
Towards Scalable Utilization of Embedded Manycores in
Throughput-Sensitive Applications

Matin Hashemi and Soheil Ghiasi
University of California, Davis

Department of Electrical and Computer Engineering
Davis, CA 95616

{hashemi,ghiasi}@ucdavis.edu

ABSTRACT
Variants of dataflow specification models are widely used
to synthesize streaming applications for distributed-memory
parallel processors. We argue that current practice of spec-
ifying streaming applications using rigid dataflow models,
implicitly prohibits a number of platform oriented optimiza-
tions and hence, has limited portability and scalability with
respect to number of processors. We motivate Functionally-
cOnsistent stRucturally-MalLEabe Streaming Specification,
dubbed FORMLESS, which refers to raising the abstraction
level beyond fixed-structure dataflow to address its portabil-
ity and scalability limitations. To demonstrate the potential
of the idea, we develop a design space exploration scheme
to customize the application model for the target platform.
Experiments with several common streaming case studies
demonstrate improved portability and scalability over con-
ventional dataflow specification models, and confirm the ef-
fectiveness of our approach.

1. INTRODUCTION
Actor-oriented application specification models, such as

task graphs and other dataflow-based representations, have
yielded promising results for synthesis and optimization of
streaming applications on distributed memory parallel pro-
cessors [1, 2, 3, 4, 5]. Parallel software synthesis from such
models is especially favorable due to the explicit specifi-
cation of concurrency, which allows straight-forward syn-
thesis of parallel implementations by proper allocation and
scheduling of computation and communication.

In principle, specifying the application as a set of tasks and
their dependencies is meant to only model the functional as-
pects of an application, which should enable seamless porta-
bility to new platforms by fresh platform-driven allocation
and scheduling of tasks and their executions. However, such
specifications are rather rigid in that some non-behavioral
aspects of the application are implicitly hard coded into the
model at design time. Consequently, allocation and schedul-
ing processes are likely to generate poor implementations1

when one tries either to port the application to different
platforms, or to explore implementation design space on
a range of platform choices [6]. The limitations of con-
ventional dataflow-based models with portability, scalabil-
ity and subsequently the ability to explore implementation
tradeoffs (e.g., with respect to number of cores) have become
especially critical with availability of platforms with a large
number of processor cores, which can dedicate a wide range

1We focus on throughput as the quality metric.

of resources to an application [7, 8].
As an example, consider the merge sort dataflow network,

which is composed of actors for splitting the data into seg-
ments, sorting of data segments using a given algorithm
(e.g., quicksort), and merging of the sorted segments into
a unified output stream. A specific instance of the sort net-
work would have rigid structural properties, such as number
of sort actors or fanin degree of merge actors. The choice
of structure, although implicitly hard coded into the specifi-
cation, is orthogonal to application’s end-to-end functional
behavior. It is intuitively clear that the optimal network
structure would depend on the target platform, and auto-
matic software synthesis from a rigid specification is bound
to generate poor implementations over a range of platforms.

Our driving observation is that the scalability limitation
of software synthesis from rigid dataflow models could be
addressed if the specifications were sufficiently malleable
at compile time, while maintaining functional consistency.
We present an example manifestation of the idea, dubbed
FORMLESS, which extends the classic notion of dataflow by
abstracting away some of the unnecessary structural rigid-
ity in the model. In particular, malleable aspects of the
dataflow structure are modeled using a set of parameters,
referred to as the forming set. Assignment of values to form-
ing set parameters instantiates a particular structure of the
model, while all such assignments lead to the same end-to-
end functional behavior. A simple example of a forming set
parameter is the fanin degree of merge actors in the sort
example.

Our approach opens the door to design space exploration
methodologies that can hammer out a FORMLESS speci-
fication to form an optimized version of the model for the
target platform. The “formed” model can be subsequently
passed onto conventional allocation and scheduling processes
to generate a quality parallel implementation. We also present
such a design space exploration scheme that determines the
forming set using platform-driven profiles of application tasks.
Experimental results demonstrate that FORMLESS yields
substantially improved portability and scalability over con-
ventional dataflow modeling.

