Incremental Component Implementation Selection:
Enabling ECO in Compositional System Synthesis

Soheil Ghiasi
Department of Electrical and Computer Engineering
University of California, Davis
soheil@ece.ucdavis.edu

ABSTRACT

The component implementation selection problem (CISP) is
to select the appropriate implementation for components of
a design, such that the timing constraint is met and some
global design objective is optimized. CISP is a generic prob-
lem that implicitly or explicitly appears in many stages of
CAD flow. In this paper, we present a methodology for
quick and efficient updating of CISP solutions in face of
incremental engineering changes. For a commonly-used for-
mulation, we discuss necessary and sufficient conditions for
optimality of a CISP solution based on which, we develop
an algorithm that maintains both validity and optimality of
a solution subject to incremental changes. We implemented
our approach to incrementally update the threshold voltage
assignment solution for a netlist going through engineering
changes. On average, our method ran over 300 times faster
than the “from-scratch” solver, while delivering the same
results.

1. INTRODUCTION

In a typical development scenario, a design goes through
many incremental changes before its development process
is finished. Incremental changes often do not demand a
fresh, computationally-intensive and “from-scratch” solu-
tion to CAD problems, because, the solution determined
in previous iterations can usually be quickly and efficiently
updated to handle the perturbations [4, 3, 1, 2].

The problem of component implementation selection is
a generic formulation that is either implicitly or explicitly
solved in different stages of library-based CAD flow. Essen-
tially, this problem tries to select the proper implementation
of each component, from a number of choices available in the
library, such that design timing constraint is met and some
cost function (e.g., energy dissipation) is minimized [5].

In this paper, we present an incremental method that han-
dles engineering changes, and quickly updates the solution
of implementation selection problem on a directed-acyclic
graph. While guaranteeing to meet the timing constraint,
our technique maintains the optimality of the solution. We
present necessary and sufficient conditions for quick vali-
dation of a candidate solution, and develop guidelines to
quickly and optimally handle primitive incremental opera-
tions such as insertion or deletion of a net in the design.

To validate the theoretical contributions of this paper, we
applied our technique to the problem of gate-level threshold
voltage (V;) assignment for leakage optimization. Assuming
that an engineering change is composed of about 50 prim-
itive netlist-changing operations (Subsection 4.1), our in-

=6

Timing Constraint

2

&
<

Figure 1: a) Example optimal solution. b) After
inserting an arc, greedy selection correction is sub-
optimal. c¢) Optimal solution. Note that it does not
modify the two end points in this example.

cremental solution updating approach was on average 303.3
times faster than re-executing the solver to get a fresh V;
assignment, while delivering the same results.

2. MOTIVATING EXAMPLE

Figure 1 depicts a simple example to illustrate the idea
of incremental CISP. The figure shows an example directed
acyclic graph that models an application. Nodes and edges
in the graph represent tasks (computations) and dependen-
cies, respectively. All nodes are assumed to have two possi-
ble implementations. Specifically, the first implementation
has unit delay and dissipates two units of energy, while the
second implementation has two units of delay and dissipates
unit energy.

Figure 1.a shows the optimal selection of node implemen-
tations, such that the timing constraint of 6 time units is
met, and the total energy dissipation is minimized. The
optimal solution dissipates 7 units of energy. Now, let us
assume that as a result of some ECO, arc b — d is added
to the DAG. Insertion of the new arc creates the path a —
b — d — e that takes 7 unit of time and hence, violates the
timing constraint.

A greedy approach would try to select a faster implemen-
tation for nodes incident to the arc, if possible, to meet the
timing. Figure 1.b shows the resulting solution, which dis-
sipates 8 units of energy. The optimal solution, however,
dissipates 7 units of energy (Figure 1.c) by modifying the
implementations of nodes ¢ and e.

