
Efficient Implementation Selection via Time Budgeting:
Complexity Analysis and Leakage Optimization Case Study

Soheil Ghiasi
Department of Electrical and Computer Engineering

University of California, Davis
soheil@ece.ucdavis.edu

Abstract
We present time budgeting as an efficient technique for implementation
selection. We discuss discreteness in library and present an optimal al-
gorithm for a special case of the problem. The algorithm is extended
to construct a heuristic for the general case, and is experimented on
the gate-level threshold voltage assignment problem in dual Vt technol-
ogy. Experimental results show that our approach reduces the leakage
current by close to an order of magnitude, with no or negligible delay
penalty. Compared to existing algorithms, our technique outperforms a
recent LP-based competitor by 33%.

1. Introduction
Implementation selection problem refers to situations, where multi-

ple implementations of modules are available, and the designer wishes
to select the proper implementation for each module to minimize the
overall system cost under its utility constraint. This problem arises in
many different stages of system design and VLSI-CAD. In this paper,
we use time budgeting to perform implementation selection under tim-
ing constraints. We utilize time budgeting to relax the delay of the gates
of a netlist, under clock period constraint. The slowed-down gates are
mapped to the best available implementation in the library to improve
design area, power dissipation, or other quality metrics.

We show that discrete delay choices can make the problem NP-Complete.
However, under reasonable assumptions time budgeting for discrete li-
brary choices can be solved efficiently, and in some cases optimally.
We apply our results to leakage optimization problem via dual threshold
voltage assignment in dual Vt technology. Experimental results show
76 � 6% and 82 � 4% reduction in leakage current of several MCNC bench-
marks, with no or 5% delay penalty, respectively.

2. Background
The left part of figure 1 illustrates an example of the application model

used throughout the paper. We use the standard data flow graph (DFG)
model, which assumes that the data flow of a given application can be
represented with a directed acyclic graph (DAG). The nodes denote the
computations and edges model the data dependency among nodes. Each
computation starts when all its input data are available, i.e, all of its
fanins have finished their computations, and takes a specific amount of
time to finish its task and broadcast the result to all of its fanouts.

We assume that all primary inputs arrive at time equal to zero, and
all primary outputs must be ready by a given timing constraint, denoted
by T . Edges are considered to have zero delay, however, this model can
indeed account for edge delays by modeling them as data communica-
tion nodes. The problem of timing budget management is to determine a
local timing constraint for implementing each of the computations, such
that the local constraint is feasible (not smaller than the minimum pos-
sible computation delay), the application timing constraint is met, and
some objective function is optimized.

For many practical applications, design variables are either integers
(such as delays in terms of number of clock cycles) or can be trans-
formed into integer numbers with problem scaling. Therefore, it is often
assumed that the problem arises in integral domain, i.e, initial compo-
nent delays, possible lower and upper bounds on local delays, and local
and global timing constraints are non-negative integers. Depending on

the application domain, different time budgeting objectives are appro-
priate. An intuitive budget assignment policy tries to maximize the total
delay budget assigned to the graph, assuming that larger total budget
correlates to larger improvements in the utility function. Another popu-
lar policy is to distribute the budget values fairly (minimizing the maxi-
mum budget value), while trying to maximize the total delay relaxation.
Other common objectives include maximum total delay relaxation under
weighted, bounded, or min-skew constraints [13].
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Fig. 1: An example of the execution model and some timing bud-
get management policies. The table shows the optimal solution for
maximum, bounded and min-max (with different total budgets) de-
lay budget assignment. Our technique can accommodate all these
policies optimally.

Figure 1 illustrates an example of different delay budget assignment
policies in action. All of the nodes in the example have unit intrinsic
delay, and therefore, the critical path of the graph has length 4. Delay
budgets are assigned to the nodes and we assume that the timing con-
straint for the application is 8 time units. For each cost function (policy),
an optimal solution is depicted in the table. Note that the delay budget
should be added to the unit intrinsic delay of the node to calculate its
local timing constraint.