2. BACKGROUND AND PRELIMINARIES
Synchronous dataflow (SDF) is a special dataflow model

of computation in which, data rates are specified statically.
SDF-compliant kernels are at the heart of many stream-
ing applications [9, 10], and form the focus of our work.
In the SDF model, an actor (task) is a tuple (In, Out, F),
where In ⊆ InputPorts is the set of input ports, Out ⊆

978-1-4577-1743-7/11/$26.00 ©2011 IEEE 110

void scatter(int m, // msort.h
int* x,x1,x2,x3,x4){...}

void sort(int m,int* x){...}
void merge(int m,

int* x1,x2,y){...}

#include msort.h; // P4.C
int x3[25],x4[25],y1[50];
int y2[50],y3[100];
while()
for i=1:25 x3[i]=read(P3);
for i=1:25 x4[i]=read(P3);
merge(50,x3,x4,y2);
for i=1:50 y1[i]=read(P2);
merge(100,y1,y2,y3);
for i=1:100 write(y3,out);

#include msort.h; // P2.C
int x1[25],x2[25];
int y1[50];
while()
for i=1:25 x2[i]=read(P1);
sort(25,x2);
for i=1:25 x1[i]=read(P1);
merge(50,x1,x2,y1);
for i=1:50 write(y1[i],P4);

#include msort.h; // P3.C
int x3[25],x4[25];
while()
for i=1:25 x3[i]=read(P1);
for i=1:25 x4[i]=read(P1);
sort(25,x3);
sort(25,x4);
for i=1:25 write(x3[i],P4);
for i=1:25 write(x4[i],P4);

#include msort.h; // P1.C
int x[100],x1[25],…,x4[25];
while()
for i=1:100 x[i]=read(in);
scatter(100,x,x1,…,x4);
for i=1:25 write(x2[i],P2);
for i=1:25 write(x3[i],P3);
for i=1:25 write(x4[i],P3);
sort(25,x1);
for i=1:25 write(x1[i],P2);

(A)

sort

merge

scatter

M2M1

S1 S2 S3 S4

X(B) (C)
25

50
M3

100 (D)

M2M1

M3

S1 S2 S3 S4

Xproc.
1

proc.
2

proc.
3

proc.
4

100

25

Figure 1: A) Example platform. B) Sort application
modeled as a SDF. C) Tasks are assigned to proces-
sors (color coded). D) Synthesized software mod-
ules. Outputs of tasks Si and Mi are implemented
with arrays xi and yi, respectively.

Outputports is the set of output ports, and F denotes the
transformation function of the actor. Ports = InputPorts∪
Outputports, and InputPorts ∩ Outputports = ∅. Each
port has a statically-defined rate, which is the mapping
Rate : Ports → N. A streaming application can be modeled
as a directed graph G(A, C), where vertices (A) represent
actors, and directed edges (C) is a subset of Ports2, which
represent data communication channels. Each port is con-
nected to exactly one channel, and each channel is connected
to ports of some actor [11].

A task can be fired upon availability of sufficient data on
all its input ports. Firing of a task consumes data from its
input ports, and produces data on its output ports, which
can be connected to input ports of other tasks or possibly
output streams of the application. The execution is meant
to continue indefinitely. Figure 1.B shows an example.

2.1 Software Synthesis
In synthesizing streaming software, we target execution

platforms whose abstract model exposed to the synthesis
process can be viewed as a number of distributed-memory
parallel processors communicating via inter-processor FIFO
channels. Many existing manycores conform to this ab-
straction [7, 8]. Moreover, the model is reasonably accu-
rate at high-level for other platforms that implement the
abstract view using different underlying architecture. For
instance, network-based inter-processor communication cou-
pled with proper system software can implement virtual
inter-processor FIFO channels.

Synthesis of parallel software modules deals with several
key issues, such as scheduling and allocation of tasks, that
are fairly well researched [2]. We present our work in subse-
quent sections with reference to a baseline software synthesis
scheme that is summarized below using a simple example.