Our objective is to deliver incremental algorithms for le-
galizing the solution (i.e., meeting the timing) while main-
taining its optimality, under incremental updates (ECO) to
the design. We discuss theoretical foundations of the prob-

S/o,
g *g . _'feau, *g .. -
o o ®-o o ’
“
delay delay delay

a) Integral delay

b) Integral delay choices w/ c) Arbitrary delay
choices

weight and bounds choices

Figure 2: Three cases of discrete implementation
delay choices: a) Integral delay choices. b)Integral
delay choices with weights and bounds. c) Arbitrary
delay choices. Cases a and b are handled efficiently.

lem, and present algorithms that can efficiently handle a
variety of incremental updates. Examples updates include
insertion or deletion of arcs, change in the delay of a node,
and change in relative utility improvement (energy in our
motivating example) with unit delay.

3. IMPLEMENTATION SELECTION PROB-
LEM

We focus on designs that can be modeled using directed
acyclic graphs (DAG) G = (V, E)). Examples include gate-
level netlists or high-level applications modeled as task graphs.
Each vertex v € V is associated with a delay d(v) which rep-
resents the time it takes for a signal to pass through v. Edge
delays are assumed to be zero, nevertheless interconnect de-
lay can easily be modeled by inserting additional nodes on
E. Node delays can be calculated using common gate-level
delay models such as load-dependent model.

In library-based design methodologies, there are usually a
number of pareto-optimal implementations available to re-
alize components of a design [5]. For example, a complex
gate can be implemented in several ways. Similarly from a
functionality point of view, an addition operation in high-
level design can be mapped to any adder module in the
library. Different implementations come at different costs.
In most cases, faster implementations of components incur
higher cost in terms of typical design quality metrics, such
as energy dissipation, area or dollar cost. For instance, a
parallel multiplier takes more area and runs faster than a
serial multiplier. Here, we assume that the cost of imple-
menting a component is a linear function of its delay. Later
we argue that our approach is extensible to any convex cost
function of the delay.

An essential task in system synthesis is to select the proper
pareto-optimal implementation for components of the design
such that its timing constraint is met, and design cost met-
ric is minimized. We refer to this problem as implementa-
tion selection. An important property of the problem that
primarily determines its hardness, is the richness of delay
choices available for implementing nodes. Ideally, we would
like to be able to implement a node with any desired delay
value. This is equivalent to assuming that delay choices of
possible implementations of a node are continuous. Con-
tinuous delay choices do not exist in real life, and are not
feasible from a practical point of view.

In reality, implementation choices of a node exhibit dis-
crete delay values. We use the term integral delay choices
to denote the case, where implementations with consecutive
integer delays are available to realize a component. Figure
2.a illustrates this case. Note that integral delay choices

implies that a unit relaxation in timing of any node would
incur the same reduction in its cost.

A practical extension is to consider a specific cost-delay
relation for each specific node type (weight), and consider
bounds on minimum and maximum delay of possible imple-
mentations. We refer to this case as weighted and bounded
integral delay choices. Figure 2.b shows this case. Finally,
we use the term arbitrary delay choices to refer to imple-
mentations whose delays are not consecutive integers, and
cannot be transformed into consecutive integers with scaling
(Figure 2.c). In the next two sections, we focus on proper-
ties of the problem under the assumption of weighted and
bounded integral delay choices.

We have developed a min-cost flow based algorithm that
optimally solves the problem of implementation selection un-
der weighted and bounded integral delay choices [8]. The
details of our min-cost flow based technique are essential
to understanding our incremental CISP method. Interested
readers are referred to our publications on the topic [8, 7].

4. INCREMENTAL COMPONENT IMPLE-
MENTATION SELECTION

In order for designers to view the cost (e.g., energy dis-
sipation) implications of engineering change orders applied
to the design, component implementation selection problem
has to be implicitly or explicitly solved. Applying the min-
cost flow based method discussed in Section 3 requires iter-
ative solution of min-cost flow on numerous subject graphs,
which is prohibitive due to slow runtime of min-cost flow
algorithms. Note that the time complexity of best min-cost
flow algorithms can be as high as O(n®log (n)) for dense
design graphs [6].

