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ABSTRACT 
The recent past has seen a tremendous increase in the size of 
design circuits that can be implemented in a single FPGA. The 
size and complexity of modern FPGAs has far outpaced the 
innovations in FPGA physical design. The problems faced by 
FPGA designers are similar in nature to those that preoccupy 
ASIC designers, namely, interconnect delays and design 
management. However, this paper will show that a simple re-
targeting of ASIC physical design methodologies and algorithms 
to the FPGA domain will not suffice. We will show that several 
well researched problems in the ASIC world need new problem 
formulations and algorithms research to be useful for today’s 
FPGAs. Partitioning, floorplanning, placement, delay estimation 
schemes are only some of the topics that need complete overhaul. 
We will give problem formulations, motivated by experimental 
results, for some of these topics as applicable in the FPGA 
domain. 
 
Categories and Subject Descriptors 
B.7.1 [Types and Design Styles]: Gate Arrays; B.7.2 [Design 
Aids]: Layout, Placement and Routing. 
  
General Terms 
Algorithms, Design, Experimentation. 
 
Keywords:  
Physical Design, FPGA, Routing Architecture, Partitioning, 
Floorplanning, Placement, Delay Estimation. 
 

1. INTRODUCTION 
Advances in process technology today are enabling a profound 
increase in the number of applications that can be realized using 
FPGAs. Multi-million gate capacity (Figure 1.1) and clock speeds 
approaching 400 MHz (Figure 1.2) for FPGA-based design are 
now main-stream. Densities approaching 10 million gates, shorter 
design cycles and reduced development costs make programmable 
devices increasingly attractive for a broader range of applications; 
from networking, telecommunications and medical devices to 
other consumer products.  
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Difficult design problems associated with interconnect delay on 
large designs are now being seen. As witnessed when high gate-
count deep sub-micron ASIC designs first emerged, interconnect 
could account for as much as 70-90% of overall circuit delay as 
critical dimensions shrink below 0.18um. These large design sizes 
also significantly impact cycle time due to software runtimes and 
an increased number of performance based iterations.   
The most prudent approach to solving the FPGA design problems 
would be to look for guidance in the ASIC domain. The 3 
developments in the ASIC design flows that have helped the 
ASIC designers solve the design complexity and the interconnect 
delay problems can broadly be categorized into:  

1. Hierarchical Design Flows  
2. Early Estimation and Analysis tools 
3. Physical Synthesis 

Hierarchical design flows entail partitioning the design into 
smaller and more manageable pieces, apportioning temporal 
(timing budgeting) and physical constraints (floorplanning), 
implementing each piece separately and then assembling all 
pieces together.  Till date there has not been much attention paid 
to the impact of such flows on the quality of results. In [27] 
authors have quantified the loss in quality in using various 
partitioning and placement schemes during hierarchical design. 
Modern placement techniques depend on partitioning algorithms 
to minimize wire length, for e.g., DRAGON [24], CAPO [2]. All 
partitioning techniques have a single area balancing constrain. 
FPGA architectures, however, incorporate heterogeneous 
resources. This places additional constraints on the balancing 
criteria and new algorithms need to be developed to address these 
new constraints. 
Floorplanning, a heavily researched topic in the ASIC world, will 
need immense re-engineering to account for the latest FPGA 
architectures. For one thing, the FPGA floorplanning problem is a 
fixed outline problem. There are discrete and distributed resources 
spread across the FPGA fabric. These make all current floorplan 
representations and algorithms ineffective at best. 

Millions 
of gates 

Figure 1.1: FPGA Gates Capacity 
Year 
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Most known interconnect estimation algorithms would fail to 
capture the peculiarities of the placement and routing architectures 
in these new FPGA fabrics. Interconnect estimation is key to 
physical synthesis approaches that try to predict and fix 
interconnect delay problem. Interconnect delay has larger impact 
in FPGAs than in ASICs given the large delays on the 
programmable switches along the route structures.  
This paper will take a fresh look at the newer FPGA architectures. 
We will look at the ASIC EDA algorithms and make observations 
as to the validity of these in the FPGA domain. The paper should 
also spur researchers into designing new algorithms specifically 
for FPGA. 
 