Figure 1.A shows an example abstract target platform
with four processors. Figure 1.B illustrates the SDF graph

for an example streaming sort application, which sorts 100
data tokens per invocation. The scatter task reads 100 to-
kens from the input stream, and divides them into segments
of 25 tokens that are passed onto the four sort tasks. After
the four segments are sorted by the sort tasks, two merge

tasks combine the four segments into two larger sorted data
segments of size 50. Finally, another merge task combines
the two segments and generates the sorted output stream.

In the baseline synthesis scheme, tasks are statically sched-
uled to allow infinite periodic repetitions [2]. For example,
1(XS1S2S3S4M1M2M3) is a valid periodic schedule. Then,
tasks are assigned to processors. Figure 1.C illustrates an
example task assignment in which tasks X and S1, S2 and
M1, S3 and S4, M2 and M3 are assigned to processors 1, 2,
3, and 4, respectively.

Task functionalities are provided as sequential computa-
tions that are kept intact throughout the synthesis process.
The software code for each processor is synthesized by stitch-
ing together the set of tasks that are assigned to that proces-
sor according to their schedule. For tasks that are assigned
to the same processor, inter-task communication is imple-
mented using arrays. That is, the producer task writes its
data to an array, which is then read by the consumer task.
Inter-processor communication is implemented using read

and write system calls. Figure 1.D illustrates the generated
software modules for the example.

3. MOTIVATING EXAMPLE
To motivate the underlying idea of FORMLESS, we con-

sider the sort example of Figure 1.A, and investigate the
scaling of throughput when platforms with different number
of processors are targeted. Let us assume that the sort task
implements the quicksort algorithm.

An immediate observation is that the example task graph
cannot readily utilize many (more than 8 in the case of de-
picted task graph) processors due to the limited concurrency
in the specification. At the other extreme, the throughput of
the synthesized software is going to be poor when one pro-
cessor is targeted, compared to eliminating the scatter and
merge tasks and running a single sort task (i.e., the quick-
sort algorithm) on the entire input stream 2. This is partly
because the overhead of inter-task communication is only
justified if sufficient amount of parallelism exists in the plat-
form. Intuitively, increasing concurrency in the task graph
specification facilitates utilization of more parallel resources
and potentially increases the potential for improving perfor-
mance via load balancing between processors, however, it
comes at the cost of degraded performance when platforms
with fewer processors are targeted.

Having made this observation, our idea is to specify the
tasks and their composition using a number of parameters.
Adjustment of parameters enables“massaging” the structure
of the task graph to fit the target architecture, while all can-
didate task graphs deliver the same end to end functionality.

Figure 2 sketches the idea for the example sort application
in which fanout degree of the scatter task and fanin degree
of the merge task are parametrically specified. The num-
ber of tasks, their type and composition, as well as their
data production rates are immediate functions of the two
scatter-fanout and merge-fanin parameters. Three example

2The discussion does not pertain to sorting of large
databases which does not entirely fit in the memory

111

(C)(B) (D)

sort(m,x[])
quicksort(x[],1,m)

scatter(p1,m,x[]
,x1[],x2[],…,xp1[])

for i=1:m
j= i/p1
xj[i%p1]= x[i]

merge(p2,m,x1[],x2[],…,xp2[],y[])
for j=1:p2 dj=1
for i=1:m
j=index_of_min(x1[d1],…,xp2[dp2])
y[i]=xj[dj]
dj++

(A) sort(m): m

m

merge(p2,m): m÷p2

m

scatter(p1,m): m

m÷p1

N

N

sort(N)

scatter(8,N)
N÷8

merge(2,N)

merge(2,N÷2)

merge(2,N÷4)
N÷4

N÷2

sort(N÷8)
N÷8

N

N

N÷3
scatter(3,N)

merge(3,N)
N÷3

sort(N÷3)

N

N

Figure 2: A) FORMLESS specification of the sort
example. B-D) Example instantiations.

instances of the FORMLESS graphs are shown in Figure 2.

4. FORMLESS SDF
We make the key observation that SDF specifications are

structurally rigid. Such task graphs do not live up to the
intended promise of separating functional aspects of the ap-
plication from implementation platform, and thus, fail to
deliver efficient portability and scalability with respect to
number of processors in the platform. To address the porta-
bility and scalability limitations, not only application speci-
fication has to be sufficiently separated from implementation
platform, but it also has to admit platform-driven transfor-
mations and optimizations.

