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Many vision applications perform intensive computations and 
demand hardware implementations in order to exhibit real time 
performance. Furthermore, these applications are hard to pre-
characterize and can take different paths according to events 
happening in the scene at runtime. Hence, reconfigurable 
hardware devices are envisioned as the proper platform to 
implement such applications, providing both real time 
performance and dynamic adaptability for the system. In this 
paper, we present a collaborative and reconfigurable object 
tracking system that has been built as part of our work. We 
justify the need for dynamic adaptation of the system through 
scenarios and examples. Experimental results on a set of scenes 
advocate the fact that our system works effectively for different 
scenes and scenario of events through reconfiguration. 
 
1. Introduction 
 
Unsupervised detection of events is widely used in many 
different applications. Such applications require the system to 
automatically detect the events happening in its surrounding area 
and take proper actions according to these events. Moreover, 
real time response to external events is usually another 
requirement, because of the nature of the applications; examples 
of which include traffic management and intelligent intruder 
detection. Various image-processing algorithms have been 
developed for this class of applications. These algorithms 
usually perform intensive computations and hence, require 
powerful computational resources in order to comply with the 
real time performance requirement.  
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Figure 1. a) The implemented target tracking system
using Iqeye3 cameras with embedded processors. b)
IQeye3 camera architecture. Courtesy of IQinVision Inc.

Image processing algorithms are generally very intensive. 
Therefore, many embedded processors dedicated to image data 
collection and/or processing cannot meet the real time 
performance constraint. However, most of image-processing 
algorithms perform similar computations for all of the pixels of 
an image that only requires local information. Therefore, they 
are considered as highly parallel computations that exhibit 
substantial speedup when implemented on a dedicated hardware 
unit. Hence, hardware implementation is the only viable solution 
for most of the real time image-processing systems. Researchers 
have reported many efficient hardware implementations of such 
algorithms [8, 9, 10, 11, 12].  
Moreover, the image-processing algorithms implemented in a 
system work based on some assumptions. Examples include the 
number of moving objects, their shape and their motion type. 
Based on the events happening in scene, these assumptions 
might become invalid. For example, KLT tracking scheme [5, 6, 

7] assumes that the moving object moves across the camera and 
its size doesn’t change from the camera point of view. However, 
if the object moves towards the camera, this assumption is no 
longer valid and KLT tracking will not be effective anymore. 
Therefore, the system has to be able to adapt to external events. 
However, the external events are hard - and in some cases 
impossible - to pre-characterize. Hence, it is practically 
impossible to determine the required algorithms a priori.  
The aforementioned arguments, introduce the reconfigurable 
fabrics as the only viable solution for implementing such 
applications. Reconfigurable hardware units not only 
demonstrate real time performance by exploiting the intrinsic 
parallelism of image processing algorithms, but also provide the 
required flexibility and adaptability for the system. This cannot 
be achieved by traditional pure software or hardware 
implementations. 
Figure 1.a depicts an intruder detection and object tracking 
system that has been built as part of this work. The system 
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Figure 2. An overview of the tracking system architecture: Each camera has a set of the required configurations available. 
The controller communicates with the cameras via an implemented message-passing scheme and can initiate the proper 
algorithm on each camera, organizing the collaboration among cameras.  
consists of multiple IQeye3 cameras [4]. The cameras are 
connected to the local area network and communicate with each 
other or the control unit in order to collaborate and share their 
information. An outline of the architecture of one of IQeye3 
cameras is demonstrated in figure 1.b. A Xilinx VirtexE [13] 
FPGA and a general-purpose processor (IBM PowerPC) are 
embedded in all of the cameras. The FPGA and the processor 
can both be used to implement the comprising blocks of an 
application. In this paper, we present the crucial role of the 
embedded reconfigurable devices (i.e. Xilinx FPGA) in our 
system. We exploit these devices to achieve both real-time 
performance and dynamic adaptability of the system to the 
external events. 
We proceed to describe our system framework and its 
application in the next section. In section 3, we present the 
image-processing algorithms that are required for the 
implemented tracking application. In addition, the effect of 
environment changes on these algorithms and hence, the need 
for system adaptability is explained in this section. Experimental 
results including algorithms implementation and their 
performance for some scenes, has been presented in section 4. 
Finally, section 5 outlines the conclusions and future directions 
of this paper. 
 