3. Related Work
The concepts of slack, operation slow down, and mobility have been

extensively studied and experimented for different applications such as
design timing closure [3], voltage assignment [15], timing-driven place-
ment and floor planning, [4], gate and wire sizing [2], high-level synthe-
sis [19], layout compaction [20] and software optimizations [8, 14]. The
majority of previous work have used heuristics based on Zero Slack Al-
gorithm (ZSA) [11] to assign timing constraints to design components.
Previously, we presented optimal algorithms for integral time budgeting
on a DAG [6, 13] and showed their superiority over ZSA. For discrete
time budgeting, we showed that the problem is NP-Complete and the so-
lution can be approximated within any given bound (ε-approximation)
when the application graph has the form of a rooted tree [14].

4. Leakage in Deep-Submicron
We have adopted the models presented in [17] to perform our exper-

iment on threshold voltage assignment and leakage calculation (Section
6). Therefore, we cite the relation of leakage current and delay of a MOS
transistor with its threshold voltage according to their study, to maintain



consistency. According to the BSIM model [1], leakage current of a
MOS transistor can be approximated as follows:

Ileak
� Aeq

�
Vgs � Vt ��� nkT � 1 � e � qVds � kT 	 (1)

where A � µoCox
� We f f 
 Le f f

	�� kT 
 q 	 2e1 � 8 and Cox is the gate oxide
capacitance per unit area and Vt is the threshold voltage. Consequently,
the leakage current is exponentially dependent on threshold. On the
other hand, delay of a MOS transistor follows the following approximate
relation with respect to Vt [18, 1, 12]:

td � 2CloadVdd 
 � β 	� Vdd � Vt
	 α (2)

where α is around 1.3 for short channel and 2 for long channel de-
vices. Leakage current of a CMOS circuit is the sum total of the leak-
age currents of all gates. The leakage of a CMOS gate depends on the
number of transistors that are turned off and hence on the inputs. For
example if a NAND gate has both NMOS transistors off (input = 00).
Since these transistors are in a stack, the leakage current will be small,
whereas if both PMOSs are off (input = 11) then the two off transistors
are connected in parallel and the leakage is large.

5. Leakage Optimization via Time Budgeting
5.1 Transformation to Integral Weighted Time Budgeting

We formulate the problem of gate-level Vt assignment in dual Vt tech-
nology as discrete delay budgeting. The delay choices for each gate are
its delay under Vt � low and Vt � high threshold voltages. The objective is to
maximize the savings in leakage current, through assignment of selected
gates to Vt � high under a given global timing constraint. [9] reports a sim-
ilar approach to address the design with dual Vt technology, however,
sub-optimal heuristics are employed that lead to inferior results.

From a delay budgeting perspective, each gate has exactly two delay
choices under dual Vt technology, i.e., there are exactly two points in the
leakage-delay plain for each gate. Let us temporarily relax the assump-
tion of discrete delay choices. The two points can be assumed to form a
line with a fixed slope, although points in between the two ends are in-
valid choices. The slope represents the improvement of the gate leakage
with assignment of a unit relaxation in the delay of the gate, and hence,
serves as a very intuitive basis for assigning weights to gates.

The corresponding relaxed integral delay budgeting problem is to se-
lect the proper delay relaxation for each node, with a given upper bound,
that maximizes the total weighted delay relaxation under global timing
constraint. We apply our previous result [13] to solve this problem, and
then round down the delay budgets to form a legal solution for the orig-
inal dual-Vt -inspired discrete budgeting problem. We present properties
of the delay choices, under which, a discrete budgeting instance can be
directly transformed to an integral budgeting instance.

The model that we used assumes that nodes incur some delay to per-
form their associated computations, and edges have zero delay. More
generally, we can assume that edges incur some delay and nodes have
zero delay. An instance of node budgeting can be transformed to an
instance of edge budgeting by 1)splitting each node to two nodes that
are connected by an internal edge, and 2) assigning proper weights to
internal, and 3) zero weight to external edges. Figure 2 depicts the idea.

5.2 Discrete Time Budgeting for Dual Vt Technology
In this section, we remove the relaxation of continuous integral de-

lay choices for each gate, and focus on discrete delay budgeting. We
present our results on the complexity of the problem and conditions,
under which, the problem can be solved optimally. If each node has ar-
bitrary delay choices, then the problem of delay budgeting to maximize
total relaxation is NP-complete. Even under very restrictive assumptions
of two arbitrary delay choices for each node, and an application graph
in the form of a path, the problem is NP-complete.