2. FPGA ARCHITECTURE 
Until recently FPGAs were laid out as rows and columns of 
Configurable Logic Blocks (CLBs).  With increasingly complex 
requirements put on the FPGA industry the latest architectures 
have become increasingly heterogenous. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.1 shows one of the latest generation FPGA devices. It’s a 
Xilinx VirtexII-Pro device.  VirtexII-Pro devices are platform 
FPGAs designed as custom integrated circuits in a 0.13 micron 
process technology.  They use a combination of nine layers of all 
copper interconnection and low k dielectric and are being 

produced on the latest 300 mm wafers.  Flip-chip packaging is 
used to achieve package pin counts of up to twelve hundred pins. 
They have up to 4 Power PC 405 cores in them running at 
300MhZ. They have up to 24 Gigabit IOs. Dedicated 10Kbit 
Block Rams that total up to 10MBits on chip memory. These 
include powerful CLBs that contain up to 8 4-input Look-up 
tables. They have many dedicated 18-Bits X 18-Bits pipelined 
multipliers running at 200MhZ for DSP applications. This device 
also includes Digital Clock Managers for skew reduction and 
stable clock generation. The trend seems to be towards adding 
more and more dedicated cores within a programmable fabric.  
Also, noteworthy are the type of routing topologies that have been 
introduced by recent FPGA architectures.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.2 (white squares denote CLBs and black squares denote 
route switch boxes) shows types of routes that occur in Virtex-II 
family of Xilinx devices. Long lines span full height and width of 
the chip, Hex lines route signals to every third or sixth CLB in all 
four directions, Double lines route signals to every first or second 
CLB in all four directions, Direct lines connect signals to 
neighboring blocks and the Fast lines are internal CLB local 
connections.  The Hex, Double, and Direct have very similar 
delays, implying that the net delays are not directly proportional 
to the distance. For example, a net that spans 6 CLBs may have 
the same delay as the one that spans only 2 CLBs. 
Most EDA algorithms that target FPGA physical design tools 
assume an island style FPGA with delay on routes proportional to 
the distance. 
The following sections will detail the implications of such 
complex FPGA placement and routing architectures to the 
physical design space. 
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3. SIMPLIFIED ROUTING MODEL 
As discussed earlier, FPGA layout and routing architecture is 
completely different from that of ASIC designs. One of the key 
differences between the two of FPGA and ASIC layouts is the 
existence of so called long nets in FPGAs that connect distant 
CLBs with almost no delay penalty. On the contrary, correlation 
of the physical distance and delay between two nodes is an 
underlying fact in ASIC designs. 
Hence, FPGA physical design tools need to be aware of the target 
layout. In this section, we propose a simplified segmented routing 
model that can serve as the underlying layout for many FPGA 
physical design tools. We strive to keep the model as simple as 
possible, yet general and powerful enough to capture the 
fundamental routing characteristics of many current and future 
FPGA families. 
A simple segmented routing model can be generally specified by a 
set of pairs (ti, ci), where ti represents the wire type and ci denotes 
the wire count (the number of wires of type ti in the layout). Of 
course such a model does not completely capture all the details of 
FPGA architectures. For example, a hex line of Xilinx VirtexII 
devices can be used to connect CLBs of distance three or six.  
This fact is not modeled by our simple representation. We believe, 
however, that the type and count representation is simple yet 
powerful enough to facilitate and accommodate the development 
of efficient FPGA physical design tools. 
Accuracy and simplicity are two contradictory dimensions of any 
model solution space. A reasonable tradeoff between these two 
dimensions provides a model that is simple enough to be 
analyzed, yet accurate enough to allow reasonable optimizations. 
The general type and count model can be finely tuned to correlate 
as much as possible with any particular FPGA architecture. On 
the other hand, the model can also be parameterized to simplify it 
even further, without harming its accuracy significantly. 
Specifically, the size of nets existing in many FPGA routing 
architectures, seem to follow a semi-linear pattern of variation. 
This would allow us to specify the types of the nets in our model 
using two parameters. Similarly, the number of wires of each type 
tends to vary by a multiplicative factor compared to the wire of 
the immediately smaller size. Therefore, wire counts can also be 
approximated by two parameters, where one parameter would 
represent the count of wires of type 1, and the other parameter is 
the multiplicative factor.  
More specifically, let MRj(a, d, q) denote the following set of type 
and count pairs: 
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Figure 3.1 shows the idea of our parameterized model. Parameters 
j and a are utilized to approximate the type of nets existing in a 
particular layout with two lines. Particularly, parameter j 
corresponds to different generations of FPGA devices. Advances 
in technology allow integration of a larger variety of net types on 
the chip, which can be modeled with incrementing j. Note that an 
architecture modeled by a particular value of j contains all the nets 
that can be represented by smaller values of j. parameters d and q 
contribute to the number of wires of each type.  

