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ABSTRACT
Delay budget is an excess delay that each component of a design can tolerate
under a given timing constraint. Delay budgeting has been widely exploited
to improve the design quality. This paper presents the idea of incrementally
re-assigning the delay budgets allotted to different components of a design,
which leads to avoiding the re-execution of the intensive budget assignment
procedure in each iteration of the tools. Given a budgeting solution and a lo-
cal change, our approach can re-assign the budget values such that the timing
constraints are met. More importantly, it only explores the components lo-
cally, which preserves its incremental nature. General sufficient conditions
have been presented under which, our approach is provably effective. Exper-
imental results on converting non-integral budgeting assignments to integral
ones, advocate our technique’s efficiency. The budget assignments have been
used to map a number of applications to an FPGA platform. The results
have been compared to other existing methods. Our approach exhibits ���
improvement over other similar techniques in terms of total delay budget as-
signed to design components. This can be exploited to significantly improve
other design metrics such as area and tool runtime. Our experimental results
have verified that.
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1. INTRODUCTION
The process of computer aided design of digital circuits is com-

posed of many computationally intensive tasks. As the size of de-
signs increases, the computational cost of these tasks becomes even
more significant. Furthermore, the process of realizing a design, is
almost never a single iteration procedure. In practice, many steps
of the CAD flow have to be repeated over and over in order to meet
design constraints and/or improve its quality.

Most of the CAD flow algorithms, perform local changes on the
design at each iteration. Starting from a given solution, they change
a small portion of the design and re-execute the estimation engine to
estimate the design quality after the change. This is done in order to
to meet a violated design constraint and/or improve the design qual-
ity. Therefore, it is beneficial to exploit this property and develop
incremental techniques that can handle local changes as opposed to
re-executing the algorithm on the entire design. Such techniques can
speedup the design process significantly and are definitely required
for large designs [1, 2].

On the other hand, optimization techniques need to be applied in
multiple stages starting from high levels of abstraction down to lay-
out level. In order to abstract the complexity, each design is decom-
posed into a set of sub-designs. The essential constraint during the

design optimization flow is the timing constraint. The sub-designs
along the critical paths are the most constrained components during
the optimization process. However, timing constraint is loose on the
other sub-designs. Hence the allowable delay allocated on each sub-
design can be greater than actual/intrinsic delay of the sub-design.
This excess delay is referred to as delay budget (or timing budget).
Delay budgeting has been exploited through the entire CAD flow to
improve the design quality [8, 6, 7, 12, 9, 10, 11].

Each design can be represented by a directed acyclic graph (DAG
� � ��� ��). There is a delay associated with each node. Delay
budget at each node is the extra delay the component (node) can tol-
erate such that no timing constraint is violated. Similar definition can
be applied to budget of an edge. Budget of each node/edge is related
to timing slack of the node/edge. If there is any node or an edge with
negative slack, timing constraint is violated. However, due to depen-
dency between the nodes, the total timing slack of the node/edges
is not the total budgets nodes/edges can tolerate. There are several
existing techniques for assigning the delay budget to nodes of the
graph under timing constraints [5, 4, 13, 14, 15].

In this paper, we study the problem of incremental time-budgeting
in a design modeled by a DAG. We assume that a delay budgeting
solution is available. Then, the design undergoes a local change by
some other process performing incremental changes, which modifies
the delay value of a node in the DAG. The objective is to locally re-
assign the timing budget values to meet the constraints.

The rest of the paper is organized as follows: In section 2, the
problem is formally defined. In Section 3, feasible and conservative
budget re-assignments are presented and some mathematical prop-
erties are stated. Section 4 discusses some sufficient conditions for
a conservative incremental budget re-assignment and applies these
techniques to the incremental budgeting problem. In section 5, the
experimental results of applying our method on an LP solution are
reported. Incremental budget re-assignment is used to convert the
non-integral LP solution to a corresponding integral solution. The
solution is used in mapping applications onto an FPGA platform.
The trade-off between latency and area by budgeting technique are
presented. In Section 6, conclusions and some possible future direc-
tions are outlined.

