
Collaborative and Reconfigurable Object Tracking

(Invited Paper)
Soheil Ghiasi, Hyun J. Moon, Majid Sarrafzadeh

Computer Science Department
University of California, Los Angeles
{soheil, hjmoon, majid}@cs.ucla.edu

Abstract

Camera 1

Camera 3

Camera 2

Controller

Moving object

FPGA

PowerPC
SDRAM

Coprocessor

Im
age

Sensor

SD
R

A
M

Flash R
A

M

a)

b)

Many vision applications perform intensive computations and
demand hardware implementations in order to exhibit real time
performance. Furthermore, these applications are hard to pre-
characterize and can take different paths according to events
happening in the scene at runtime. Hence, reconfigurable
hardware devices are envisioned as the proper platform to
implement such applications, providing both real time
performance and dynamic adaptability for the system. In this
paper, we present a collaborative and reconfigurable object
tracking system that has been built as part of our work. We
justify the need for dynamic adaptation of the system through
scenarios and examples. Experimental results on a set of scenes
advocate the fact that our system works effectively for different
scenes and scenario of events through reconfiguration.

1. Introduction

Unsupervised detection of events is widely used in many
different applications. Such applications require the system to
automatically detect the events happening in its surrounding area
and take proper actions according to these events. Moreover,
real time response to external events is usually another
requirement, because of the nature of the applications; examples
of which include traffic management and intelligent intruder
detection. Various image-processing algorithms have been
developed for this class of applications. These algorithms
usually perform intensive computations and hence, require
powerful computational resources in order to comply with the
real time performance requirement.

I/O interfaces

Figure 1. a) The implemented target tracking system
using Iqeye3 cameras with embedded processors. b)
IQeye3 camera architecture. Courtesy of IQinVision Inc.

Image processing algorithms are generally very intensive.
Therefore, many embedded processors dedicated to image data
collection and/or processing cannot meet the real time
performance constraint. However, most of image-processing
algorithms perform similar computations for all of the pixels of
an image that only requires local information. Therefore, they
are considered as highly parallel computations that exhibit
substantial speedup when implemented on a dedicated hardware
unit. Hence, hardware implementation is the only viable solution
for most of the real time image-processing systems. Researchers
have reported many efficient hardware implementations of such
algorithms [8, 9, 10, 11, 12].
Moreover, the image-processing algorithms implemented in a
system work based on some assumptions. Examples include the
number of moving objects, their shape and their motion type.
Based on the events happening in scene, these assumptions
might become invalid. For example, KLT tracking scheme [5, 6,

7] assumes that the moving object moves across the camera and
its size doesn’t change from the camera point of view. However,
if the object moves towards the camera, this assumption is no
longer valid and KLT tracking will not be effective anymore.
Therefore, the system has to be able to adapt to external events.
However, the external events are hard - and in some cases
impossible - to pre-characterize. Hence, it is practically
impossible to determine the required algorithms a priori.
The aforementioned arguments, introduce the reconfigurable
fabrics as the only viable solution for implementing such
applications. Reconfigurable hardware units not only
demonstrate real time performance by exploiting the intrinsic
parallelism of image processing algorithms, but also provide the
required flexibility and adaptability for the system. This cannot
be achieved by traditional pure software or hardware
implementations.
Figure 1.a depicts an intruder detection and object tracking
system that has been built as part of this work. The system

Camera 2

Initiate algorithm X

Initiate Algorithm Y

Algorithm Y output

Controller

Algorithm X output

Camera 1

…
Initiate Algorithm X on camera 1;
if (result == moving_object_detected)
 Initiate object tracking on camera 1;
if (result == object out of field of view)
 Pan/Tilt or do other
 actuation controls;
if (camera 1 needs help)
 Have other idle cameras help it
 by initiating proper algorithms
 on them;
…