2. Reconfigurable Tracking System 
 
In this section, we present the reconfigurable tracking system 
that has been built as part of this work. First, we present the 
framework of our system along with its application. In next 
section, we discuss the algorithms that are needed for 
implementing the system application. We describe how these 
algorithms have to be tuned based on the changes in the scene 
and hence, highlight the “reconfigurability” feature of our 
tracking system.  
 
2.1 System Framework 
 
The framework for our system is comprised of several 
components including: IQeye3 cameras provided by IQinVision 

[4], pan-tilt units to enable the actuation of the cameras, a main 
controller residing on a PC, and a network for collaboration and 
data communication. 
An IQeye3 camera, as a “smart” vision sensor, with embedded 
computation resources [1, 2, 3], allows input image data 
acquisition and processing to be collocated in the camera, which 
minimizes network communication overhead and facilitates 
scalability. The processing resources embedded in each camera 
include a Xilinx Virtex 1000E FPGA and a 250 MIPS PowerPC 
CPU (Figure 1.b). In addition, there is 4 MB of Flash RAM and 
16 MB of SDRAM on each camera. Each IQeye3 camera gives 
full access to raw real-time image data streams and the general-
purpose processor can be used for customization since a large 
“C” development library is available to application developers. 
Full networking functionality is provided by each IQeye3 
camera through an Ethernet connection. It can communicate 
using TCP, UDP, and IP. 
In addition, the IQeye3 camera can send and receive 230 Kbps 
over a 9-pin RS232C serial port. By supporting such 
communication standards, the IQeye3 cameras can be placed in 
various environments; while the raw and/or processed captured 
images can be accessed remotely.  
Each pan-tilt actuation unit can be controlled using simple 
commands that specify the pan angle, pan speed, pan 
acceleration, tilt angle, tilt speed, and tilt acceleration. In our 
system, each IQeye3 camera is mounted on a pan-tilt unit, which 
is directly controlled by the corresponding camera via its 
RS232C serial port. 
Figure 2 demonstrates our system with two cameras and the 
main controller. The main supervisory controller resides on a PC 
and acts as the centralized governing unit of the system by 
maintaining the current state, processing internal and external 
triggers, and coordinating the collaboration among the cameras. 
When the main controller receives data from one of the IQeye3 
camera clients over the network, it deterministically selects the 
appropriate actions that should be taken by each camera (e.g., 
reconfiguring an embedded FPGA by swapping in a different 
algorithm from the database (Figure 2)). This is performed by 
sending a message to the designated camera.  
 