Note that the presented model is completely based on observing 
current FPGA architectures, and the trend that seem to be 
continued for future generations of programmable devices. We 
believe that the presented simplifications lead to a reasonable 
extent of compromise between accuracy and simplicity of the 
model. For example MRj(3, 3, 3) can approximate the routing 
architecture of Xilinx Virtex II devices reasonably.  

 
Figure 3.1. Parameter j corresponds to different generations 
of the FPGA device. Two lines with slopes of 1 and a are used 
to approximate the growth in the length of nets. There are  
d.q(j-1) nets of type j. 
 
Note that j=1 always creates the routing architecture of an 
ordinary mesh, where each node is connected only to its 
immediate neighbors. Efficient FPGA physical design tools, 
however, need to be able to handle larger values of j, since they 
more closely capture the characteristics of the FPGA layouts.  
 

4. PARTITIONING 
As can be seen from our previous section modern FPGA 
architectures incorporate heterogeneous resources. These 
heterogeneous resources are distributed through the fabric of an 
FPGA.  Many modern placement techniques are based on 
partitioning as their backbone, e.g. DRAGON [24], etc.  At each 
step of these placement algorithms the placement region is 
divided into smaller sub-regions. The circuit is then partitioned 
into smaller sub-circuits and assigned to the sub-regions. The 
partitioning step balances the areas of the sub-circuits to conform 
to the areas of the regions they are assigned to. The sub-region 
with a smaller sub-circuit assigned to it is now a smaller instance 
of the original placement problem to be acted upon in the next 
placement step. The process continues until the regions are small 
enough and a detailed placement phase follows. For these 
placement techniques to be applicable in the FPGA space, 
partitioning techniques need to account for a balancing of 
resources with distinct types. Partitioning of circuits into sub-
circuits need to balance resources used in each sub-circuit to the 
available resources in each of the sub-regions. For example, a 
partitioning solution that divides the circuit up into 2 sub-circuits 
such that all Look-Up-Tables are assigned to one sub-circuit and 
all RAMs are assigned to the other sub-circuit may have over-
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m=a 

j a 

ti 



subscribed these resources even if the 2 sub-circuits are balanced 
in terms of the total number of cells. This problem was studied by 
[26]. Researchers in [26] detailed an extension of hMetis to 
account for such resource balancing.  We describe below the 
problem addressed by [26] and encourage researchers to attempt 
other algorithms that would better the quality of results. 
Problem 4.1: Let the resource type of a particular cell be 
specified by t(v). Let cli

j denote the minimum number of resources 
of type i allowed in partition j. Then the multi-resource bisection 
P of hypergraph G seeks to minimize the cut subject to: 

 cli 
1   ≤  ∑∀v∈V: P[v]=1 and t(v)=I 1≤ cui

1and 

 cli 
2   ≤  ∑∀v∈V: P[v]=2 and t(v)=I 1≤ cui

2 

 