Moving Object

Algorithm
Database

Motion Detection

Feature Selection

Image Restoration

Scene Data

I/O controller

FPGA

Processor

Figure 2. An overview of the tracking system architecture: Each camera has a set of the required configurations available.
The controller communicates with the cameras via an implemented message-passing scheme and can initiate the proper
algorithm on each camera, organizing the collaboration among cameras.
consists of multiple IQeye3 cameras [4]. The cameras are
connected to the local area network and communicate with each
other or the control unit in order to collaborate and share their
information. An outline of the architecture of one of IQeye3
cameras is demonstrated in figure 1.b. A Xilinx VirtexE [13]
FPGA and a general-purpose processor (IBM PowerPC) are
embedded in all of the cameras. The FPGA and the processor
can both be used to implement the comprising blocks of an
application. In this paper, we present the crucial role of the
embedded reconfigurable devices (i.e. Xilinx FPGA) in our
system. We exploit these devices to achieve both real-time
performance and dynamic adaptability of the system to the
external events.
We proceed to describe our system framework and its
application in the next section. In section 3, we present the
image-processing algorithms that are required for the
implemented tracking application. In addition, the effect of
environment changes on these algorithms and hence, the need
for system adaptability is explained in this section. Experimental
results including algorithms implementation and their
performance for some scenes, has been presented in section 4.
Finally, section 5 outlines the conclusions and future directions
of this paper.

2. Reconfigurable Tracking System

In this section, we present the reconfigurable tracking system
that has been built as part of this work. First, we present the
framework of our system along with its application. In next
section, we discuss the algorithms that are needed for
implementing the system application. We describe how these
algorithms have to be tuned based on the changes in the scene
and hence, highlight the “reconfigurability” feature of our
tracking system.

2.1 System Framework

The framework for our system is comprised of several
components including: IQeye3 cameras provided by IQinVision

[4], pan-tilt units to enable the actuation of the cameras, a main
controller residing on a PC, and a network for collaboration and
data communication.
An IQeye3 camera, as a “smart” vision sensor, with embedded
computation resources [1, 2, 3], allows input image data
acquisition and processing to be collocated in the camera, which
minimizes network communication overhead and facilitates
scalability. The processing resources embedded in each camera
include a Xilinx Virtex 1000E FPGA and a 250 MIPS PowerPC
CPU (Figure 1.b). In addition, there is 4 MB of Flash RAM and
16 MB of SDRAM on each camera. Each IQeye3 camera gives
full access to raw real-time image data streams and the general-
purpose processor can be used for customization since a large
“C” development library is available to application developers.
Full networking functionality is provided by each IQeye3
camera through an Ethernet connection. It can communicate
using TCP, UDP, and IP.
In addition, the IQeye3 camera can send and receive 230 Kbps
over a 9-pin RS232C serial port. By supporting such
communication standards, the IQeye3 cameras can be placed in
various environments; while the raw and/or processed captured
images can be accessed remotely.
Each pan-tilt actuation unit can be controlled using simple
commands that specify the pan angle, pan speed, pan
acceleration, tilt angle, tilt speed, and tilt acceleration. In our
system, each IQeye3 camera is mounted on a pan-tilt unit, which
is directly controlled by the corresponding camera via its
RS232C serial port.
Figure 2 demonstrates our system with two cameras and the
main controller. The main supervisory controller resides on a PC
and acts as the centralized governing unit of the system by
maintaining the current state, processing internal and external
triggers, and coordinating the collaboration among the cameras.
When the main controller receives data from one of the IQeye3
camera clients over the network, it deterministically selects the
appropriate actions that should be taken by each camera (e.g.,
reconfiguring an embedded FPGA by swapping in a different
algorithm from the database (Figure 2)). This is performed by
sending a message to the designated camera.