2.2 System Application 
 
The sample application implemented on the framework is to 
continuously detect and track a moving object that is within the 
field of view of a camera (Figure 2). We assume that the object 
is always moving across the camera and hence, KLT tracking 
scheme [5, 6, 7] can effectively track the motions. 
If the object leaves the field of view of one camera, the camera 
should pan or tilt to maintain the object within its field of view 
or it should hand off control to another camera. Depending on 
the light, focus and other parameters, various algorithms are 
used to maximize the tracking performance. 
When the entire system initializes, cameras establish a 
connection with the main supervisory controller on the PC. 
Camera 1 assumes control initially and continuously runs feature 
selection algorithm on its embedded FPGA. Feature selection 
algorithm selects points in the scene that are appropriate for 
tracking. Sharp corners and local intensity variations in an image 
usually form good features. The selected features are passed to 
the KLT tracking algorithm to track their motion in consequent 
images. The tracking algorithm has to meet the real time 
performance constraint.  
Feature tracking has to perform some computation for each 
selected feature and hence, the algorithm latency increases with 
the number of selected features. If the number of selected 
features is more than a certain upper bound, the algorithm will 
be so slow that it will violate the real time performance 
constraint. Furthermore, accuracy will be compromised if the 
number of selected features is not large enough. Therefore, it is 
desired that the number of selected features be within a certain 
range. 
However, as the objects in the scene, distance of the object to 
the camera, light conditions, lens focus and other parameters 
change, the number of selected features varies. For example, two 
runs of the algorithm on a scene with two different lighting 
conditions will lead to selecting less number of features for the 
darker scene. Our implementation can detect such conditions 
and can adapt itself in order to compensate the effect of 
environment changes. Therefore, it is ensured that the number of 
selected features, and hence both latency and tracking accuracy, 
are kept within a certain range. This is accomplished through 
reconfiguration and parameterization of the algorithms running 
on the embedded FPGA. 
Furthermore, when a moving object moves close to the edge of 
the image, the camera detects this situation and sends a message 
to the pan-tilt unit to take the appropriate action to keep the 
moving object within its field of view. At a certain point, the 
pan-tilt unit will no longer be able to pan or tilt further and the 
moving object will move completely out of the field of view of 
the camera. The camera has to surrender complete control of the 
scene and another camera will be forced to monitor the scene. In 
this situation, the camera that can no longer monitor the scene 
notifies the main controller by sending a message indicating the 
position where the moving object is located. The main controller 
then decides which camera should gain control and sends the 
camera a message indicating where the object is. As a result, the 
camera issues commands to move the pan-tilt unit so that the 
moving object is in the field of view of the camera. Figure 2 
outlines the architecture and application of the system. A sample 
pseudo code running on the controller and a high-level block 
diagram of each camera have been demonstrated. 
In such a manner, the moving object is vigilantly tracked using 
multiple cameras. The use of reconfigurability in our system 

leads to the proper tradeoff between tracking quality and 
latency. Moreover, it improves the system robustness to 
variations in the scene. Note that by use of the “hands off” 
approach, the cameras can collaborate in tracking an object. The 
object will be continuously tracked as long as the object is 
within the field of view of a camera.  
 
3. Vision Algorithms Overview 
 
In this section, we present two algorithms that are required for 
enhancing the image quality and tracking the motions, i.e. image 
restoration and feature selection. First, we outline the 
algorithms’ underlying idea am functionality and then, we 
describe their sensitivity to the changes in the scene. Finally, 
details of the FPGA implementation in our system will be 
discussed. 
 
3.1 Feature selection 
 
KLT tracking scheme [5, 6, 7] is carried out in two stages. In the 
first stage, called feature selection, proper points in the images 
are selected. These points are passed on to the second stage, 
feature tracking, in order to find their location in the consequent 
images. In our system, we have implemented the feature 
selection stage on the FPGA1 and feature tracking is currently 
performed on the PowerPC embedded in the IQeye3 cameras. 
Feature selection algorithm consists of carefully choosing the 
points in the image, which can be easily tracked throughout a 
series of images.  Corner points of an object, where intensity 
changes noticeably, are selected as good feature points due to 
the good trackability.  In summary, the algorithm works as 
follows [8]: 
 
1. Calculate gx and gy, the intensity gradients in the x and y 

directions for all pixels of the image. This is done by 
computing the Gaussian and Gaussian derivative kernel as 
well as convolving these kernels in the horizontal and 
vertical directions. 

2. For each pixel: 
a) Sum the gradients in the surrounding window in order to 
compute the Z matrix, where 
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b) Compute λ1 and λ2, the eigenvalues of the Z matrix. Let λ1 = 
min (λ1, λ2).  λ1 represents the trackability of the pixel. 
c) Given λ as the threshold value, If λ1 > λ then declare this pixel 
as a feature. 
 
Figure 3 demonstrates the output of the feature selection on a 
selected region of sample images. 
The number of selected features reduces with the increase of λ 
and vice versa. Therefore, points that are selected with higher 
values of λ are considered better features. Note that such 
features are also selected with small values of λ. These points 
are usually easier to track in consequent images. They exhibit 
significant intensity variation compared to their neighboring 
pixels. 