5. FLOORPLANNING 
Traditionally the floorplanning problem has been defined to be an 
area packing problem on a set of modules; some that are hard 
macros and have fixed height and width, others that are soft 
modules that have a range of aspect ratios and areas to choose 
from. Techniques involve having a compact representation of a 
floorplan [9,10,15,16,17,18,19,20,21] and using simulated 
annealing moves to modify the floorplan. There has been some 
work done for fixed outline floorplanning [22] but most of these 
are extensions of the area packing formulations. 
Obviously, the traditional floorplan representations and 
techniques will not be sufficient to meet the needs of FPGA.  For 
one, the traditional floorplan representations assume a continuous 
space and all locations are available for placement of modules. 
Secondly, the techniques assume a single area resource 
requirement that is a continuous function of height and width 
making the module areas additive. 
The FPGA floorplan could be represented using the location of 
the lower left corner of the module and the shape of the module.  
If S = {(I, J)|1 ≤ I≤ Number of columns in device, 1≤ J≤ Number of rows 
in device}, and M is a set of modules to be floorplanned, then the set 
of all possible module placements can be represented as P = {(m, 
l, s)| m∈M, l∈S, s∈S}, where m is the module, l is the location of 
the lower left corner of the module and s is the bounding box 
height and width of the module. Also, the bounding box for any of 
the modules defined by l and s needs to be contained within the 
device boundary. Given the above constraints |P| is O(|M|.n4), 
where n is max(Number of columns in device , Number of rows in 
device). 
Given a floorplan representation and a suitable cost function the 
FPGA floorplanning problem could be solved through stochastic 
methods. However, we encourage other researchers to study this 
problem more carefully and research better algorithms. 
Problem 5.1: Let the resource type of a particular module, v, be 
specified by t(v). The floorplan, F, will seek to optimize the cost 
function C: 

C = ∑α|ratio-1| + β(external-wire-length) + γ(overlap) 
Where ratio is the aspect ratio of the module, external-wire-length 
is the total wirelength measured as center-to-center manhattan 
distance between modules times the number of nets between 
module pairs, and overlap is the total overlap between pairs of 
module rectangle boundaries. α, β, and γ are weights used to trade 
off different cost criteria. 

6. PLACEMENT 
Placement forms the back bone of any good physical synthesis 
system. Placement is a well researched problem in the standard 
cell domain. However, traditional ASIC scalable placement 
techniques such as min-cut or force-directed based algorithms are 
effective when the layout space is geometric (e.g., a mesh). 
As presented earlier, present FPGAs are departing from geometric 
layouts, due to the existence of “express” (e.g. double/hex/long) 
nets in the routing architecture. Express wires in the FPGA fabric 
create extra edges in the mesh (that is usually used to model 
standard cell designs) and route structures that hop across the 
fabric remove edges from the mesh. In other words, in recent 
FPGAs the re-configurable logic blocks that are physically 
distant, can be connected to each other with almost insignificant 
delay penalty.  
It follows that direct adaptation of the traditional ASIC placement 
techniques simply fail to produce high quality results for FPGAs. 
FPGA placement techniques have to be layout-aware in order to 
capture the change in the topology of the placement surface.  We 
will take a closer look at placement in the context of today’s 
FPGAs, and introduce a few fundamental problems that require 
extensive research to be reasonably addressed. 
Problem 6.1: What is a good cost function for an FPGA 
placement tool? 
In ASIC domain, the length of a wire is proportional to its delay. 
As we will elaborately discuss in section 7, that is not the case for 
designs implemented on an FPGA. Therefore, traditional standard 
cell placement cost functions are not directly applicable to FPGA 
domain, due to fundamentally different routing model of the 
FPGAs. Apart from the classic wirelength cost function, new 
timing driven cost functions are also needed, because traditional 
ASIC critical path definitions (physically longest path) would be 
different in FPGA domain. 
Problem 6.2: How can an FPGA placement tool estimate 
congestion and routability? 
In standard cell designs, quick and fairly accurate congestion 
estimation of a given design can be performed by calculating the 
density of the nets. The density (the chromatic number of the 
interval graph corresponding to nets in a channel) represents the 
maximum number of nets that have to be put next to each other in 
that particular routing channel. While density serves as a fairly 
reasonable metric in standard cell domain, it is no longer effective 
for FPGA designs, the reason being the underlying segmented 
routing architecture of the FPGAs. For example, a short local net 
can be realized using a long net that passes through the entire 
channel, which might translate into a congested area in another 
location of the channel. 