2. PROBLEM STATEMENT
In this section, we formally present the problem of incremental

delay budgeting in a directed acyclic graph (DAG). We assume that
the computations or netlists can be modeled by a DAG. Thus, we
present our results on the DAG corresponding to a computation or



netlist.

2.1 General Delay Budgeting Problem
In a given directed acyclic graph � � ��� ��, associated with

each node ��, there is a delay variable �� � � and budget variable ��.
edge ��� is incident to node �� and incident from node ��. Edge ��� is
called an 	
��	
�� edge with respect to node �� and an 
��	�
��
edge with respect to node �� . ���
� is the set of incoming edges to
node ��. ���
� is the set of outgoing edges from node ��. Primary
inputs (PIs) are the nodes with no incoming edges. Primary outputs
(POs) are the node with no outgoing edges.

arrival time of ��: If input to primary input of graph is ready at
time �, the output of node �� is ready at �� which can be calcu-
lated as �� � ����������� ����������, �� � � for �� � � � .

required time of ��: Required time ��, is computed as��	������������

��������. �� � � for �� � � �. � is required time at primary
outputs in graph �.

Arrival time at a primary output is the maximum summation of
budget and delay associated with each node along the path from pri-
mary input up to primary output. Arrival time at each primary out-
put cannot exceed a fixed value, � . This is referred as required time
at primary outputs. Although requited time at primary outputs and
arrival time at primary inputs can be different, for simplicity, we as-
sume that arrival time at each primary input is zero and required time
at primary outputs is � .

Delay budgeting formulation: On a directed acyclic graph � �
��� �� with delay �� associated with each node �� and re-
quired time � :

���
�

����
�� (1)

�� � � ��� � � � (2)

�� � � ��� � � � (3)

�� � �� � �� � �� ���� � � (4)

This problem has been studied by a number of researchers [5, 4,
13]. Particularly, the optimal solution to the integer version of the
problem has been proposed recently in [13].

2.2 Incremental Budgeting Problem
Many design optimization techniques start from a given solution

and perform local modifications iteratively to improve the design
quality. These methods are in general referred to as incremental re-
finement techniques. Examples include the timing optimization pro-
cedures that deal with re-routing one net or modifying one standard
cell at a time.

The incremental budgeting problem can be stated similarly. We
assume that a feasible budgeting solution is given and the delay as-
sociated with one of the nodes in the graph, ��, changes by the value
Æ�. Note that this change in the delay of node �� might make the
previous solution infeasible. The objective is to find another feasible
solution, with desirably good quality, by performing local changes.
This can be formally stated as below:

� Given a DAG with � nodes, a budgeting solution, i.e. vectors
� and � representing node delays and budgets, a maximum
affordable delay at the primary outputs, � , and the amount of
delay variation in one of the nodes, ��, denoted by Æ�

� The objective is to update the vector �

� such that the timing constraints (refer to equation 4) are met.
Also, we are only allowed to exploit information about the
nodes close to ��. Obviously, this does not allow us to re-
execute the delay budgeting algorithm on the entire graph.

3. BUDGET REASSIGNMENT
In this section, we first define the maximal budgeting on a given

directed graph � � ��� �� with required time � at primary outputs.
Arrival time of any node cannot exceed � . Otherwise the depen-
dency constraints in Equation 4 are not satisfied. A solution that
meets the constraints in Equation 4 is called a feasible solution or a
feasible budget assignment. Due to space constraints, lemmas and
theorems are stated with no proof. Some basic definitions used in
this section are as follow:

Definitions: slack at node �� is �� � �� � ��. a-slack of edge ��� ,
���� , is: ��� � ��� � ����� ��, ��� � �. Similarly, r-slack of
��� , ���� is: ��� � ��� � ����� ��, ��� � �. Edge ��� is said
to be ��
�
��� if the a-slack value and r-slack value associated
with edge ��� are zero. A path in a graph which includes only
critical edges is called critical path.

The following lemma can be easily derived from the abovemen-
tioned definitions:

LEMMA 1. In a directed graph �, if ��� � � and �� � �� , then
���� � ���� � ��� .