We propose raising the level of abstraction in specifica-
tions to eliminate the rigid structure of the task graph,
while preserving its functional behavior. Our approach is
to require application designers to specify the tasks and the
structure of the task graph using a number of parameters,
referred to as the forming set. Let p be a vector of integer
parameters, and R be a vector of their corresponding valid
ranges. That is, ∀i, pi ∈ Ri, and Ri ⊂ N. The forming set
includes all elements of p: FS =

T

i pi. Furthermore, let
S be a vector of sets, whose elements are tuples defined on
selected elements of R. For example, S1 = R2 × R5.

We extend the definition of actor i (A∗
i), to the tuple

(In(Si), Out(Si), F (Si)), where In(Si) ⊂ InputPorts×Si),
Out(Si) ⊂ OutputPorts × Si), and F (Si) is the new data
transformation function of the actor, which is specified as
a function of the underlying parameters in Si. The defini-
tion of ports is naturally extended to include all input and
output ports: Ports(Ai) = In(Si) ∪ Out(Si), Ports(FS) =
S

i In(Si) ∪ S

i Out(Si), and ∀i, j : In(Si) ∩ Out(Sj) = ∅.
The static data rate mapping of actor ports is extended to be
a function of the actor parameters: Rate∗ : Ports(Ai) → N.
Given vectors p, R, S and the forming set FS, the SDF
graph is extended to G(A∗, C∗), where A∗ denotes the set
of parametrized actors, and C∗ ⊂ Ports(FS)2.

In the sort example of Figure 2, parameters p1 and p2

control the fanout and fanin degree of the scatter and merge
tasks, respectively. In our experiments (Section 5), we worked
with R1 = {1, 2, 3, 4, 8, 9, 16, 27} and R2 = {2, 3}. S sets of
the scatter and sort tasks include R1, and S set of the
merge task includes R2. Note that p1 and p2 cannot be
selected independently.

We would like to stress that our primary objective in this

work is to demonstrate the merit of the idea and scalabil-
ity of malleable specifications, rather than development of a
formal higher-order programming language de-emphasizing
implementation aspects [12, 13, 14]. In our scheme, the
onus is on the programmer to define the ports, actor com-
putations and graph composition based on the parameters.
Furthermore, he has to ensure that every assignment of val-
ues from the specified range to parameters results in the
same functional behavior. This tends to be straight forward
since tasks perform the same high-level function under dif-
ferent parameters (e.g. scattering, sorting or merging in the
example of Figure 2).

4.1 Exploration of Forming Set Space
To examine the merits of FORMLESS, we developed a

design space exploration (DSE) scheme whose block diagram
is depicted in Figure 3. The DSE instantiates a platform-
driven task graph from a given FORMLESS specification
by optimizing the forming set parameters. Central to the
quality of the DSE are high-level estimation algorithms for
fast assessment of the throughput of a specific instance of
the task graph.

4.1.1 Task Profiling
The workload associated with a task is composed of two

components: computation and communication-induced work-
load. Since tasks are defined parametrically, their computa-
tion workload depends on the values of the relevant forming
parameters. In addition, computation workload is inherently
input-dependent, due to the strong dependency of the tasks’
control flow with their input data. For example, the runtime
of the quicksort algorithm on a list depends on the order-
ing of the numbers in the list. The communication-induced
workload exists if some of the producers (consumers) of the
data consumed (produced) by the task are assigned to a
different processor.

We take an empirical approach to characterization of com-
putation workload. We measure the execution latency of
several instances of the tasks (based on the forming param-
eters) on the target processor. For each case, we profile the
runtime for several randomly generated input streams to
average out the impact of input-dependent execution times.
The data is processed via regression testing to obtain la-
tency estimates for all parameter values. In addition, the
communication-induced workload is analytically character-
ized as the latency of platform communication operations
multiplied by task’s communication volume to another pro-
cessor. Tasks’ latency estimates are compiled into a lookup-
table that is available to the DSE tool.