6.1 Experimental Setup 
We have built a placement tool based on Dragon [24]. Dragon is a 
state-of-the-art min-cut based standard cell placement tool, which 
uses simulated annealing to optimize the placement in each 
partition. Our new placement tool performs global placement of 
circuit netlists on a simplified FPGA layout model. 
In our simplified model, called Mi, each node of the grid is 
directly connected to all of its neighbors of distance less than or 
equal to i in all four directions (Figure 6.1). We assume that the 
delay of all nets is equal in Mi. Hence, the delay associated with a 
set of nets connecting two nodes is proportional to the number of 



net segments (hops) that are used to connect the two nodes. It 
follows that the traditional total wirelength metric would translate 
into the total number of the net segments (hops) that are used to 
connect pins. In [27] authors have shown that this metric 
correlates very well with the post routing delay. 
Our global placement tool uses the total number of net segments 
as its cost function. Furthermore, we ignore the constraint of 
limited number of wire segments at the global placement stage. 
Therefore, we always assume that a net can be implemented using 
the fastest (least number of segments) possible way at this stage. 

 
 
Figure 6.1. In Model Mi each node is connected to all 
neighbors that are at most i units distant (in all four 
directions). Connections to node v only on one of the four 
directions have been shown. 
 
Interestingly Mi can model both mesh, and FPGA layouts. If i=1, 
then each node of the grid is only connected to its immediate 
neighbors. That is M1 is the well-known mesh layout, which is 
normally used by traditional ASIC physical design tools. Larger 
values of i can be used to capture the advances of the technology 
that allow more long nets in the FPGA routing architectures. 
We have implemented two global placers based on Dragon. The 
first version places the CLBs by only min-cut partitioning of the 
given netlist, while the second version tries to improve the results 
in each partition using simulated annealing. The cost function for 
both of the placers is number of net segments in Mi.  
 

Circuit # of cells # of nets 
ibm01 12,028 11,753 
ibm02 19,062 18,688 
ibm07 44,811 44,681 
ibm08 50,672 48,230 
ibm09 51,382 50,678 
ibm10 66,762 64,971 
ibm11 68,046 67,422 
ibm12 68,735 68,376 

 
Table 6.1. Details of placement benchmarks 

 
We have created a set of synthetic benchmarks that have the same 
number of nodes and connectivity as some IBM benchmarks. 
However, the nodes in our benchmarks are assumed to have 

similar sizes. This is required because nodes correspond to FPGA 
CLBs that are similar, unlike different standard cell sizes in ASIC 
domain. Table 6.1 demonstrates the original circuits that were 
used to create our testbenches and their characteristics. The 
circuits are part of IBM benchmark suit that are designed for 
standard cell placement. 

6.2 Experimental Results 
We have placed the benchmarks shown in Table 6.1 using both of 
our placement tools. The total number of wire segments for each 
placed benchmark in Mi is reported in Tables 6.2 and 6.3. The unit 
for each number is the grid size in Mi, which is constant for all 
experiments.  
 

Circuit i = 1 i = 2 i = 3 i = 4 i = 8 

ibm01 122.1 67.2 48.9 38.8 25.9 

ibm02 334.4 176.1 126.3 94.9 58.5 

ibm07 777.8 411.8 292.2 234.6 143.0 

ibm08 891.9 479.0 328.3 264.9 153.2 

ibm09 738.6 399.0 284.4 221.2 136.0 

ibm10 1177.7 608.5 439.8 337.7 201.3 

ibm11 1111.4 582.4 417.7 325.3 198.7 

ibm12 1562.3 850.7 565.8 443.2 260.9 

Average 839.5 446.8 312.9 245.1 147.2 

 
Table 6.2. Number of net segments (in thousands) on Mi, using 

a partitioning-only placement tool. 
 
Table 6.2 illustrates the results for the first version (placement 
using only partitioning) of our placement tool, while Table 6.3 
exhibit the results for the second version of the placer (placement 
using partitioning + simulated annealing). The numbers shown in 
both tables are in million wire segments. The last row of both 
tables indicates the average wire segments over all benchmarks.  
 

Circuit i = 1 i = 2 i = 3 i = 4 i = 8 

ibm01 97.7 50.9 38.5 33.0 24.6 

ibm02 265.8 141.6 102.4 82.8 52.7 

ibm07 602.0 316.2 240.9 188.3 124.0 

ibm08 650.1 361.0 254.8 208.0 136.5 

ibm09 575.0 307.8 232.9 183.4 123.8 

ibm10 935.6 499.0 377.2 289.2 190.2 

ibm11 843.0 448.6 338.9 264.9 179.9 

ibm12 1225.0 623.8 443.2 364.4 227.9 

Average 649.3 343.6 253.6 201.7 132.4 

 
Table 6.3. Number of net segments (in thousands) on Mi, using 

a partitioning+annealing placement tool. 