Maximal Budgeting Graph (�� ��): �� is a feasible solution to
budgeting problem on a directed acyclic graph �. Feasible
solution �� with associated objective value, ����, is called
maximal budgeting if no more budget can be given to any node
while the budget of any other node does not decrease.

The maximum solution �
�

is also a maximal solution. A max-
imal budgeting solution �� can be obtained by applying different
existing algorithms [4, 5, 13].

LEMMA 2. In ��� ���, the slack of each node is zero if and only
if �� is a maximal budgeting.

Non-critical edges are referred to as �-edges. According to Lemma
1 the a-slack and r-slack of a �-edge in ��� ��� are equal, that is
��� � ���� � ���� , ���� � ��� ���.

LEMMA 3. In a maximal budgeting ��� ���, each node (except
PIs and POs) has at least one critical incoming edge and at least
one critical outgoing edge.

Associated with solution ��, critical graph �	 � � � ��� ��
is the graph obtained from the graph � by deleting all non-critical
edges in �. �	 = ��� �	 �, �	 � � � ���� ���� 	� �
.

In any budgeting on graph �, slack of each node and edge must
be non-negative or in other words �� � � . This is referred to as
feasibility in graph. A graph with budgeting � is not feasible if slack
of a node or an edge is negative. We propose a budget re-assignment
method on a given maximal budgeting.

Conservative Budget Re-assignment on (�� ��): In graph � with
maximal budgeting solution ��, the budgets of the nodes are
changed such that the new budgeting ��

� is still a maximal
budgeting ��� ��

��. Budget re-assignment on graph � trans-
forms the budgeting from solution �� to ��

�.

Theorem 1 presents two sufficient conditions for conservative bud-
get re-assignment.

THEOREM 1. The re-assignment of budget at each node in graph
��� ��� is a conservative budget re-assignment if

� The total amount of change in the budget of the nodes along
each critical path from PI to PO is zero (Figure 1), and



� For each �-edge ��
, ��
 � �������, where edge ��
 is critical.
�� and �� are the amount of change in the budget along any
critical path 1 from PI to node �� and �� , respectively [13]
(Figure 1(b)).
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Figure 1: Two Sufficient Conditions for �-budget Re-
assignment.

We define an equivalence relation on the given graph that parti-
tions the graph into a number of equivalent classes. We show that
the budget exchange between two sub-graphs formed by this rela-
tion satisfies the aforementioned conditions, hence it is a conserva-
tive budget re-assignment in graph ��� ���.

Parent/Child Relation: In a directed graph �, edge ��� � � and
��� is critical. Node �� is child of node ��. ����� is used to
refer to a child of node ��. Node �� is said to be the parent of
node �� . ����� is used to refer to a parent of node �� . If �� and
�� have common child, �� �� ��. If �� �� ��   �� �
, then
�� �

�
� �
. ��

� is an equivalent relation, called parent relation.
If �� and �
 have common parent, �� �� �
. If �� �� ��   ��

�
, then �� �
�
� �
. Similar to parent relation, ��

� , called child
relation, is an equivalent relation.

LEMMA 4. �� �
�
� �� , if and only if ����� �

�
� �����.

LEMMA 5. In ��� ���, if �� �
�
� �� , arrival time at nodes ��

and �� are equal; �� � �� .

According to Lemma 3, each node is incident to/from a critical
edge. Consider node �� in graph � � ��� ��. Let !����� �
��� ��� �

�
� ��
 be a parent set. Let �
 be a child node of ��. !���
� �

��� ��� �
�
� �

. According to Lemma 4, sets !����� and !���
� are

a pair of sets such that all the child nodes of the nodes in !� are in
!�. Similarly, all the parent nodes of the nodes in set !� are in !�.
The sets !����� and !���
� are called parent-child set (!�� !�) asso-
ciated with node ��. Parent-child set �!�� !�� is shown in Figure 2.
The followings are the propositions regarding the parent-child set in
��� ���.

