correspond to dark
verified on small examples and special cases such as paths, or symmedes. c) The transitive closure of the edge graph. The cut cosr
ric graphs. In addition, it raises the point that infrequently visited nodsponds to the maximum independent set here.

can be assigned large delay budgets with little effect on application’s ex-

pected delay. This property is further analyzed in subsequent sections Formally, a data flow graphi (V,E) is a directed acyclic graph. As-
sume that two dummy nodes called super inf&l) @nd super output

7. Timing Budget Management for Basic Blocks
The problem of delay budget management for CDFGs has two stages.

(SO are connected to the primary inputs and primary outputd ob
make it single input/output. We can state the following [19]:

First, the extra delay budget (timing constraint relaxation) has to be &sefinitions: A subset of edges dfl, is called acut if and only if ev-

signed to each node of the graph (basic block). Subsequently, ithasto b

ery Sl to SOpath contains exactly one edge of the set (Figure 4).



GraphH*(V*,E*) is called the intersection graph (or edge graph) Corollary 5. For problem presented in Section 5, the minimum de-
of H(V,E), ifthere is a node/i*j € V* for everyg; € E; and there lay of each node,jdis equal to the critical path of the corresponding ba-
is an edgest, betweenv; andv?,. sic block. The weight of each basic block, is equal tof MW ISH™) |,

Ik g Ik where H represents the data flow graph of the basic block. The cardi-
nality of the maximum weighted independent set of transitive closure of

Lemma 2. A cut in H corresponds to aimdependent seh transi- H, or | MWISH*) |, can be determined using existing results [6].

tive closure of H (H*). In transitive closure, if there is an edge from

nodeH\k 10  and from y to Vz, there is also an edg_e fron w Vz: we In summary, the linear increase of the maximum total weighted de-

use 1 to represent the transitive closure of H. Similarly, a weighted cyby 1,qget with the timing relaxation for each basic block, provides a

n H*corrSsponds to aveighted independent sef the transitive closure a5t “accurate method to determine the delay vedtoand the weight

of H* (H™). The cut with the maximum weight in H (weighted max Cu{ictor,w, for the original problem (delay budgeting for soft realtime ap-

corresponds to the maximum weighted independent set (MWIS].in Hplications). Once the original problem is solved and timing constraints
for basic blocks are determined ¢ by), existing basic block level tech-
nigues can be utilized to assign the delay budget to operations.

T4
[=2] . .
E Gain(H,T) 8. Timing Budget Management for CDFGs
ﬂ In this section, we reformulate the CDFG time budgeting problem
3 Slope = [MWIS(H)| and present our solution. Note that vectdrsv, p (node probabilities)
a] P can be determined using polynomial efficient algorithms from problem
E v structure and characteristics of the operations in the library (Sections
= ! Critical 6 and 7). The problem of timing budget management for CDFGs pre-
2 ! path (T) sented in Section 5 is equivalent to the following problem:
. ;/ GivenG(V,E), a library of functional units for implementing opera-
§ i R tions in G, vector p for edges, and an expected delay constrBiftx,
Timing Constraint and determined (using aforementioned techniques) vedtarsand p
. . . . for nodes; The objective is to determine an integer delay budldger
Fig. 5: Maximum total slow down of basic block operations eachy; that maximizesy wi.bj subject to meeting the expected delay

Note that although finding the maximum (weighted) independent &@nstraint of the application. The constraintdigp(G) = 3, pi-df =

of an arbitrary graph is known to be NP-complete, it can be solved Jy, Pi-(di +bi) < Dmax or equivalently,yy, pi.bi < Dmax— 3y, pi-t =
polynomial time for transitive graphs [6]. D}hax Wherep; is the probability of node; being executed over input
data space (on any trace), adfd= d + b is the updated delay of nodes

Definitions: Let Gain= OPT(H,T) denote the maximum amount of (0asic blocks) after slowing them down by veckor _
weighted delay budget that can be added to the edges of data flodnterestingly, the problem is transformed into maximizing a linear ex-
graphH under timing constraint. Let GraphHy, be the new data Pression of budget variables, under the constraint of another liear e
flow graph that is formed by adding the delay budgets to the edgei@ssion of budget variables. For arbitr&y Dmax, and edgep vec-

of H. Hence Hy, has the same structure s however the delay tor, the coefficients of the linear expressioms gnd nodep vectors)
of its edges are different. are arbitrary. Therefore, the problem is equivalent to the general inte

ger knapsack problem, which is proved to be NP-complete [8]. Hence,
standard dynamic programming solutions with pseudo polynomial com-
plexity (with respect to timing constraint), and strongly polynongial
approximation algorithms are both applicable to the problem at hand
[8, 21]. For real life CAD problems with practical graph size, and tim-
; : ; . ing constraints, exact pseudo polynomial algorithms reflect reakonab
Ienl;t\alvnilrﬁwgriﬁé;oraglven mstanpe of the weighted edge budgeting Iord;:[agerformance. For example, integer linear programming (ILP) onlk too
path equalto T 0.06 second on an ordinary PC to solve our largest problem instance
Gain=OPT(H, T +A7) =OPT(H,T)+ OPT(Hp, A1) =OPT(H.T)+ g 0 g g he d ty.l ; Ur largest p i :
At | MWISH:) |= OPT(H, T) + At | MWISH™) | ection 9 discusses the details of our experience in practice. _
b After solving the problem and determining the vedipreach basic
. . - block is assigned a local timing constraint, namely, basic bidslas-
Lemma 3 states that if the timing constraintis increased bAT,  gigneq the timing constraimk + bj. Then, the existing DFG-based tim-
we do not need to recalculate the solution from scratch. It provides gif 1 ,qget management algorithm [19] can be applied to all of the basic
optimal incremental method to extend the solution under timing COfocks to assign delay budgets to the operations in each DFG. The delay