Fortunately, only a small part of the design is updated
during ECO. Thus, there is a good opportunity to quickly
update the existing implementation selection solution (or
simply solution) calculated on the original graph, without
going through the lengthy process of re-solving the imple-
mentation selection problem from scratch. Our objective is
to devise algorithms that given the original graph, the cor-
responding implementation assignment and a set of incre-
mental changes, can efficiently update the implementation
assignment while maintaining optimality.

4.1 Primitive Incremental Operations

To formalize our notion of incremental modifications, we
present a list of primitive graph manipulation operations.
The primitive operations are selected such that they can be
applied in sequence to transform one subject graph to an-
other. The basic idea is to break down a designer’s high-level
ECO into a sequence of primitive incremental operations.
The sequence translates the original design graph into the
updated design graph. Our choice of primitive incremental
operations include:

1. Arc Insertion: An edge is inserted between two ex-
isting nodes. The edge might render the problem in-
feasible in presence of lower bounds on node delays.

2. Arc Deletion: An existing edge is deleted from design
graph existing nodes. It is assumed that the graph
remains connected after arc deletion, since the notion
of timing constraint has no practical significance in
disconnected graphs.

3. Node Delay Increase: Delay of a selected node is
incremented. The change might render the problem
infeasible due to imperative violation of timing con-
straint.

4. Node Delay Decrease: Delay of a selected node is
decremented.

5. Node Weight Change: Weight of a selected node is
increased or decreased by w > 0.

4.2 Problem Formulation

Recall that a component implementation selection instance,
specified with a design graph G, timing constraint and possi-
ble node implementations, can be represented with the cor-
responding flow network H (according to the algorithm re-
viewed in Section 3). The initial full solution to the problem
delivers min-cost flow solution of H and shortest-path dis-
tances in H* with respect to a fixed node.

Our target incremental implementation selection problem
can be formally stated as follows: Given the original prob-
lem instance G, its initial full solution and a sequence of
primitive incremental operations, the objective is to update
the implementation selection solution such that the timing
constraint of the updated graph is met, and the optimality
of the solution is maintained. The updated graph is simply
constructed by sequential in-order application of primitive
operations.

S. INCREMENTALLY UPDATING A CISP
SOLUTION UNDER ECO

In this section, we develop techniques to handle any sin-
gle primitive operation. We present necessary and sufficient
conditions to quickly evaluate validity (meeting the timing
constraint) and optimality of a solution. Furthermore, the
conditions provide a set of directives to incrementally up-
date the selected implementations, if needed. Starting from
an optimal solution, we prove that after handling any single
primitive operation, the timing constraint is met (if possible)
and solution optimality is maintained. Thus, our technique
preserves the optimality of the solution under any high-level
ECQ, i.e., any sequence of primitive operations.

We denote the very last node of the design graph in topo-
logical ordering with z. Formally, z refers to the start node
of the reverse timing constraint edge in min-cost flow net-
work. Intuitively, the reverse timing constraint edge is added
so that any violation of timing constraint leads to creation
of a negative cycle in graph. Also, we denote the shortest
path of z to any node ¢ with ;. Note that 7 is well-defined
when there is no negative cycle in the graph. For our prob-
lem at hand, existence of a negative cycle means that the
timing constraint is violated.

For edge e;j, its reduced cost is defined as c; = c;; +m; —
m;, where c;; is the cost of edge e;;. Recall that cost of an
edge, c¢;; = —d;;, where d;; is the minimum implementation
delay of the node corresponding to edge e;; (Section 3). The
vectors w and ¢™ represent node potentials and reduced costs
in network flow terminology, respectively.

COROLLARY 1. The summation of reduced costs over any
cycle in H* is equal to the summation of edge costs over that
cycle.

The complementary slackness conditions are necessary and
sufficient conditions for optimality of a min-cost flow solu-
tion [6]:

ci; >0=fi; =0 (1)
wij > fij >0=>¢; =0 (2)
cfj <0 = fij = wi (3)

where f;; is the amount of flow on edge e;j, and u;; is its
capacity (upper bound on its flow).