LEMMA 6. If nodes �� �
�
� �� , there is no directed critical path

between �� and �� if ��� � �� �� � �. Similarly, if nodes �� �
�
� �� ,

there is no directed critical path between �� and �� if ��� � �� �� �
�.

LEMMA 7. In a parent-child set �!�� !��, !� and !� do not in-
tersect if ��� � �� �� � �.

Given a parent-child set �!�� !��, assume that the process of bud-
get re-assignment decreases the budget of all of the nodes in !� by
Æ and increases the budget of all of the nodes in !� by Æ, Æ � �.

LEMMA 8. In a given �!�� !�� in ��� ���, if Æ � �
������,
where ��� is an �-edge with �� � !� and �� "� �!�� !�� (incoming
�-edges to !�), the Æ-budget exchange is a conservative budget re-
assignment in ��� ���.

�Note that because of the first sufficient condition, the change in
budget along all of the critical paths, from PIs to a node are equal.
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Figure 2: �-edges with respect to Parent-Child Set (!�� !��.

4. INCREMENTAL DELAY BUDGETING
When the delay of node �� is changed by Æ�, it can affect the feasi-

bility of the current budgeting in the graph or criticality of the edges.
In case of the effect on feasibility, we need to re-assign delay bud-
get in some of the nodes in order to avoid violation in timing. Re-
assignment of delay budget of the nodes can be as costly as applying
delay budgeting algorithm again. This is not efficient. The goal is
to apply budget re-assignment incrementally. Incremental budget re-
assignment means to re-assign the delay budget of the nodes locally
within a close distance from node �� where delay has increased. We
provide a set of sufficient conditions under which the delay budget
re-assignment can be applied incrementally on graph � once the de-
lay of node �� � � is changed by Æ�. We divide the conditions into
two groups. In the first group, we present a set of sufficient con-
ditions to apply feasible conservative budget re-assignment incre-
mentally, and in the next group we look at the sufficient conditions
to obtain a feasible maximal budgeting after incremental budget re-
assignment. We apply the concepts of budget re-assignment and the
proposed lemmas in the previous section.

Feasible Conservative Incremental Budgeting- Let �� and ��
be the original delay and delay budget of node ��, respectively. In
the previous section, we showed that between a parent-child set in a
graph, the same value of budget can be re-assigned. The delay bud-
get of the nodes in parent set can increase with the same value as the
delay budget of the nodes in the corresponding child set decreases
by the same value and vice versa. Starting from primary inputs of
graph � with maximal budgeting ��, we construct the parent-child
sets while traversing the graph until primary outputs. Each node ��
belongs to one parent set !����� and one child set !�����. !�����
and !����� are not necessarily equal. Figure 3 shows an example of
unequal parent set and child set associated with a node in a graph.
The construction of parent sets and child sets can be done and pre-
computed before any budget re-assignment.

i

Sc(vi )

Sp(p(vi ))

Sc(c(vi ))
Sp(vi ) Sc(vi )

Sp(vi )

Figure 3: Parent-child Set Construction in A DAG.



We want to re-assign a budget value of 
 on node �� in the graph.
Assume that 
 # �
$ for any non-critical edge ��� and the amount
of budget on each node is at least 
. Simply, we can re-assign the
budget between !����� and the corresponding child set of this parent
set. Similarly, we can re-assign the budget between !����� and the
parent set associated with this child set. After this re-assignment, the
critical edges are still critical and a new maximal budgeting ��

� is
obtained.

In incremental budgeting problem, intrinsic delay of node �� is
changed by Æ�. Therefore delay of node �� becomes �� � Æ�. If Æ� #
�, the delay of node has decreased and budget at node �� increases
by �Æ��. Therefore the budget assignment in graph remains feasible
and criticality of the edges remains unchanged. When Æ� � �, delay
of node �� increases by Æ�. If �� � Æ�, there is sufficient delay budget
at the node to keep the delay budgeting on graph � feasible. Only
the delay budget of node �� decreases by Æ�. In the case of �� # Æ�,
the delay budgeting is not feasible and delay re-assignment needs to
be applied. In order to obtain a feasible and conservative budgeting
(keeping critical edges critical), we need to increase the delay budget
at node �� by 
 � Æ����. We can increase the delay budget of node
�� by 
, applying budget re-assignment on parent-child set at node
��.