Theorem 1. The problem of discrete delay budgeting for maximiza-
tion of total relaxation is NP-complete.

Proof: We reduce a given instance of subset sum problem to an in-
stance of discrete delay budgeting on a path. For each element ei of the
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Fig. 2: A weighted node budgeting problem instance is transformed
into an equivalent weighted edge budgeting instance
set, we add a node with two delay choices of zero and ei to the path. The
question ”is there a subset of the set such that the total value of elements
in the subset is equal to B?” can be answered in polynomial time if the
discrete delay budgeting problem on the constructed path, with timing
constraint B, can be solved in polynomial time. Therefore, the discrete
delay budgeting for arbitrary delay choices is NP-complete. �

Although the discrete delay budgeting problem is NP-complete in the
general case, a special relation between the delay choices, or the struc-
ture of the graph, might allow efficient solution of the problem. For
example, under arbitrary delay choices, the optimal solution can be ap-
proximated to any given accuracy if the graph forms a rooted tree [14].
We show that the problem can be efficiently solved for the general graph
structure under some special relation between the node delay choices.

Let us assume that all of the nodes are identical with delay choices
that are consecutive multiples of an integer d. That is, the delay choices
for each node are m � d � � m � 1 	 d ����� � m � n 	 � d and the global timing con-
straint is T . The following lemma proves that such an instance of the
problem can be transformed into continuous integral budgeting prob-
lem, and can be optimally solved through the technique explained in
Subsection 5.1:

Theorem 2. The budgeting problem instances, and solutions are scal-
able by an arbitrary positive integer. That is, an optimal integral solu-
tion for a given problem instance, if multiplied by d, forms an optimal
solution for a new discrete budgeting instance. The new instance is cre-
ated by multiplying delay choices, lower bounds, upper bounds and tim-
ing constraint by d.

Proof: Omitted for brevity. �
It follows that the aforementioned instance can be scaled down by the

factor d to create an integral delay budgeting instance with lower/upper
bounds of m and n, respectively. The global delay constraint is reduced
to � T 
 d � . Note that the delay constraint does not necessarily have to be
an integral multiple of d.

For the case of Vt assignment, the two delay choices, and their rela-
tion completely depends on the choice of threshold voltages. Although
threshold voltages might be selected in a way that allow exact scaling,
it should not be generally assumed that they follow this pattern, espe-
cially for real circuits with different gate types. Therefore, we solve the
threshold voltage assignment problem by relaxing it into integral delay
budgeting, solving the integral version, and rounding down the results
to the closest feasible solution for each gate. Interestingly, this scheme
works very effectively in practice, and most of the gates with enough
timing slack will be assigned a timing budget equal to their budget up-
per bound. Next section will present our experiments with real circuits.

6. Experimental Results
We implemented our algorithm for solving the integral delay bud-

geting problem, in SIS [7]. We perform round down on the results to
convert it to a feasible discrete budgeting solution, and assign one of the
two Vt � low and Vt � high values to each of the gates in the netlist. We used
the experimental framework developed by Khandelwal et al. [17] to es-
timate the gate leakage and delay variations with respect to Vt for gates



Benchmark No. of Vt � high Initial Simultaneous [17] Tight timing constraint 5% relaxed timing runtime
gates Vt � low leakage leakage improv. % leakage vs. init % vs. simul. % leakage vs. init. % vs. simul % (seconds)