4.1.2 Task Graph Formation
Formation of a task graph is essentially assignment of valid

values to forming set parameters. Any such assignment im-
plies a specific instantiation, which can be passed onto sub-
sequent stages for quality estimation. Our current DSE im-
plementation exhausts the space of forming set parameters
by enumeration, due to the manageable size of the solution
space in our testcases, and quickness of subsequent solution
quality estimation. In principle, however, high-level quality
estimations can analyze performance bottlenecks to provide
feedback and to guide the process of value assignment to
forming set parameters.

112

Task
Assignment

Task
Profiling

Code
Generation

SEAM (s)

FPGA
prototyped

platform

Throughput
Estimation (t)

Task Graph
Formation

Task
Assignment

Local
Scheduling

repeat ?yes

Instantiated Task Graph

.C files

FORMLESS
Application

baseline software synthesis

Design Space Exploration
t

s

Figure 3: Design space exploration for platform-
driven instantiation of a FORMLESS specification.

4.1.3 Task Assignment
Task assignment is a pre-requisite to application through-

put estimation, and quantifying the suitability of a candi-
date task graph for a target platform. To maximize through-
put, tasks’ computations have to be distributed among pro-
cessors as evenly as possible while inter-processor communi-
cation is judiciously minimized. For typical FIFO channels
with small latency (relative to processors’ execution period),
the communication overhead only appears as communication-
induced workload on processors (Section 2). That is, the
workload of a processor can be estimated as:

Wp =
X

v∈Vp

Wv + In
X

u/∈Vp,v∈Vp

Ne(u,v) + Out
X

u∈Vp,v/∈Vp

Ne(u,v)

where Vp denotes the set of tasks assigned to processor p,
Wv the computation workload of task v, and Ne the number
of data tokens transferred over edge e from task u to task v.
In and Out denote the latency of platform read and write
system calls. The last two terms indicate communication-
induced workload on p.

The task assignment can be viewed as packing objects
of various size into a certain number of bins to minimize
the largest bin size, with the unique requirement that ob-
ject sizes partially depend on the bin assignments (due to
assignment-dependent communication overhead). We use
several fast packing heuristic algorithms, and select the so-
lution that produces the highest throughput according to
high-level estimates. Our primary focus is to quickly gener-
ate solutions to enable integration within the iterative DSE
flow.

Our first heuristic implements the best-fit principle: tasks
are sorted according to their computation workload. Vis-
iting in the sorted order, each task is assigned to the pro-
cessor that has the least total computation workload so far.
Note that the communication-induced workload of tasks and
processor workloads are resolved as tasks are assigned to
processors. The second heuristic randomly assigns tasks to
processors, and is repeated a constant number of times, and
the best result is reported. Our third algorithm applies the
first method on the first P tasks, and then switches to the
second algorithm for the remainder of the tasks, where P is
the number of processors.

4.1.4 Throughput Estimation

The throughput of a candidate solution depends on the
buffer sizes of the platform FIFO channels [5]. FIFO chan-
nels with large buffers disentangle the steady state execution
of processors at which point, the throughput of the system
is determined by the slowest processor [], i.e., the proces-
sor with maximum workload assuming identical processors.
The following theorem, which formalizes the result, forms
the basis for our throughput estimation algorithm:

Theorem 4.1. Assuming large inter-processor buffers, for
any task assignment of dataflow graph G to P processors,
there exists an ordering of tasks on processors such that ev-
ery precedence constraints is met (possibly by overlapping
iterations), and the steady state execution period (inverse of
throughput) of the application is max

1≤p≤P
Wp.

In our DSE high-level estimations, we assume the inter-
connection network has enough buffering capacity to dis-
entangle steady state execution of processors. However,
the communication-induced workload is accurately modeled
as discussed above. Note that we accurately simulate the
impact of interconnect buffer capacity in our final evalua-
tions, which are performed using synthesized software from
FORMLESS models (Section 5). The buffers are only as-
sumed to be large during DSE to enable fast iterative explo-
ration.