2.2 System Application

The sample application implemented on the framework is to
continuously detect and track a moving object that is within the
field of view of a camera (Figure 2). We assume that the object
is always moving across the camera and hence, KLT tracking
scheme [5, 6, 7] can effectively track the motions.
If the object leaves the field of view of one camera, the camera
should pan or tilt to maintain the object within its field of view
or it should hand off control to another camera. Depending on
the light, focus and other parameters, various algorithms are
used to maximize the tracking performance.
When the entire system initializes, cameras establish a
connection with the main supervisory controller on the PC.
Camera 1 assumes control initially and continuously runs feature
selection algorithm on its embedded FPGA. Feature selection
algorithm selects points in the scene that are appropriate for
tracking. Sharp corners and local intensity variations in an image
usually form good features. The selected features are passed to
the KLT tracking algorithm to track their motion in consequent
images. The tracking algorithm has to meet the real time
performance constraint.
Feature tracking has to perform some computation for each
selected feature and hence, the algorithm latency increases with
the number of selected features. If the number of selected
features is more than a certain upper bound, the algorithm will
be so slow that it will violate the real time performance
constraint. Furthermore, accuracy will be compromised if the
number of selected features is not large enough. Therefore, it is
desired that the number of selected features be within a certain
range.
However, as the objects in the scene, distance of the object to
the camera, light conditions, lens focus and other parameters
change, the number of selected features varies. For example, two
runs of the algorithm on a scene with two different lighting
conditions will lead to selecting less number of features for the
darker scene. Our implementation can detect such conditions
and can adapt itself in order to compensate the effect of
environment changes. Therefore, it is ensured that the number of
selected features, and hence both latency and tracking accuracy,
are kept within a certain range. This is accomplished through
reconfiguration and parameterization of the algorithms running
on the embedded FPGA.
Furthermore, when a moving object moves close to the edge of
the image, the camera detects this situation and sends a message
to the pan-tilt unit to take the appropriate action to keep the
moving object within its field of view. At a certain point, the
pan-tilt unit will no longer be able to pan or tilt further and the
moving object will move completely out of the field of view of
the camera. The camera has to surrender complete control of the
scene and another camera will be forced to monitor the scene. In
this situation, the camera that can no longer monitor the scene
notifies the main controller by sending a message indicating the
position where the moving object is located. The main controller
then decides which camera should gain control and sends the
camera a message indicating where the object is. As a result, the
camera issues commands to move the pan-tilt unit so that the
moving object is in the field of view of the camera. Figure 2
outlines the architecture and application of the system. A sample
pseudo code running on the controller and a high-level block
diagram of each camera have been demonstrated.
In such a manner, the moving object is vigilantly tracked using
multiple cameras. The use of reconfigurability in our system

leads to the proper tradeoff between tracking quality and
latency. Moreover, it improves the system robustness to
variations in the scene. Note that by use of the “hands off”
approach, the cameras can collaborate in tracking an object. The
object will be continuously tracked as long as the object is
within the field of view of a camera.

3. Vision Algorithms Overview

In this section, we present two algorithms that are required for
enhancing the image quality and tracking the motions, i.e. image
restoration and feature selection. First, we outline the
algorithms’ underlying idea am functionality and then, we
describe their sensitivity to the changes in the scene. Finally,
details of the FPGA implementation in our system will be
discussed.

3.1 Feature selection

KLT tracking scheme [5, 6, 7] is carried out in two stages. In the
first stage, called feature selection, proper points in the images
are selected. These points are passed on to the second stage,
feature tracking, in order to find their location in the consequent
images. In our system, we have implemented the feature
selection stage on the FPGA1 and feature tracking is currently
performed on the PowerPC embedded in the IQeye3 cameras.
Feature selection algorithm consists of carefully choosing the
points in the image, which can be easily tracked throughout a
series of images. Corner points of an object, where intensity
changes noticeably, are selected as good feature points due to
the good trackability. In summary, the algorithm works as
follows [8]:

1. Calculate gx and gy, the intensity gradients in the x and y

directions for all pixels of the image. This is done by
computing the Gaussian and Gaussian derivative kernel as
well as convolving these kernels in the horizontal and
vertical directions.

2. For each pixel:
a) Sum the gradients in the surrounding window in order to
compute the Z matrix, where

dx
ggg

ggg
Z

W
yyx

yxx∫∫ 










= 2

2

b) Compute λ1 and λ2, the eigenvalues of the Z matrix. Let λ1 =
min (λ1, λ2). λ1 represents the trackability of the pixel.
c) Given λ as the threshold value, If λ1 > λ then declare this pixel
as a feature.

Figure 3 demonstrates the output of the feature selection on a
selected region of sample images.
The number of selected features reduces with the increase of λ
and vice versa. Therefore, points that are selected with higher
values of λ are considered better features. Note that such
features are also selected with small values of λ. These points
are usually easier to track in consequent images. They exhibit
significant intensity variation compared to their neighboring
pixels.

1 Our implementation is based on [12]

4. Vision Algorithms Implementations

In this section, we describe our system constraints and the
modifications we had to make to the original algorithms in order
fit them to our platform. Moreover, we discuss the system
adaptability issue in our implementations.

4.1 Platform Constraints

IQeye3 camera is the vision sensor used in our platform. Three
major components of IQeye3 are the imager, embedded FPGA
chip and PowerPC. The imager continuously captures scenes
and injects a real-time stream of image pixels into FPGA.
FPGA then performs several operations on the stream such as
image correction, windowing and down sampling. Then, a
DMA unit residing on the FPGA stores the processed scene data
in the main memory. Any program running on the PowerPC can
access the memory. For example, a sample application running
on the processor embedded in the camera compresses the image
data into jpeg format and exports the jpeg file through Ethernet.