One way is to apply budget re-assignment between !����� and
!������� by increasing the budget in parent set by 
 and decreas-
ing the delay budget of the nodes in child set with the same value.
Another way is to apply budget re-assignment between !����� and
!�������, decreasing delay budget of the nodes in parent set and
increasing the delay budget of the nodes in child set with the same
value of
. Note that in order to be able to apply budget re-assignment,
there has to exist sufficient delay budget at each node in the set where
delay budget is decreased.

LEMMA 9. Suppose the delay of node �� is increased by Æ� and
�� # Æ�. We can obtain feasible budgeting by applying budget re-
assignment between parent-child set constructed at node �� on either
of the two sets, if there is at least budget of 
 � Æ� � �� at each
node in !�������� or !�������� and the slack of non-critical edges
incident to !����� or incident from !����� are at least 
.

Lemma 9 provides a set of sufficient conditions for incremental
conservative budget re-assignment. As discussed above, there are
two different parent-child set defined at each node �� in graph �,
depending on either node �� belongs to a parent set or a child set. If
both sets hold the conditions in Lemma 9 for budget re-assignment
of �

�
, we can apply budget re-assignment on both sets and increase

the delay budget at node �� by 
. This means that as long as there
is a delay budget of �

�
on each node on the both parent set and child

set of !�������� and !�������� and slack of non-critical edges in-
cident to these sets is at most this value, the feasible budgeting is
obtained. Incremental budgeting is applied by re-assignment of bud-
get between the two immediate parent-child sets defined at a node in
the graph. We can even extend this technique to re-assign the bud-
get from one level further than the immediate parent-child set. In
this way, the incremental radius has expanded to more levels (say �
levels). In this general case we have the following lemma.

LEMMA 10. Assume that the delay of node �� is increased by
Æ� where �� # Æ�. Furthermore, assume that there is at least bud-
get of 
 � �Æ� � ���"� available at each node in !������   ����
up to � levels or !������   ����� up to � levels, and �Æ� � ��� is
at most the slack of non-critical edges incident to !�����   ����� or
incident from !�����   �����. Then, feasible conservative budget re-
assignment can be applied to accommodate the extra delay on node
��.

Feasible Incremental Budgeting- The conditions in Theorem 1
are sufficient to obtain a conservative feasible maximal budgeting.
If the only concern is feasibility of the solution after budget re-
assignment, we can apply the following technique.

i
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Figure 4: Example of output cone and input cone associated with
node ��.

Let %����� be the output cone of ��, an induced subgraph includ-
ing all the nodes along the critical paths from node �� until POs. If
delay of node �� is increased by Æ� and Æ� # ��, we need to increase
the budget at node �� by Æ� � ��. Let � be a cut set in %����� in
which each node has the delay budget as large as Æ� � �
. If we de-
crease the delay budget of the nodes in the cut set by 
 � Æ� � ��
and increase the budget of node �� by the same value, the resulting
budgeting is feasible. Figure 4 shows an example. Similarly we can
define %����� as the input cone of node ��, including all the nodes
along the critical paths from PIs to node ��. If we decrease the de-
lay budget of the node in cutset � of this cone by 
 � Æ� � ��, we
can achieve feasible budgeting. Therefore we can have the following
sufficient condition:

LEMMA 11. If delay of node �� is increased by Æ� � ��, if there
is a cutset � in %����� or %����� in which the delay budget of the
nodes is at least Æ���� and Æ���� � ��� where ��� is a non-critical
edge incident to or from any node in the cutset, feasible budgeting
can be obtained by incremental delay budget re-assignment.

Similar to our proposed technique for incremental conservative
delay re-assignment, we can extend the level of incremental assign-
ment, decompose 
 to � value (say 
"�) and find � cutset and
apply the delay re-assignment. In this extension, the sufficient con-
dition for minimum available delay budget on each node in the cut
and minimum slack on non-critical edges can be relaxed to 
.