5. EXPERIMENTAL EVALUATION
To demonstrate the merits of our idea, we implemented

both FORMLESS design space exploration and baseline soft-
ware synthesis schemes (Figure 3). We were challenged with
accessing scaled distributed-memory manycores, as neither
they nor their cycle-accurate simulators were not accessi-
ble to evaluate the synthesized software. Consequently, we
develop an abstract model to accurately estimate applica-
tion throughput. We confirm the accuracy of the model by
comparing it with smaller scale multicores that we could
prototype on an FPGA. Note that typical FPGAs have in-
sufficient resources to accommodate prototyping platforms
with many processors.

5.1 SEAM: Sequential Execution Abstraction
Model

The basic observation is that the local execution phase
of every processor, in which no communication with the
other processors occurs, can be abstracted as determinis-
tic latencies without compromising much accuracy. Specif-
ically, we replace the sequential computation of the tasks
with a function wait(w), where w is the computation work-
load of that task according to profiling results. As an ex-
ample, SEAM replaces the function calls sort(25,x2) and
merge(50,x1,x2,y1) with corresponding wait functions on
processor 2 in Figure 1.D.

This approach simplifies software modules into a num-
ber of wait functions that represent the task computations,
and read/write system calls that represent inter-processor
communications. Subsequently, we generate a behavioral
Verilog model, which essentially captures the behavior of
wait and read/write operations in that processor. The gen-
erated models are interfaced to the Verilog model of the
interconnection network to accurately model the impact of
buffers, and simulated using commercial Verilog simulators

113

to obtain application throughput. Note that SEAM is far
more scalable than cycle-accurate simulation of a manycore
system.

To confirm the accuracy of SEAM, we emulated several
multiprocessors of small complexity on Altera DE2 board
using NiosII soft processors. We mapped and executed syn-
thesized software to the emulated processors, and measured
the steady state throughput on hardware. We compared
the results with SEAM estimations. Figure 4 shows the er-
ror percentage between SEAM estimations (s column) and
the actual measured throughput, which are quite small. The
“D” entries refer to the cases in which, small buffers caused
the application to deadlock, which are always accurately pre-
dicted by SEAM.

Application
Architecture sort{2,2} sort{9,3} mmul{3,1} mmul{3,3}
of fifo
cores depth s t s t s t s t

2 1024 2.7 2.7 15 15 1.2 1.2 13 13
3 1024 1.1 1.1 1.1 1.1 0.3 0.3 1.4 1.4
4 1024 1.1 1.1 19 17 0.3 0.3 0.2 0.2
2 32 2.7 2.7 D D 4.4 9.1 12 45
3 32 D D 0.4 50 D D D D
4 32 1.1 0.6 D D 0.3 12 D D

Geo. Mean 1.6 1.4 3.4 11 0.68 1.6 2.6 3.6

Figure 4: %error in estimation of application
throughput by SEAM (s) and high-level task assign-
ment estimates (t) vs. FPGA emulated systems.
Deadlocks (D) are accurately predicted by SEAM.

5.2 Application Case Studies
We experimented with merge sort, fast fourier transform

(FFT), matrix multiplication and advanced encryption stan-
dard (AES) applications. As described previously, in the
sort application parameters p1 and p2 control the fanout
and fanin degree of the scatter and merge tasks, respectively.
FFT application is constructed as the well-known butterfly
network and a parameter p1 controls the butterfly radix.

Our third case study is matrix multiplication (A×B = C).
As illustrated in Figure 5.A, a block (submatrix) of C, e.g.,
C21, can be calculated by multiplying the corresponding
blocks of matrix A and B, e.g., A2×B1. Adjusting the block
size in C trades off the degree of concurrency among opera-
tions with the required amount of data replication and move-
ment. Therefore, we construct a FORMLESS task graph
with two parameters p1 and p2 that control the number of
row and column blocks that matrices A and B are divided
into. The task graph of Figure 5.B is formed by p = {3, 2}.

The AES is a symmetric encryption/decryption applica-
tion which performs a few rounds of transformations on an
stream of 128-bit data (4 × 4 array of bytes). The number
of rounds depends on the length of the key which is 10 for
128-bit keys. As shown in Figure 6.A, the task graph for the
AES cipher consists of four basic tasks called sub, shf, mix
and ark. Task sub is a nonlinear byte substitution which
replaces each byte with another byte according to a pre-
computed substitution box. In shf, every row r in the 4× 4
array is cyclically shifted by r bytes to the left. Task mix

views each column as a polynomial x, and calculates modulo
x4 + 1. Task ark adds a round key to all bytes in the array
using XOR operation. The round keys are precomputed and
are different for each of the 10 rounds.