                                                 
1 Our implementation is based on [12] 



 

 

4. Vision Algorithms Implementations 
 
In this section, we describe our system constraints and the 
modifications we had to make to the original algorithms in order 
fit them to our platform. Moreover, we discuss the system 
adaptability issue in our implementations. 
 
4.1 Platform Constraints 
 
IQeye3 camera is the vision sensor used in our platform. Three 
major components of IQeye3 are the imager, embedded FPGA 
chip and PowerPC.  The imager continuously captures scenes 
and injects a real-time stream of image pixels into FPGA.  
FPGA then performs several operations on the stream such as 
image correction, windowing and down sampling.  Then, a 
DMA unit residing on the FPGA stores the processed scene data 
in the main memory. Any program running on the PowerPC can 
access the memory. For example, a sample application running 
on the processor embedded in the camera compresses the image 
data into jpeg format and exports the jpeg file through Ethernet. 

 

 

Within this environment and platform, image-processing 
applications sitting on the FPGA need to meet some constraints. 
The most important issue is the timing constraint of the design, 
because the imager continuously generates real-time stream of 
image pixels and injects the flow into the FPGA. The 
applications have to process the input stream and generate the 
corresponding output at the same rate to avoid congestion.  This 
forces many designs to perform their intended computations 
with the small on-chip memory, because using off-chip memory 
unit will impose additional latency, which might not be tolerable 
for some designs. 

 
Figure 3. Sample outputs of feature selection algorithm 
executed on the camera. Features are denoted by black 
squares with white centers. 
 
The feature tracking stage of the KLT tracking method, strives 
to locate the selected features, in the next frame. This is 
performed with the assumption that the two consecutive images 
differ only by a small displacement factor. The tracked features 
will be tracked again in the future upcoming frames. Therefore, 
the displacement, motion direction, velocity and other 
information about the motion can be inferred. 

Furthermore, there is a basic design running on the FPGA at all 
times. This design performs basic necessary image manipulation 
functions such as windowing and packetizing. Any application 
being mapped onto the FPGA has to integrate with this design 
and has to cope with its communication standards and data 
formats. Therefore, the algorithms cannot be used in their 
original form and have to be adapted to our constrained 
platform. 

 
3.2 Image restoration 
  Image restoration is a commonly used algorithm in image 
acquisition or processing for recovery of degraded images.  
Atmospheric turbulence, defocusing or motion of objects can be 
reasons of degradation. Restoration process recovers lost 
information of images by such degradation.  The following 
degradation model holds in a large number of applications [11]: 

4.2 Implementations 
 
4.2.1 Feature selection 
 
Feature selection algorithm has been implemented on the same 
platform in a previous work [8, 12].  This implementation only 
needs to store two rows of the image data on-chip before 
deciding whether a pixel is a feature or not. The algorithm 
performs local computations in a 3x3 window around a pixel 
and compares the result with a fixed threshold for determining 
features. While this implementation works well in practice, it 
does not have any control on the number of selected features. 
Moreover, the value of threshold cannot be altered easily, 
because threshold has been implemented as a constant, which 
should be specified at design time. 
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Where x(i, j) and y(i, j) denote the original and observed 
degraded image respectively. d(i, j) represents the impulse 
response of the degradation system, and ** stands for two-
dimensional (2D) discrete linear convolution.  The goal of image 
restoration is to estimate x(i, j) given y(i, j) and d(i, j). 
Common Implementations of image restoration iterate over the 
entire image and perform local changes. Though effective in 
many applications, this implementation is not practical in our 
constrained platform. We have implemented another version of 
image restoration that does not need to iterate over the entire 
image and hence, decreases the memory requirement of the 
system. This has been thoroughly discussed in the next 
subsection.  

Various parameters such as objects’ shape, scene light and lens 
focus can affect the number of selected features. As mentioned 
before, the selected features are passed to the tracking phase. 
The latency of the tracking grows, while its accuracy drops, with 
the increase number of selected features. Therefore, the number 
of selected features has to be controlled in order to maintain a 
proper tradeoff between tracking latency and its accuracy. 