The basic idea of our algorithm is the following: For a min-
cost flow solution to be optimal, the node potentials vector 7
has to satisfy the complementary slackness conditions (equa-
tions 1-3). We refer to a node potential vector that satisfies
those conditions as valid. Hence, in our terminology, a valid
node potential vector delivers optimal solution as well. Nat-
urally, the initial full solution (“from-scratch”) gives a valid
node potential vector.

If a primitive incremental operation applied to the sub-
ject graph does not violate the validity of the existing node
potentials (i.e., complies with equations 1-3), the existing so-
lution remains optimal for the incrementally updated graph.
However, if the primitive operation violates the validity con-
ditions, the flow solution and node potentials need to be
updated to comply with equations 1-3.

Our algorithm works based on this idea. After application
of a primitive operation, our algorithm checks the validity of
affected edges, and if needed, takes corrective measures to
re-validate the node potentials. The corrective measures are
based on properties of min-cost flows and their sensitivity to
incremental changes [6]. Due to page limitation in the final
version, we are forced to remove the details of our algorithm.

Intuitively, reduced cost of an edge is equal to relaxation
in its implementation timing. For example, a reduced cost of
2 for some edge in H* means that the corresponding node
in G will be implemented with delay of d + 2, where d is
the minimum possible delay for that node. For our problem
at hand, all of the edges of graph H have infinite capacity.
Thus, the case of equation 3 cannot happen. In other words,
the reduced costs (cj;) for all edges of H* should be non-
negative for node potentials to be valid.

6. EXPERIMENT RESULTS

We applied our technique to problem of gate-level thresh-
old voltage (V%) assignment for leakage optimization. For
each gate, there are two possible implementations available
in the library that correspond to fabricating that gate with
either high or low threshold voltage. Implementation with
low V4, as opposed to high V;, results in faster but leakier
gates. The relation between leakage and delay is convex, and
implementations fall under arbitrary delay choices category
(Figure 2.c).

We implemented both from-scratch implementation selec-
tor and our incremental algorithm in SIS. After temporary
relaxation of arbitrary delay choices to consecutive integers
and solving using aforementioned technique, we round down
gate delays to arrive at the fastest gate implementation that
exists in the library. Gates in gen2.lib library are character-
ized for input capacitance, delay and leakage under 0.4 and
0.5 volts threshold voltage. The values are normalized with
respect to an inverter in the library.

Circuit | Cell count Leakage (normalized) Runtime (sec)
original full incremental error(%) full incremental speedup

C2670 505 4384 808.2 808.2 0 9.15 0.29 31.9
C1355 510 29134 814.7 812.8 0.23 5.97 0.26 22.9
alu4 1579 7398.2 1164.6 1164.6 0 64.23 0.48 132.9
spla 4603 24127.2 3625.7 3625.7 0 824.07 1.52 543.8
ex1010 5045 21090.7 3187.5 3187.5 0 937.59 5.03 186.3
pdc 5812 31294.4 4669.7 4669.7 0 1582.32 1.75 901.7
Average 3009 0.04 303.3

Table 1: Runtime and leakage comparison between incremental and from-scratch implementation selection.

Selected circuits from MCNC benchmark suite are mapped
to gen2.lib library using SIS “map” command. We devel-
oped our own timing analyzer and leakage estimator, which
look up library characterization for gate leakage, input ca-
pacitance and intrinsic delay parameters. For timing analy-
sis, load dependent delay model is used in which, the delay of
a gate is estimated as its intrinsic delay plus its load depen-
dency factor times load capacitance. Gate delay, leakage,
and input capacitance data are borrowed from the study
performed by Khandelwal and Srivastava [9].

We assume that alterations imposed by an average ECO
can be replicated by a sequence of 50 primitive incremen-
tal operations such as, delay change, arc insertion, weight
change, or arc deletion. Primitive operation types (e.g., de-
lay change or arc insertion) and their associated parameters
(e.g., how much to change the delay or location to insert
the arc) are generated randomly. Primitive operations that
would render the solution infeasible are not considered.