The condition proposed in Lemma 11 is sufficient to have a fea-
sible budgeting after decreasing the delay budget of the nodes in
the cutset � . In this solution, the critical edges in the graph does
not necessarily remain critical but we still obtain a maximal feasible
budgeting by incremental budget re-assignment.

5. APPLICATION
In this section, we apply our technique for feasible conservative

budget re-assignment to find an integer solution for delay budgeting
from an optimal solution in which delay budget can be non-integer.
We show that how the incremental and conservative manner in our
algorithm leads to obtain an integer solution which is still optimal.

5.1 Integer Delay Budgeting
Objective function in delay budgeting problem is to maximize the

total delay budget of the nodes under a given timing constraint. The
general problem can be formulated as a linear programming prob-
lem. However, the solution can have fractional value. According to
the following reasons optimal integer solution is preferred: First, the
budget at each node is mostly used to map the sub-design to another
component in a target library which inherently is discrete rather than
continuous. For example, delay on interconnect is discrete in a grid-
based routing methodology. In a data path, delay of each component
can be given in terms of number of clock cycles under a given fre-
quency. Delay of gates can be scaled to integer values. In VLSI
compaction, grid constraints require integer solution [10]. Secondly,
due to numerical instability in representation of real numbers, linear



programming solvers suffer from instability and difficulty in conver-
gence. Therefore we assume the variables associated with budgets
are all integer. Existing heuristic algorithms, ZSA and MISA, can be
modified to generate integer budgets, but with no guarantee on the
optimality of the solutions.
��� ��� is the optimal solution to linear programming relaxation

of integer budgeting problem. �� is also a maximal budgeting.
Hence, budget re-assignment is applicable to ��� ���. In addition,
since �� is the optimal solution, �� � �� for any maximal bud-
geting ��. We apply budget re-assignment on graph ��� ��� such
that the budget of all the nodes become integer. We show that during
this transformation from optimal solution to integer solution �����,
the objective value of new solution is equal to ����. In our previ-
ous work [13], we have shown that integer delay budgeting is opti-
mally solvable in polynomial time. In this section, we describe how
based on our incremental conservative delay budget re-assignment
proposed in previous section optimal integer solution can be ob-
tained.

THEOREM 2. The total budgeting on any critical path from PI
(Primary Input) to PO (Primary Output) is integral.

Each node with fractional budget belongs to an integral critical
path. Hence, within an integral path, it is sufficient to re-assign the
fractional budget only on the nodes along the path. On the other
hand, in graph �, there are several integral paths connected to each
other. Therefore in re-assigning the budget between the nodes, the
required conditions in Theorem 1 have to be satisfied in all those
sequences. Hence, the goal is to apply budget re-assignment of the
fractional budgets on the nodes in graph ��� ��� to obtain integer
solution. Budget re-assignment is applied on graph � such that the
budget of all the nodes become integer. Only fractional value of
budgets need to be re-assigned in order to obtain integer solution.
Hence the re-assigned delay budget is a fractional value less than
unit. As described in previous section, feasible budget-reassignment
can be applied on a parent-child set on graph �.

On a given parent-child set in graph �, we apply budget exchange.
If fractional budget in graph � are re-assigned by budget re-assignment
on parent-child set, the fractional budget is removed from each par-
ent node and re-assigned to one of its successor in the graph. Hence,
the fractional budgets are re-assigned from PIs to POs, in one direc-
tion within an integral sequences. There are �-edges in a given graph
�. In order to have a feasible budget re-assignment on parent-child
set, we show that the sufficient conditions outlined in Theorem 1 are
satisfied in a given graph � as well.

THEOREM 3. In any feasible budget re-assignment on parent-
child set (!�� !�) on the nodes with fractional delay budget in graph
��� ���, the total budget does not change.

Hence after applying the budget re-assignment on ��� ���, the
solution is still optimum . The reason is that the cardinality of any
parent-child set in this graph is same and hence exchange of delay
budget between the two sets does not affect the total delay budget.