0 1 2 1 3 i i+1 

v 



The chart in Figure 6.2 demonstrates the variations of the average 
number of wire segments (last row of Tables 6.2 and 6.3) over 
different layout models. Larger values of i correspond to newer 
generations of the FPGAs, where longer wire segments, and more 
number of wire segments exist in the routing architectures. 
Naturally, the number of wire segments required to connect pins, 
decreases by addition of extra nets into layout. 
As can be observing from Figure 6.2, Incrementing i from 1 to 2 
almost halves the number of net segments required to route the 
connections. It can be inferred that there are many net segments 
whose length is greater than 1 in at least one of the two X or Y 
directions. All such nets would be routed with less number of net 
segments in M2 compared to M1. Note that nets of length 1 (in 
either of the two X and Y directions) incur the same cost in all Mi. 

Number of net segments for different routing models (Mi)

0

100

200

300

400

500

600

700

800

900

1 2 3 4 8

Th
ou

sa
nd

s

i

To
ta

l n
um

be
r o

f n
et

 s
eg

m
en

ts

Partitioning Only
Partitioning + Annealing

 
Figure 6.2. Average number of wire segments for different 
layouts. 
 
On the other hand, most of the nets in a placed design are local 
nets whose lengths are not very large. Therefore, excessive 
increasing of i does not exhibit the same trend in reduction of the 
cost function. For example, the number of required net segments 
in M8 is only about %20 of M1, where about %50 of savings 
happen when we move from M1 to M2. Hence, our study provides 
a rudimentary measure for evaluating area-delay tradeoffs 
involved in designing routing architectures for FPGAs.  
 

7. DELAY ESTIMATION 
Recent works have tried to estimate wire delays at various levels 
of design stages [4], [5], [11], [12]. Almost all of these previous 
works have exploited features (routing resources, gridded 
architecture etc.) of targeted FPGA architecture to estimate 
delays. Though relevant to the targeted FPGA, most of these 
previous methodologies cannot be applied to recent multi-million 
gate FPGAs because of the complexity of the estimation process 
[11][12].  
 

Terminologies and Experimental Setup: 
From now on whenever we say distance we mean Manhattan 
distance between the CLBs in which driver and driven pins are 
respectively located. Similarly, delay would mean delay between 
driver and driven pins.  

We will show experiments on one representative industry design, 
ind_com (similar results were observed on other large designs). 
This design has 8.7M gates and is targeted for 2v8000 VirtexII 
FGPA device with 112x104 CLBs. All the data for these 
experiments was generated using Xilinx’s Place and Route tool, 
PAR [25]. PAR was run in high-effort mode for timing and 
routing optimization. 
 

Variables affecting wire delays: 
Some of the variables which traditionally have been explored for 
wire delay estimation are: fanout of the net (connecting driver-
driven pin pair), distance between driver-driven pin pair and 
routing congestion [12]. Of these, routing congestion is the 
hardest to measure and depends heavily on routing algorithm 
being used. Congestion estimation is beyond the scope of this 
work. We will limit ourselves to studying the impact of net fanout 
and distance between driver-driven pin pair on wire delays. 

Fanout of the net connecting pin pair 
Fanout of the net has been shown to correlate really well with the 
delay in Standard-Cell design methodologies and has been used 
extensively to derive wire-load models for net delays [3]. 
However, our experiments show that in the FPGA domain a very 
weak correlation exists between the two. In Figure 7.1, we show 
post-routing delay for pin pair (with a distance of 2) versus net 
fanout plot for ind_com design. For different values of the fanout 
the range of delays is almost same, giving rise to the notion that 
fanout has very little impact on delay. The reason why fanout of 
the net does not impact delay lies more in the routing architecture 
of the Xilinx FPGA devices. These devices use buffered inter-
connects to route the nets [25]. Routing switches break the net at 
regular intervals and hence the traditional fanout based wire-load 
models, using Elmore delay [7], cease to work.  

 
Figure 7.1. Net fanout Vs delay for a fixed distance. 