Within this environment and platform, image-processing
applications sitting on the FPGA need to meet some constraints.
The most important issue is the timing constraint of the design,
because the imager continuously generates real-time stream of
image pixels and injects the flow into the FPGA. The
applications have to process the input stream and generate the
corresponding output at the same rate to avoid congestion. This
forces many designs to perform their intended computations
with the small on-chip memory, because using off-chip memory
unit will impose additional latency, which might not be tolerable
for some designs.

Figure 3. Sample outputs of feature selection algorithm
executed on the camera. Features are denoted by black
squares with white centers.

The feature tracking stage of the KLT tracking method, strives
to locate the selected features, in the next frame. This is
performed with the assumption that the two consecutive images
differ only by a small displacement factor. The tracked features
will be tracked again in the future upcoming frames. Therefore,
the displacement, motion direction, velocity and other
information about the motion can be inferred.

Furthermore, there is a basic design running on the FPGA at all
times. This design performs basic necessary image manipulation
functions such as windowing and packetizing. Any application
being mapped onto the FPGA has to integrate with this design
and has to cope with its communication standards and data
formats. Therefore, the algorithms cannot be used in their
original form and have to be adapted to our constrained
platform.

3.2 Image restoration
 Image restoration is a commonly used algorithm in image
acquisition or processing for recovery of degraded images.
Atmospheric turbulence, defocusing or motion of objects can be
reasons of degradation. Restoration process recovers lost
information of images by such degradation. The following
degradation model holds in a large number of applications [11]:

4.2 Implementations

4.2.1 Feature selection

Feature selection algorithm has been implemented on the same
platform in a previous work [8, 12]. This implementation only
needs to store two rows of the image data on-chip before
deciding whether a pixel is a feature or not. The algorithm
performs local computations in a 3x3 window around a pixel
and compares the result with a fixed threshold for determining
features. While this implementation works well in practice, it
does not have any control on the number of selected features.
Moreover, the value of threshold cannot be altered easily,
because threshold has been implemented as a constant, which
should be specified at design time.

),(**),(),(jixjidjiy =

Where x(i, j) and y(i, j) denote the original and observed
degraded image respectively. d(i, j) represents the impulse
response of the degradation system, and ** stands for two-
dimensional (2D) discrete linear convolution. The goal of image
restoration is to estimate x(i, j) given y(i, j) and d(i, j).
Common Implementations of image restoration iterate over the
entire image and perform local changes. Though effective in
many applications, this implementation is not practical in our
constrained platform. We have implemented another version of
image restoration that does not need to iterate over the entire
image and hence, decreases the memory requirement of the
system. This has been thoroughly discussed in the next
subsection.

Various parameters such as objects’ shape, scene light and lens
focus can affect the number of selected features. As mentioned
before, the selected features are passed to the tracking phase.
The latency of the tracking grows, while its accuracy drops, with
the increase number of selected features. Therefore, the number
of selected features has to be controlled in order to maintain a
proper tradeoff between tracking latency and its accuracy.

5. Experiments We have started from the implementation in [12] and have
modified the original design such that the threshold value can be
controlled by a program running on camera PowerPC at runtime.
This has enabled dynamic adaptation feature of the feature
selection. According to the algorithm, if the threshold used in
feature selection is too low for a particular scene, we get too
many features and if the threshold is too high, we get too few
features. Therefore, given a target number of features desired,
we increase the threshold if we get features more than the target
and decrease if we get less.

In this section, we present the framework and results of our
experiments. First, we describe the platform and designs used in
conducting the experiments. We will address the issue of system
adaptation to the environment variations in this section. Then,
we present the results of our approach to support our approach.

5.1 Experimental Setup
 Note that the actual feature selection performs its computations

on the FPGA and exhibits real time performance. The threshold
controlling entity is a small program running on the camera
PowerPC, which counts the number of selected features and
controls the threshold value accordingly.

We have implemented the feature selection and image
restoration algorithms (discussed in sections 3 and 4) on IQeye3
cameras. The threshold value in the feature selection algorithm
can be dynamically adjusted through a software program
running on the PowerPC of the camera.
Furthermore, the implemented image restoration algorithm can
be dynamically disabled or enabled through system
reconfiguration. If the quality of the image is not good enough
(this can be determined using the value of the threshold in
feature selection for selecting a certain number of features), then
the FPGA will be reconfigured to enable the image restoration
before feature selection. On the other hand, image restoration
can alter the original image if it is not degraded to some degree.
Therefore, we need to disable it for cases that the image quality
is reasonable.