Each parent-child set construction takes ������ and budget re-
assignment takes ������. This repeats ���� �� times. However, by
amortized analysis we see that the complexity of sequential construc-
tion of parent-child sets and delay re-assignment is ������. The re-
sult is transformation from solution �� to a new solution ��� ������
in which integer budget is assigned to each node while objective
value does not change, i.e., ����.

5.2 Experimental Setup
In Figure 5, CAD flow of IP-based (or core-based) mapping an

application on a FPGA is illustrated. Xilinx CoreGen tool gener-
ates and delivers parameterizable cores optimized for target architec-
ture. The parameters include data width, registered output, number
of pipeline stages, etc. Core layout is specified up front. Cores are

delivered with optimally floorplanned layouts. Also, performance of
cores are independent of FPGA device size. Hence, more predictable
results can be obtained during front-end optimization. Since Core-
Gen cores are pre-optimized, they are considered as black boxes dur-
ing the synthesis. Hence, synthesis is ignored in core-based design.
In a rich core library, there can exist several cores realizing same
functionality with different implementation and latency (in terms of
clock cycle). Figure 6 demonstrates a trade-off between latency and
area of a CoreGen 16-bit multiplier with target FPGA VirtexE, Xil-
inx. Slices are the logic blocks in VirtexE FPGA series.

Application Description (VHDL)

Delay Budgeting

(Optimal)

IP Core mapping

Xilinx

Coregen

Lib

Xilinx Place and Route

Figure 5: Mapping an Application on FPGA Using IP Library.

We start from a DAG representation of an application. Benchmark
in our experiments is a set of some standard DSP benchmarks. The
type of computations are multiplier, adder, subtracter and shifter. We
assume all the data paths are 16-bit wide.

Each computation is assigned to a resource generated from Core-
Gen tool based on delay budget allocated to the node. We apply a
delay budgeting algorithm to allocate the delay budget at each node.
Then the whole circuit is placed and routed on a FPGA device. We
used ISE 4.1 place and route tool provided by &
�
��	� . The tar-
get device is VirtexE 300.

Area vs. Latency in 16 bit CoreGen multiplier
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Figure 6: Area vs. Latency for a 16-bit CoreGen Multiplier.

Among different computations in the applications, CoreGen has
a relatively complete library (See Figure 6). Hence we applied de-
lay budgeting only among the nodes that correspond to computation
type multiply. We conducted two sets of experiments. Once we ap-
plied our optimal delay budgeting and once we applied a heuristic
sub-optimal budgeting (ZSA like) to distribute the latency in graph.
Since the latency of the components is based on clock cycles, we
need to assign integer delay budget. Hence, in the first set of exper-
iments we apply our incremental conservative budgeting on optimal
solution by LP solver and produce optimal delay assignment to the
nodes. ZSA algorithm can be simply justified to assign integer delay
to the components.

5.3 Experimental Results
The original latency and other characteristics of the benchmarks

are given in Table 1.



Benchmark Runtime �T=0 �T=1 clk cycle �T=2 clk cycle
Area Heuristic Optimal Imp Heuristic Optimal Imp

Diffeq area(slices) 780 740 700 5.7% 708 652 8%
PAR(sec) 15 10 10 1 11 9 1.2
Budget(clk cyc) - 2 3 50% 4 6 50%

ARF area(slices) 1982 1806 1803 0.2% 1670 1665 0.3%
PAR(sec) 45 42 29 1.5 43 26 1.65
Budget(clk cyc) - 32 38 19% 36 48 33%

Fdct area(slices) 2044 1867 1734 7.1% 1728 1491 14%
PAR(sec) 48 39 39 1 38 36 1.05
Budget(clk cyc) - 14 20 43% 22 34 54%

Ewf area(slices) 1138 1094 1016 7.2% 1058 982 7.2%
PAR(sec) 24 21 18 1.67 19 17 1.11
Budget(clk cyc) - 2 6 200% 4 10 150%