9symml 84 0.40 0.50 515.70 159.24 69.12 132.30 74.35 16.92 94.86 81.61 40.43 0.13
C1355 510 0.40 0.50 2913.40 1985.08 31.86 883.40 69.68 55.50 521.28 82.11 73.74 3.87
apex6 438 0.41 0.50 3870.40 1720.33 55.55 746.60 80.71 56.60 698.41 81.96 59.40 3.27
apex7 157 0.41 0.50 1235.10 1116.24 9.62 290.00 76.52 74.02 233.12 81.13 79.12 0.56
C2670 505 0.38 0.49 6440.30 1885.21 70.73 1022.30 84.13 45.77 865.79 86.56 54.07 6.88
C499 287 0.40 0.47 3062.60 1989.22 35.05 986.40 67.79 50.41 803.34 73.77 59.62 1.69
b9 80 0.41 0.50 590.50 357.61 39.44 142.10 75.94 60.26 110.42 81.30 69.12 0.12
pair 948 0.41 0.50 7014.71 3954.37 43.63 1387.40 80.22 64.91 1268.20 81.92 67.93 21.70
rot 403 0.39 0.50 4585.10 1692.89 63.08 686.60 85.03 59.44 596.07 87.00 64.79 3.20
x4 315 0.40 0.50 2881.30 1267.31 56.02 999.10 65.32 21.16 423.56 85.30 66.58 1.70
too large 456 0.40 0.50 2413.50 768.16 68.17 408.50 83.07 46.82 385.38 84.03 49.83 3.70
Average 3229.33 1535.97 49.30 698.61 76.61 50.17 545.49 82.42 62.24 4.26

Table 1: The experimental results for design with dual threshold voltages

in lib2.genlib library. All leakage and delay curves are normalized with
respect to a basic inverter in the library.

The MCNC benchmarks are mapped to the lib2.genlib library. The
global timing constraint is set to the netlists critical path under Vt � low.
In another set of experiments 5% relaxation is allowed to this timing
constraint. The Vt � low and Vt � high values are the same values as the study
performed by [17] to allow a fair comparison. However, our algorithm
and approach is quite generic and applicable to other threshold values.
After assigning low and high threshold voltages to gates, another tim-
ing analysis is performed to assure the validity of results. In all cases,
our algorithm did meet the required timing constraint. For each bench-
mark, the netlists are processed without applying any SIS optimization.
They are mapped using the built-in ”map” command with no switches.
The choice of benchmarks, SIS optimization and mapping switches have
been merely duplicated from [17] to maintain consistency, and create a
fair ground for comparison.

Table 1 summarizes our results. The first two columns report the se-
lected benchmarks and their characteristics in terms of number of gates
after mapping. Third and forth columns of the table show the value
of low and high threshold voltage for each benchmark. The values are
adopted from [17] to maintain consistency. The ”Initial leakage” col-
umn shows the leakage of each benchmark under Vt � low. The next three
columns report the result of applying ”simultaneous Vt selection and
assignment” [17], our algorithm with tight timing constraint, and our al-
gorithm with 5% relaxation in the global timing constraint. The results
illustrated in Column ”Simultaneous” are calculated with 5% relaxation
in the timing constraint (5% delay penalty). Hence, our algorithm results
with relaxed timing constraint should be considered for a fair compar-
ison. The last column reports the runtime of our algorithm in seconds
measured on a PC running Linux on a 2.6 GHz Pentium4 processor with
512KB cache, and 1GB main memory.

Under no delay penalty, the reduction in leakage current of the se-
lected benchmarks is as high as 85% and, 76 � 6% on average. The im-
provement can be further magnified with extra relaxation in delay con-
straint. When 5% relaxation in timing is tolerated, the reduction in leak-
age is 82 � 4% on average. With the same timing constraint, simultaneous
Vt selection and assignment [17] reduces the leakage 49 � 3%, compared
to the initial configuration of assigning all of the gates to Vt � low. If the
result of simultaneous Vt selection and assignment is considered as the
base for comparison, our algorithm improves the leakage 50 � 2% and
62 � 2% under no delay penalty, and 5% delay penalty, respectively. The
sub-columns titled as ”vs. init” and ”vs. simul.” illustrate the compari-
son of the corresponding results, with initial leakage, and leakage after
applying simultaneous Vt selection and assignment.

7. Conclusions
We presented the idea of time budgeting to perform implementation

selection under timing constraints. We investigated the delay budgeting
problem under discrete delay choices for each component. Although
NP-compete in the general case, the problem can be transformed to inte-
gral delay budgeting (and effectively solved through known techniques)
when certain relations between delay choices exist. We leveraged the
developed theory and applied it to the problem of threshold voltage as-
signment in dual Vt technology. Our experiments verified the effective-
ness of our approach. Our technique reduces the design leakage current

by 76 � 6% and 82 � 4%, with no delay penalty and 5% relaxation in timing
constraint, respectively. It outperform a novel recent technique by 33%,
on average.
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