Therefore, tasks sub and ark can be parallelized over all
elements of the array, and task shf only over the four rows,

A2

A B B1

A3

CA1 A2 x B1 = C21

(A)

B2 C11 C12

C31 C32

C21 C22 B

B1 B2
scatter

copy

A matrix
multiply

A2
A1

A3

(B)

gather

C

x =

Figure 5: Matrix multiply: A) Block operations for
p = {3, 2}. B) Task graph formed with p = {3, 2}.

ark sub shf mix ark sub shf ark…
16 16

(A) repeated 9 times

ark

sub

shf
mix ark ark…

16 16

(B)

sub

sub

sub

shf

4
8

4 sub

shfsub

sub

sub

shf

4
8

4

16 16 16 16 16 16 16 16

16

repeated 9 times

Figure 6: AES application: A) p = {1, 1, 1, 1} B) p =
{4, 2, 1, 1}.

and task mix only over the four columns. We decided to
construct the FORMLESS task graph with four parameters.
p1, p2 and p4 control the number of rows that the array is
divided into for the sub, shf and ark tasks. Parameter p3
controls the number of columns that the array is divided
into for the mix task. For example, the task graph of Figure
6.B is formed by p = {4, 2, 1, 1}.

As discussed in Section 4, every pi has a valid range Ri.
The Ri ranges that we used in experimenting the above four
applications are shown in Figure 7.A. For example in the
AES application, each of the four pi’s can be 1, 2 or 4.

5.3 Results
Figure 7.B presents the application throughput numbers

normalized relative to single-core throughput. The results,
obtained through SEAM simulations from synthesized par-
allel implementations, show that throughput of the FORM-
LESS applications consistently increases with increasing num-
ber of cores in all the case studies. Throughput of the best
instantiated task graph (shown in black color) consistently
beats the throughput of any rigid task graph. Note that
rigid task graphs, some of which are shown in gray, have a
limited scope of efficient portability and scalability with re-
spect to number of cores. To better visualize the results in
cases with small number of cores, we show the ratio of the
two gray throughput curves with a dashed curve.

In the AES application, p = {4, 2, 1, 2} is selected by the
DSE tool for platforms with 80 to 90 cores. However, this
specific task graph G({4, 2, 1, 2}) does not yield the highest
throughput on smaller or larger targets. For example on
smaller targets (less than 30 cores), it has less throughput
than task graph G({1, 1, 1, 1}). This is better seen on the
dashed ratio curve.

Similar scenarios happen for sort, matrix multiply and
FFT case studies as well. Each forming set yields the highest
throughput only for a range of targets. This result validates

114

 Merge Sort { p1,p2 } R1={1,2,3,4,8,9,16,27} R2={2,3}
 FFT { p1} R1={2,4,16}
 Matrix Multiply { p1,p2 } R1=R2={1,2,3,4,5,6}

(A)

 AES { p1,p2,p3,p4 } R1=R2=R3=R4={1,2,4}

{2,2}÷{8,2}
P={8,2}

P={2,2}

0.5

0.6
0.7

0.8
0.9

1.0
1.1

1.2

{2
,2

} ÷
{8

,2
}

0

1
2

3
4

5
6

7

No
rm

al
iz

ed
 T

hr
ou

gh
pu

t
{16}÷{2}

P={16}

P={2}

0.0

0.5

1.0

1.5

2.0

2.5

{1
6}

÷{
2}

0

5

10

15

20

25

No
rm

al
iz

ed
 T

hr
ou

gh
pu

t

{5,3}÷{6,5}
P={6,5}

P={5,3}

0.2

0.4

0.6

0.8

1.0

1.2

1.4

{5
,3

} ÷
{6

,5
}

0

5

10

15

20

25

30

No
rm

al
iz

ed
 T

hr
ou

gh
pu

t

P={4,2,1,2}

P={1,1,1,1}

0

1

2

{1
,1

,1
,1

} ÷
{4

,2
,1

,2
}

0

5

10

15

20

25

30

No
rm

al
iz

ed
 T

hr
ou

gh
pu

t

Merge Sort

Matrix Multiply

AES

0 5 10 15

 0 10 20 30 40 50

 0 25 # of cores 75 100

{1,1,1,1}÷{4,2,1,2}

FFT

 0 25 50 75

(B)