Dct area(slices) 1338 1091 1032 5.4% 1038 996 4%
PAR(sec) 38 19 18 1 20 15 1.33
Budget(clk cyc) - 24 27 12.5% 30 34 13.3%

Average area(slices) 1456 1327.6 1257 5.4% 1240 1157.2 7%
PAR(sec) 34 26.2 22.8 1.15 26.2 20.6 1.27
Budget(clk cyc) - 14.8 18.8 27% 19.2 26.4 37.5%

Table 2: Area (#slices-logic blocks), total Budget, and Runtime of Place-and-Route (sec) vs. delay budget (clk cyc).Imp column
compares Optimal over heuristic. It indicates the percentage of improvement for area and budget and the ratio of runtime for PAR
runtime.

Benchmark Nodes Latency Slices LUTs
Diffeq 10 18 780 1030
ARF 28 20 1982 2476

FDCT 42 14 2044 1734
EWF 34 25 1138 1472
DCT 33 14 1618 1338

Table 1: Benchmark Information and Core-based Implementa-
tion Results.

Table 2 summarizes the implementation results of applying delay
budgets to the applications. Latency of each application is the origi-
nal latency reported in Table 1 plus the excess latency (
� ) applied
to the circuit. The excess latency in distributed in graph using delay
budgeting algorithm. We use both exact (our optimal method) and
heuristic (ZSA like) methods. Area (number of used slices of FPGA
device) and place-and-route runtime and total budget are reported.
The first column shows the place and route (PAR) runtime, area of
slices when no delay budget is applied. The next columns show the
area and PAR runtime for different excess delay to required time
(
� ) of � and � clk cycles. The Imp column shows the percent-
age of improvement in area in different delay budgeting computed
as ���������������������

���������
� ���. Similarly Imp is computed for to-

tal budget. The Imp column computes the improvement in runtime
as ratio of ��� ��
���������

��� ��
���������
.

The results show the average improvement in area for 
 ��, ��,
in terms of number of slices when optimal algorithm is used for
budgeting compared to area resulted by heuristic delay budgeting
for different 
� . Although the area of applications by optimal de-
lay budgeting is always smaller than the area resulted by heuristic
method by �� on average, runtime of place and route in some ap-
plication does not speed up. One reason is that some of applications
such as ' ��� are I/O bounded. A main portion of place and route is
dedicated to I/O placement and routing. In other benchmark such as
ARF the runtime of place and route gets almost two times faster. As
a result, delay budgeting gives the opportunity of mapping the appli-
cations to components in the target library with simpler structure and
smaller area. Comparing the result of the first column when no bud-
get is applied with the results of the next columns demonstrates this
fact. However, the current libraries are not rich enough and do not
contain different components with different latencies for same func-
tionality. Developing complete libraries facilitates the design CAD
tool to exploit the existing delay budget to improve design quality.

6. CONCLUSIONS
This paper presents the idea of incrementally re-assigning the de-

lay budgets allotted to different components of a design, which leads
to avoiding the re-execution of the intensive budget assignment pro-
cedure in each iteration of the tools. In incremental delay budgeting
problem, delay of a node is increased by Æ. In order to achieve feasi-
ble solution, delay budget of the nodes are re-assigned. In incremen-
tal approach, the concern is to preserve the solution and minimize the
modification in the solution. In this paper, we proposed a set of suf-
ficient conditions under which the delay budget of the nodes are re-
assigned incrementally and feasibility is guaranteed. Our technique
is very general and can be applied and integrated in different de-
lay budgeting algorithms and incremental optimization techniques in
VLSI CAD. In this paper, using optimal solution to LP relaxation of
budgeting problem, we transform the solution to integer solution us-
ing our technique for incremental conservative delay re-assignment.
We prove that during this transformation (���� ���), objective value
from optimal LP solution does not change. We applied our bud-
geting technique in mapping applications on FPGA device. Using
IP library of different computations, delay budget is exploited to im-
prove the area, hence to speedup the runtime of place-and-route. Our
optimal algorithm outperforms ZSA algorithm [5] in terms of area
and design time significantly.
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