straint T, to another solution under timing constraint- Ar. To ex- ) PRI .
tend the solution, more specifically, the budget of the edges that forr‘é’Udgm of an operation allows optimization of the operation, or smart

weighted-max-cut (a cut with the maximum weight) will be increasedé}ECtlon of the operation from the given library.
by At. Such edges correspond to the maximum weighted independent .
set (MWIS) in the transitive intersection graph of the problem instan&: Experlmental Results
(Figure 4). Therefore, incremental calculation of the edge delaydiadg We utilize our delay budgeting technique during core-based synthesis
for various values of timing constraint can be performed quite rapidlyof application CDFGs. Figure 6 illustrates our synthesis flow for map-
Caution has to be taken when applying delay budget to MWIS ofging the applications to an FPGA device. We implemented the afore-
problem instance. Although MWIS can be used to augment an existifi@ntioned probabilistic time budgeting algorithm to evaluate its impact
solution under timing constrairit to T + Ar, it cannotcorrectly solve on data-path energy dissipation and area. We compare its effectvenes
the instance foff. Previous work has discussed and investigated thigjainst max-budgeting, a pessimistic optimal competitor (optimal under
issue [2]. hard realtime constraint), and not performing delay budgeting. These
algorithms correspond to the three application to analysis paths in Fig-
Corollary 4. The maximum total delay budget that can be added tae 6. We extract the application control data flow graphs (CDFG) from
the edges of a DFG H under timing constraint, is a linear function dflediaBench [4] test suite using SUIF compiler [15] and Machine-suif
the timing constraint. Namely: [13]. To locate the computation kernel of each application, we apply
OPT(H,T") = OPT(H,T) +(T' —=T) |[ MWISH™) | T>T call graph profiling on MediaBench to estimate the time spent in each
In other words, the gain vs. timing constraint graph, is a line witlsub-program of the application. Based on the the call graph profiling re-
slope of MWISH*) |. Figure 5 visualizes the relation between OPT, T'5ults and the CDFG structure of each subprogram, we choose ten func-
and T. tions as testbenches of our experiments. The testbenches are profiled

There is a polynomial combinatorial algorithm for determinajn=
OPT(H,T) andHp [19], however we are not concerned with the algo
rithm details and treat it as a black box here.



to compute the edge probabilities required to perform probabilistic time 8-bit Multiplier-Area vs Latency

budgeting. Note that the MediaBench is comprised of multi-media ap- w©
plications, which cope with our intensity, periodicity, loss-tolerance, and gor—
content-sensitivity assumptions quite well (Section 4). The characteris- go —

tics of benchmarks are shown in Table 1. £ \'\s o

B 30 —
£ 2

210
Media Bench (C code) 0 5 6 7 1

Latency (clk cycles)

S Ci il . - . L
Fig. 7: Area characteristics of library multiplier cores

v v )
{ CDFG ProfilingM Max Budgeting } { No Budgeting }

with delay relaxationtf; # 0) are reported. The applications timing con-
straint are equal to their corresponding critical path latency. Our results
highlight that total delay budget correlates well with design utility (en-
ergy and area in our study). It also shows that probabilistic budgeting
........ g always outperforms the other two competitors. On Average, we improve
the energy consumption by B% and 138%, and the area requirement
(LUT count) by 189% and 104% compared to not using budgeting or
using the maximum budgeting, respectively.

Unlike maximum budgeting (optimal under hard timing constraint),
probabilistic budgeting assigns the delay budget to basic blocks based

XST Synthesis
=
on the characteristics of control flow. The associated cost is occasiona

timing violation for infrequent input data patterns, which would sporad-

Fig. 6: Experimental flow to compare delay budgeting schemes ¢y hinder the realtime quality. Assuming this cost is tolerable for soft
rg%time applications, probabilistic budget assignment approach consis-

8-bit wide. Furthermore, we assumed that the timing constraint for ea !?’nﬁ;ﬁ%r?tggf EiheelamhbeJdt\é\giﬁggﬁ)geg:%%s the topology and con-
application is equal to its critical path latency. For probabilistic budge ectivity of the applica%/ions CDFG affect the ’effectivenesg of proba-
ing, timing is treated as a soft constraint, and the application’s expec stic budgeting. However, unlike other competitors the control flow
e e e e oo LBt f e appicalioncan efher provie scdional opporuity o
straint is met for all of the input samples. We used Xilinx CoreGen [1 it the performance of probabilistic budgeting. For example, there is

' ’ S small difference between the area associated with the two algorithms
to generate parameterized hardware modules (cores) with different

: o : . reference-idct This is mainly attributed to the fact that control flow
tencies. Xilinx synthesis (XST) and placement and routing tools [1 v : : A A :
are used in our flow to implement the designs and measure their %Cetuerse\galttigr?ltlrg::tege basic blocks with multiplier operations in most
requirement. Xilnx XPower tool is utilized for power estimation. Ou |
target platform is XCV3200V from Xilinx VirtexE FPGA series.

Probabilistic
Budgeting

CoreGen
Library

Energy &
Area Analysis

For experimentation purpose, we assumed that all of the operands,[
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