Table 1 summarizes our experimental results. For each
circuit, original leakage (all gates assigned to low V;) and
optimized leakage after running both full (from-scratch) and
incremental algorithms are reported in columns 3 — 5 of the
table. Note that one iteration of the full algorithm is be-
ing compared with 50 iterations of incremental algorithm.
Column 6 (error%) compares the leakage of the circuits op-
timized using full algorithm with circuits after undergoing
incremental changes. The difference is zero in all cases ex-
cept for C1355, where we have a negligible 0.23% improve-
ment in leakage.

The last three columns report the runtime of 1)one call to
full solver to handle an average ECO, 2) successive calls to
our incremental handling method after each primitive oper-
ation, and 3) the speedup gained by our approach. The run-
times were recorded over 40 runs and the average numbers
are reported. Our experiments show that the incremental
algorithm is about 303 times faster than running the full
algorithm, while delivering the same quality results. The
runtime improvement is more significant for larger circuits,
and hence, the gap is expected to widen for more complex
benchmarks.

For practical arbitrary delay choices, our min-cost flow so-
lution serves as a mechanism to devise a powerful heuristic,
which delivers high quality solutions (not necessarily opti-
mal). Thus, it is theoretically possible that two different so-
lutions have the same flow cost in subject graph, but incur
different leakage when mapped to hardware domain. This
occurs for circuit C1355, which is a highly interconnected
circuit with many critical paths. In this case, successive
perturbations allowed minor improvement of the leakage re-
sults, although both full and incremental algorithms arrive
at solutions with the same amount of flow.

7. CONCLUSIONS

We presented an effective methodology for incrementally
updating an implementation selection solution for a netlist
that goes through engineering changes. Utilizing mathemat-
ical properties of min-cost flows, our technique guarantees
to meet the timing constraint, and to maintain the optimal-
ity of the solution. Experiments with gate-level threshold
voltage assignment show more than 2 orders of magnitude
runtime improvement compared to re-executing an optimal
from-scratch solver for each engineering change, while deliv-
ering the same quality results.

8. REFERENCES

[1] A.B. Kahng, S. Mantik. “On Mismatches Between
Incremental Optimizers and Instance Perturbations in
Physical Design Tools”. In International Conference on
Computer-Aided Design, pages 17-21, 2000.

[2] D. Brand, A. Drumm, S. Kundu, P. Narain.
“Incremental Synthesis”. In International Conference
on Computer-Aided Design, pages 14-18, 1994.

[3] J. Cong, M. Sarrafzadeh. “Incremental Physical
Design”. In International Symposium on Physical
Design, pages 84-92, 2000.

[4] O. Coudert, J. Cong, S. Malik, M. Sarrafzadeh.
“Incremental CAD”. In International Conference on
Computer-Aided Design, pages 236—243, 2000.

[5] P. Yang, F. Catthoor. “Pareto-optimization-based
Run-time Task Scheduling for Embedded Systems”. In
International Symposium on HW/SW Codesign, pages
120-125, 2003.

[6] R. Ahuja, T. Magnanti, J. Orlin. “Network Flows:
Theory, Algorithms, and Applications”. Prentice Hall,
1993.

[7] S. Ghiasi, E. Bozorgzadeh, P-K. Huang, R. Jafari, M.
Sarrafzadeh. “A Unified Theory of Timing Budget
Management”. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems,
25(11):2364-2375, November 2006.

[8] S. Ghiasi, E. Bozorgzadeh, S. Choudhury, M.
Sarrafzadeh. “A Unified Theory of Timing Budget
Management”. In IEEE/ACM International Conference
on Computer-Aided Design, pages 653659, 2004.

[9] V. Khandelwal, A. Davoodi, A. Srivastava.
”Simultaneous Vt Selection and Assignment for
Leakage Optimization”. IEEE Transactions on Very
Large Scale Integration Systems, 13(6):762— 765, 2005.