5. Experiments We have started from the implementation in [12] and have 
modified the original design such that the threshold value can be 
controlled by a program running on camera PowerPC at runtime. 
This has enabled dynamic adaptation feature of the feature 
selection.  According to the algorithm, if the threshold used in 
feature selection is too low for a particular scene, we get too 
many features and if the threshold is too high, we get too few 
features.  Therefore, given a target number of features desired, 
we increase the threshold if we get features more than the target 
and decrease if we get less.  

 
In this section, we present the framework and results of our 
experiments. First, we describe the platform and designs used in 
conducting the experiments. We will address the issue of system 
adaptation to the environment variations in this section. Then, 
we present the results of our approach to support our approach.  
 
5.1 Experimental Setup 
 Note that the actual feature selection performs its computations 

on the FPGA and exhibits real time performance. The threshold 
controlling entity is a small program running on the camera 
PowerPC, which counts the number of selected features and 
controls the threshold value accordingly. 

We have implemented the feature selection and image 
restoration algorithms (discussed in sections 3 and 4) on IQeye3 
cameras. The threshold value in the feature selection algorithm 
can be dynamically adjusted through a software program 
running on the PowerPC of the camera.   
Furthermore, the implemented image restoration algorithm can 
be dynamically disabled or enabled through system 
reconfiguration. If the quality of the image is not good enough 
(this can be determined using the value of the threshold in 
feature selection for selecting a certain number of features), then 
the FPGA will be reconfigured to enable the image restoration 
before feature selection. On the other hand, image restoration 
can alter the original image if it is not degraded to some degree. 
Therefore, we need to disable it for cases that the image quality 
is reasonable. 

4.2.2 Image restoration 
 
Image restoration has a variety of implementation and iterative 
method is a widely used one.  The purpose is to estimate the 
original image given the degraded image.  The original method 
performs operations on an entire image iteratively.  The iteration 
is stopped when the restored image converges with insignificant 
residual ε [14].   
Our constrained platform (refer to section 4.1) does not allow 
the entire image to be stored on the FPGA. On the other hand, 
accessing the off-chip memory iteratively will impose additional 
latency on the algorithm, which is not affordable because of the 
real time performance constraint.  

 
5.2 Experimental Results 
 

We have made several modifications to adapt the original 
method to our environment.  Instead of globally iterating over 
the entire image, we iterate over local windows, where the size 
of window can be from 3x3 to the entire image.  As the window 
gets smaller, the restoration quality drops since the center pixel 
(Figure 4) does not have any information about pixels out of the 
restoration window.  However, this enables processing of image 
stream using a small-sized storage.   

In the following sets of experiments, we examine the effect of 
our proposed techniques.  The first two experiments demonstrate 
the quality of automatically adjusted threshold compared to the 
original fixed threshold feature selection.  The third experiment 
shows how image restoration can affect the performance of 
feature selection.  In all experiments, automatically adjusted 
threshold targets for 150 features with 10% tolerance range, i.e. 
the number of selected features should be in the (135-165) 
range.  Varying the restoration window size, leads to accuracy-memory 

requirement tradeoff. Small restoration windows need smaller 
on-chip storage, however their quality is not as good as larger 
restoration windows. Note that memory requirement is indirectly 
corresponding to performance. Figure 4 shows the idea of our 
implementation and the amount of storage required for 3x3 
windows. 

One example, where dynamically adaptive feature selection 
finds its use, is in the environments with variations in lighting.  
This applies to any outdoor places where the natural lighting 
changes throughout the time. Another example is many indoor 
scenes under various lighting conditions.  For the experiment, 
we varied the lighting condition in the laboratory and observed 
the results of the feature selection application.   
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Figures 5, 6 and 7 show the result of feature selection with fixed 
threshold (FS-FIX). Figure 8, 9 and 10 show the results of 
feature selection with automatically adjusted threshold (FS-
AUTO).    
Figures 5 and 8 are under the same lighting so that both FS-FIX 
and FS-AUTO select about 150 features (with 10% tolerance).  
Figure 6 and 9 are under the same lighting, which is brighter 
than in the previous setting.  Extra brightness causes edges and 
corners to have greater intensity difference from their adjacent 
pixels, therefore they are chosen as features.  Figure 6 shows 
many unnecessary features chosen whose count is 1150.  This is 
too many compared to the target feature count, 150.  FS-AUTO 
increases the threshold value from 512 to 1552 and chooses 150 
features in Figure 9.  It selects features at almost same locations 
as in Figure 8 even after the significant change in brightness. 