 
Distance between pin pairs 
Authors in [12] have shown that delay between a pin pair has no 
direct linear relation-ship with the distance between them. To 
corroborate their observation, for every driver-driven pin pair (for 
nets with fanout of 2) in ind_com design we plot distance versus 
post-routing delay. It is evident from the plot, Figure 7.2 that even 
though the delay seems to be increasing with the distance, for a 
given distance the range of delays is too large. Trying to fit a 



linear line to extrapolate the delay for a given distance will have 
huge error margin. 
However, if we plot delays for a given distance, interesting 
patterns emerge. Figure 7.3 shows the plots of delays of all the 
driver-driven pin pairs in ind_com design with a distance of 2. We 
see that most of the delays are centered on very few vertical lines 
thereby indicating that delays are combination of discrete values. 
To motivate our argument for a discrete delay model, it would 
help to take a look at the routing architecture in Figure 2.2. It is 
this discrete routing structure which gives rise to vertical lines in 
Figure 7.3. For a distance of 2 CLBs between a driver-driven pair, 
the number of possible routes is limited. Such a distance can be 
routed using either of the following: one double line, two double 
lines, or a direct line and a double line etc. The delays for these 
different types of lines are almost constant (minor variations 
might occur due to switch-box delays) and have no relation to 
each other. For example, delay of a hex line is not three times the 
delay of a double line or six times the delay of a direct line but is 
only slightly larger than the delay of a double or direct line.  

 
Figure 7.2. Distance Vs delay for a fixed fanout. 
 
Based on the plots in 7.1 and 7.2 we see that traditional delay 
estimation techniques that depend on the fanout of the net in 
question and the distance between specific pin pairs fall apart in 
the FPGA domain.  Wang et al [27] illustrate an algorithm to 
estimate the delays between pin pairs for VirtexII architectures. 
The algorithm is based on estimating the type of routes used 
between the two CLBs on the FPGA fabric. In [27] the design is 
already placed and routing has not been performed. Accurate 
delay estimations, however, also need to be performed earlier in 
the design flow to enable performance based logic and placement 
optimizations.  
Problem 7.1: Let d(pi, pj) be the delay associated with the net 
segment between source pin pi and the sink pin pj. Predict the 
delay, e(pi,  pj)  prior to placement to minimize E, where: 

E = ∑ |d(pi, pj)-e(pi,  pj)| 
A more relevant problem formulation would be the one that 
reduces the error in delay estimates on all timing paths found in 
the design.  
 
 
 
 

 
Figure 7.3. Discrete delay bands for a distance of 2. 
 
Problem 7.2: Let Pm

n  be the mth  path in the design with n timing 
pins along the path. Let d(pi, pi+1) be the delay associated with the 
net segment between source pin pi and the sink pin pi+1 along the 
path. Predict the delay, e(pi,  pi+1)  prior to placement to minimize 
E, where: 

 E =∑∀m |∑∀i s.t ( i ≤  n) and( i mod 2 = 1)  d(pi, pi+1)-e(pi,  pi+1)| 
 

8. CONCLUSION 
Advances in technology have lead to creation of high capacity and 
heterogeneous FPGA devices. Many underlying ASIC domain 
assumptions, such as continuous area or customized routing 
segments, do not hold for such architectures. Therefore, a direct 
retargeting of traditional physical design techniques does not 
provide quality results for reconfigurable devices. It follows that 
many well-researched physical design problems need to be 
reformulated and investigated in order to fully utilize modern 
FPGA devices.  
In this paper, we presented a number of basic physical design 
problems, and showed why traditional techniques would fail to 
produce reasonable results. Particularly, we overviewed 
traditional partitioning, floorplanning, placement, and delay 
estimation techniques, and highlighted their shortcomings for 
producing good results for modern FPGAs.  
In each section, we formulated a few underlying problems that 
can potentially initiate fundamental research efforts in that area. 
Moreover, we proposed a simplified yet powerful model for 
representing segmented routing architectures. The model can be 
utilized in many different physical deign stages such as 
placement, routing and delay estimation. We encourage 
researchers to investigate the proposed ideas and problems 
further, in order to develop novel and efficient FPGA physical 
design tools. 
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