4.2.2 Image restoration

Image restoration has a variety of implementation and iterative
method is a widely used one. The purpose is to estimate the
original image given the degraded image. The original method
performs operations on an entire image iteratively. The iteration
is stopped when the restored image converges with insignificant
residual ε [14].
Our constrained platform (refer to section 4.1) does not allow
the entire image to be stored on the FPGA. On the other hand,
accessing the off-chip memory iteratively will impose additional
latency on the algorithm, which is not affordable because of the
real time performance constraint.

5.2 Experimental Results

We have made several modifications to adapt the original
method to our environment. Instead of globally iterating over
the entire image, we iterate over local windows, where the size
of window can be from 3x3 to the entire image. As the window
gets smaller, the restoration quality drops since the center pixel
(Figure 4) does not have any information about pixels out of the
restoration window. However, this enables processing of image
stream using a small-sized storage.

In the following sets of experiments, we examine the effect of
our proposed techniques. The first two experiments demonstrate
the quality of automatically adjusted threshold compared to the
original fixed threshold feature selection. The third experiment
shows how image restoration can affect the performance of
feature selection. In all experiments, automatically adjusted
threshold targets for 150 features with 10% tolerance range, i.e.
the number of selected features should be in the (135-165)
range. Varying the restoration window size, leads to accuracy-memory

requirement tradeoff. Small restoration windows need smaller
on-chip storage, however their quality is not as good as larger
restoration windows. Note that memory requirement is indirectly
corresponding to performance. Figure 4 shows the idea of our
implementation and the amount of storage required for 3x3
windows.

One example, where dynamically adaptive feature selection
finds its use, is in the environments with variations in lighting.
This applies to any outdoor places where the natural lighting
changes throughout the time. Another example is many indoor
scenes under various lighting conditions. For the experiment,
we varied the lighting condition in the laboratory and observed
the results of the feature selection application.

n
c

n n
nn

n • • •
• • •n

n

height

n • • •
• • •

restoration window (3×3)

width

Figures 5, 6 and 7 show the result of feature selection with fixed
threshold (FS-FIX). Figure 8, 9 and 10 show the results of
feature selection with automatically adjusted threshold (FS-
AUTO).
Figures 5 and 8 are under the same lighting so that both FS-FIX
and FS-AUTO select about 150 features (with 10% tolerance).
Figure 6 and 9 are under the same lighting, which is brighter
than in the previous setting. Extra brightness causes edges and
corners to have greater intensity difference from their adjacent
pixels, therefore they are chosen as features. Figure 6 shows
many unnecessary features chosen whose count is 1150. This is
too many compared to the target feature count, 150. FS-AUTO
increases the threshold value from 512 to 1552 and chooses 150
features in Figure 9. It selects features at almost same locations
as in Figure 8 even after the significant change in brightness.

Figure 4. Image frame and restoration window. c is the center
pixel on which the computation is carried and n’s represent
the neighbor pixels. In this example, two rows of the frame
need to be stored on-chip. Figures 7 and 10 are under the same dark lighting. The object is

observable by eyes, but FS-FIX is unable to find any features.
FS-AUTO decreases the threshold value from 512 to 160 and

Figure 8. 148 features are selected by automatic threshold
adjustment (FS-AUTO) under default lighting conditions.

Figure 5. 152 features are selected by fixed threshold (FS-
FIX) under default lighting conditions.

Figure 6. 1150 features are selected by fixed threshold (FS-
FIX) under bright lighting.

Figure 9. 150 features are selected by automatic threshold
adjustment (FS-AUTO) under bright lighting.

Figure 7. No feature is selected by fixed threshold (FS-FIX)
under dark lighting.

Figure 10. 156 features are selected by automatic threshold
adjustment (FS-AUTO) under dark lighting.

finds 156 features. Locations of features are almost same as
Figure 8 and 9.