Figure 4. Image frame and restoration window. c is the center
pixel on which the computation is carried and n’s represent
the neighbor pixels.  In this example, two rows of the frame
need to be stored on-chip. Figures 7 and 10 are under the same dark lighting.  The object is 

observable by eyes, but FS-FIX is unable to find any features.  
FS-AUTO  decreases the  threshold  value from  512 to 160  and  



  
  
Figure 8. 148 features are selected by automatic threshold 
adjustment (FS-AUTO) under default lighting conditions. 

Figure 5. 152 features are selected by fixed threshold (FS-
FIX) under default lighting conditions. 

  

  
  
Figure 6. 1150 features are selected by fixed threshold (FS-
FIX) under bright lighting. 

Figure 9. 150 features are selected by automatic threshold 
adjustment (FS-AUTO) under bright lighting. 

  

  
  
Figure 7. No feature is selected by fixed threshold (FS-FIX) 
under dark lighting. 

Figure 10. 156 features are selected by automatic threshold 
adjustment (FS-AUTO) under dark lighting. 

  
  



finds 156 features.  Locations of features are almost same as 
Figure 8 and 9. 

 

Figures 11 and 12 demonstrate the effect of image restoration on 
feature selection results. While, FS-AUTO is capable of 
selecting the required number of features, the threshold value at 
the presence of image restoration is larger. Hence, the image 
quality has been enhanced and features with larger intensity 
difference compared to their adjacent pixels have been selected.  
Note that sharp and clear images do not need to be restored 
before being passed to feature selection algorithm. Failure to do 
so might degrade the image quality and can create fake features 
in the image. Therefore, the system should be reconfigured to 
enable or disable image restoration based on the requirements. 
Table 1 summarizes the number of selected features and the 
utilized threshold value for selecting those features for pictures 5 
to 12. The enhanced performance of FS-AUTO compared to FS-
FIXED in terms of number of selected features is evident. 
Furthermore, the effect of image restoration on the threshold 
value used in FS-AUTO can be observed. Note that applying 
image restoration on the blurry image shown in Figure 11, 
sharpens its edges and corners (see Figure 12) and increases the 
required threshold in FS-AUTO. This in turn corresponds to 
features that are easier to track in the feature tracking stage. This 
has been highlighted in the last two rows of Table 1. 
 
Figure Number Threshold Feature count 

5 512 (Fixed) 152 
6 512 (Fixed) 1150 
7 512 (Fixed) 0 
8 465 148 
9 1552 150 

10 160 156 
11 1279 146 
12 2083 148 

 
Figure 11. Selected features using automatically threshold 
adjustment (FS-AUTO) without image restoration 
 

 

 
Table 1. Feature selection threshold value and feature count 
for figures presented in experimental result section. 
 
6. Conclusions and Future Directions 
 
In this paper, we presented the idea of dynamic system 
reconfiguration in order to be able to adapt to the external 
events. A collaborative tracking system has been built and 
presented as the experimental framework for verifying the idea. 
Experimental results show that the idea is effective in practice 
and the system can function in a wide range of working 
conditions.  
Particularly, we have implemented automatic adjustment of 
threshold value in feature selection algorithm, and dynamic 
enabling of image restoration for enhancing the image quality. 
These techniques have been integrated into our system 
framework. It has been shown that our approach is effective for 
dynamically adapting to various lighting and lens focus 
conditions in practice. 
Future works include the integration of tracking phase of the 
KLT feature-tracking method into our system, enhancing the 
collaboration schemes and applying the system reconfiguration 
idea to other applications or application domains.   Figure 12. Image restoration sharpens the edges and 

corners. Therefore, FS-AUTO selects better (selected with 
larger threshold) features. 
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