Figure 7: Application throughput on manycore plat-
forms normalized with respect to single processor
throughput. The black curve shows the through-
put obtained from the DSE instantiated task graphs.
The gray curves show the throughput of sample
fixed task graphs. The dashed curve is the ratio
of the two gray curves which is added for more vis-
ibility in small number of cores.

the effectiveness of FORMLESS in improving the portability
and scalability with respect to number of cores.

It is interesting to see that, for example, in the matrix mul-
tiply application forming set P = {6, 6} is not selected for
the 36-core target. Instead, the DSE tool selected P = {6, 5}
which has 30 multiply tasks. This forming set is not intu-
itive because one would normally split the multiplication
workload into an array of 6 × 6 = 36 multiply tasks for 36
cores. The DSE tool considers the effect of smaller tasks
(e.g., copy tasks), and the communication-induced work-
loads as well. This again proves that an automated tool
outperforms manual task graph formation.

6. CONCLUDING REMARKS
We presented FORMLESS, a parametric extension to the

static dataflow model, which enables portable and scalable
development of streaming applications for manycore plat-
forms. We demonstrated the applicability of the idea using
several common streaming case studies. Experimental re-
sults demonstrate the validity and applicability of the idea,
while showcasing limitations of conventional task graphs with
respect to portability and scalability.

7. REFERENCES
[1] Gul Agha. Actors: A Model of Concurrent

Computation in Distributed Systems. PhD thesis,
MIT, 1985.

[2] Shuvra S. Battacharyya, Edward A. Lee, and
Praveen K. Murthy. Software Synthesis from Dataflow
Graphs. Kluwer Academic Publishers, 1996.

[3] Andy D. Pimentel et al. Exploring embedded-systems
architectures with Artemis. IEEE Computer,
34(11):57–63, 2001.

[4] Michael I. Gordon et al. Exploiting coarse-grained
task, data, and pipeline parallelism in stream
programs. ASPLOS, 2006.

[5] Sander Stuijk, Marc Geilen, and Twan Basten.
Throughput-buffering trade-off exploration for
cyclo-static and synchronous dataflow graphs. IEEE
Trans. Comput., 57(10):1331–1345, 2008.

[6] Alberto Sangiovanni-Vincentelli et al. Benefits and
challenges for platform-based design. DAC, pages
409–414, 2004.

[7] Dean Truong et al. A 167-processor 65 nm
computational platform with per-processor dynamic
supply voltage and dynamic clock frequency scaling.
Symposium on VLSI Circuits, 2008.

[8] Shane Bell et al. TILE64 processor: A 64-core SoC
with mesh interconnect. ISSCC, 2008.

[9] Edward A. Lee and David G. Messerschmitt.
Synchronous data flow. Proceedings of the IEEE,
75(9):1235–1245, 1987.

[10] Marc Geilen and Twan Basten. Reactive process
networks. In EMSOFT, pages 137–146, 2004.

[11] Sander Stuijk, Marc Geilen, and Twan Basten.
Exploring trade-offs in buffer requirements and
throughput constraints for synchronous dataflow
graphs. In DAC, pages 899–904, 2006.

[12] Jean-Louis Colaço, Alain Girault, Grégoire Hamon,
and Marc Pouzet. Towards a higher-order synchronous
data-flow language. In EMSOFT, pages 230–239, 2004.

[13] Walid Taha. A gentle introduction to multi-stage
programming. In Domain-Specific Program
Generation, pages 30–50, 2003.

[14] J. Adam Cataldo. The Power of Higher-Order
Composition Languages in System Design. PhD thesis,
University of California, Berkeley, 2006.

115