Figures 11 and 12 demonstrate the effect of image restoration on
feature selection results. While, FS-AUTO is capable of
selecting the required number of features, the threshold value at
the presence of image restoration is larger. Hence, the image
quality has been enhanced and features with larger intensity
difference compared to their adjacent pixels have been selected.
Note that sharp and clear images do not need to be restored
before being passed to feature selection algorithm. Failure to do
so might degrade the image quality and can create fake features
in the image. Therefore, the system should be reconfigured to
enable or disable image restoration based on the requirements.
Table 1 summarizes the number of selected features and the
utilized threshold value for selecting those features for pictures 5
to 12. The enhanced performance of FS-AUTO compared to FS-
FIXED in terms of number of selected features is evident.
Furthermore, the effect of image restoration on the threshold
value used in FS-AUTO can be observed. Note that applying
image restoration on the blurry image shown in Figure 11,
sharpens its edges and corners (see Figure 12) and increases the
required threshold in FS-AUTO. This in turn corresponds to
features that are easier to track in the feature tracking stage. This
has been highlighted in the last two rows of Table 1.

Figure Number Threshold Feature count

5 512 (Fixed) 152
6 512 (Fixed) 1150
7 512 (Fixed) 0
8 465 148
9 1552 150

10 160 156
11 1279 146
12 2083 148

Figure 11. Selected features using automatically threshold
adjustment (FS-AUTO) without image restoration

Table 1. Feature selection threshold value and feature count
for figures presented in experimental result section.

6. Conclusions and Future Directions

In this paper, we presented the idea of dynamic system
reconfiguration in order to be able to adapt to the external
events. A collaborative tracking system has been built and
presented as the experimental framework for verifying the idea.
Experimental results show that the idea is effective in practice
and the system can function in a wide range of working
conditions.
Particularly, we have implemented automatic adjustment of
threshold value in feature selection algorithm, and dynamic
enabling of image restoration for enhancing the image quality.
These techniques have been integrated into our system
framework. It has been shown that our approach is effective for
dynamically adapting to various lighting and lens focus
conditions in practice.
Future works include the integration of tracking phase of the
KLT feature-tracking method into our system, enhancing the
collaboration schemes and applying the system reconfiguration
idea to other applications or application domains. Figure 12. Image restoration sharpens the edges and

corners. Therefore, FS-AUTO selects better (selected with
larger threshold) features.

7. References

[1] D. Tennenhouse, "Proactive Computing," Communications
of the ACM, May 2000, vol. 43, no. 5, pp. 59–66.
[2] M. Weiser, “The Computer for the 21st Century”, Scientific
American, Sept. 1991, vol. 265, no. 3, pp. 94–104.
 [3] D. Estrin et. al., "Embedded, Everywhere: A Research
Agenda for Networked Systems of Embedded Computers,"
Committee on Networked Systems of Embedded Computers,
Computer Science and Telecommunications Board, National
Research Council, Washington, DC, 2001.
 [4] IQinVision Online Documentations, IQinVision Inc.,
http://www.iqinvision.com.
[5] B. Lucas, T. Kanade, “An Iterative Image Registration
Technique with an Application to Stereo Vision”, International
Joint Conference on Artificial Intelligence, pp. 674-679, 1981
[6] C. Tomasi, T. Kanade, “Detection and Tracking of Point
Features”, Carnegie Mellon University Technical Report CMU-
CS-91-132, April 1991.
[7] J. Shi, C. Tomasi, “Good Features to Track”, IEEE
Conference on Computer Vision and Pattern Recognition, pages
593-600, 1994
[8] A. Benedetti, P. Perona, “Real-time 2-D Feature Detection
on a Reconfigurable Computer”, IEEE Conference on Computer
Vision and Pattern Recognition, June 1998, Santa Barbara, CA.
[9] P. Athanas and L. Abbott, "Addressing the Computational
Requirements of Image Processing with a Custom Computing
Machine: An Overview", in Proceedings of the 2nd Workshop
on Reconfigurable Architectures, April 1995, Santa Barbara,
CA.
[10] X. Feng, P. Perona, “Real Time Motion Detection System
and Scene Segmentation”, CDS TR CDS98-004, Caltech, 1998
[11] S. Ogrenci Memik, A. K. Katsaggelos, M. Sarrafzadeh,
“FPGA Implementation and Analysis of an Iterative Image
Restoration Algorithm”. IEEE Transactions on Computers, vol.
52, no.3, March 2003.
[12] M. Maire, “Design and Implementation of a Realtime
Visual Feature Tracking System on a Programmable Video
Camera”, Technical Report, California Institute of Technology,
2002.
[13] Xilinx Online Documentations, Xilinx Inc.,
http://www.xilinx.com.

http://www.iqinvision.com/
http://www.xilinx.com/

	Collaborative and Reconfigurable Object Tracking
	Abstract
	
	
	
	
	
	Figure Number

