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Abstract— Deep Convolutional Neural Networks

(DCNN) have proven to be very effective in many

pattern recognition applications, such as image classi-

fication and speech recognition. Due to their compu-

tational complexity, DCNNs demand implementations

that utilize custom hardware accelerators to meet per-

formance and energy-efficiency constraints. Leverages

all sources of parallelism in DCNNs, in this paper we

propose an FPGA-based accelerator architecture. We

develop analytical feasibility and performance estima-

tion models that take into account various design and

platform parameters. Consequently, we develop a de-

sign space exploration algorithm using which, we ob-

tain the implementation with the highest performance

for a given target FPGA platform. Simulation results

with a real life DCNN demonstrate that our acceler-

ator outperforms other competing approaches, which

disregard some sources of parallelism in the applica-

tion. Most notably, our accelerator runs 1.9× faster

than the state-of-the-art DCNN accelerator on the

same FPGA device.

I. Introduction

Deep Convolutional Neural Networks (DCNN) have re-
cently led to impressive progress in many challenging ma-
chine learning problems, such as machine vision, natural
language processing and speech recognition.
The complexity of DCNNs presents their real-

time performance as a major challenge that hinders
their widespread deployment, particularly in resource-
constrained embedded systems. In this paper, we ad-
dress this topic via systematic architecture exploration
and development of a custom accelerator for efficient im-
plementation of DCNN feed-forward test phase. We re-
strict our discussion to the test phase, and thus, assume
that a trained model with known weights is already avail-
able.
Prior work on acceleration of DCNN implementations

includes several platform technologies. One appproach
involves utilization of commodity Graphics Processing
Units (GPU) [7] whose software programmability renders
them particulary well suited for research on DCNN mod-
els and acceleration of the training phase. The signif-
icant energy dissipation of commodity GPUs, however,

prohibits their integration in energy constrained and mo-
bile embedded systems. Another approach includes de-
velopment of ASIC chips [3], which offer the well-known
advantage of performance and energy efficiency at the dis-
advantage of significant fabrication cost and limited flex-
ibility. The tradeoff appears to be unattractive at the
moment, given the market size and the fluid and rapidly-
evolving state of research in DCNN models. Another
group of researchers focus on FPGA based accelerator
design [2, 10]. Reasonable price, low power consumption
and programmability of FPGAs are characteristics that
make them attractive for DCNN implementation.

Several groups have attempted to build DCNN acceler-
ators by focusing on custom computation engines. This
approach relies on the implicit assumption that DCNNs
are computationally bounded [1, 2, 9]. At the other ex-
treme, some prior work have viewed the issue as a memory
bandwidth problem. As an example, Peeman et al. focus
on maximization of the reuse of on-chip data [8]. Inter-
estingly, DCNNs require both high memory bandwidth
as well as high computation resources. Thus, an opti-
mized accelerator needs to judiciously strike a balance
between the two interdependent criteria [10]. Focus on
one aspect while ignoring the other, is bound to result in
a sub-optimal architecture.

In this paper, we present a systematic approach to de-
sign and development of an FPGA-based DCNN accel-
erator. Specifically, we design an architecture template
that is capable of exploiting all sources of parallelism in a
DCNN [10]. We develop performance and memory data
transfer models for the template architecture based on
which, we estimate both feasibility, with respect to a spe-
cific FPGA device with known resources, and performance
of a particular instantiation of the architecture. The mod-
els enable us to prudently quantify the tradeoff of exploit-
ing one source of parallelism vs. another. Subsequently,
we develop a design space exploration algorithm, which
yields the most efficient architecture that would be fea-
sible on the target platform. Our contributions include
advancing the state of the art in DCNN acceleration [10]
via consideration of all sources of parallelism, develop-
ment of the associated performance and memory transfer
estimation models, and design space exploration apara-
tus. Experimental results demonstrate that we substan-
tially outperform prior work on DCNN accelerators.



Fig. 1. A sample real-life DCNN, proposed by Krizhevsky et al.,
which won the ImageNet contest in 2012 (AlexNet) [7]. In this
DCNN ⟨N1,M1,K1⟩ = ⟨3, 48, 11⟩.

Fig. 2. Layer 2 from the DCNN which is shown in Fig. 1.

II. Convolutional Neural Network

A. Background and Overview

DCNNs form a subset of artificial neural networks in
which, the transformation from the input to output fea-
ture maps is determined by a set of convolutional kernels.
Querying a DCNNs in the test phase, which is the focus
of this paper, requires forward evaluation of the trained
network with known weights on the input data.

Fig. 1 illustrates an example DCNN in which, the first
five layers from the left are convolutional layers and the
last three layers are dense layers. As more than 90% of
the execution time in DCNNs is spent in the convolution
layer [4], in this study we only concentrate on accelerating
the convolutional layer. In a DCNN there are L convo-
lutional layers l1, ..., lL each of which, consists of a set of
convolution kernels along with a pooling and sub sampling
function (in Fig. 1, L = 5). By sliding one stack of convo-
lution kernels over an input layer and continuously com-
puting convolutions, a single output feature map can be
generated. This sliding is performed by different strides
(S) in different layers. In each layer, there is a stack of
convolution kernels of size Kl ×Kl. The size of this stack
is Nl, and in each layer, there are Ml different stacks, each
of them is used to build one output feature map. So, the
number of rows and columns of the convolution kernels
is Kl. Variables Nl and Ml are the number of input and
output feature maps in layer l respectively. Equation (1)
represents the required operations for a DCNN, where Rl

and Cl are the number of rows and columns in the input
feature maps of layer l respectively. IFM , OFM and W
stand for the input feature maps, output feature maps
and weights of the convolution kernels.
As it is shown in Fig. 2, every output feature map is the

result of the 3D convolution of a kernel with all of the
input features maps (i.e., the number of output feature
maps are equal to the number of kernels).

B. Parallelism in DCNNs

In each DCNN, there are several sources of parallelism
(Fig. 3). To achieve the best possible speedup, all of these
sources should be recognized and exploited properly.

• Inter Layer Parallelism
As ∀ l ∈ {1, 2, 3, .., L} : IFM(l+1) = OFMl, there
is data dependency between layers; hence, they can-
not be executed in parallel. On the other hand, since
real life DCNNs are very large, they cannot be imple-
mented in a pipeline fashion. Even for small CNNs,
pipeline based implementation does not always pro-
vide the best performance [5].

• Inter Output Parallelism
Different output feature maps are totally indepen-
dent of each other, and theoretically all of them can
be computed in parallel. To do so, Equation (1)
should be calculated in parallel for different values
of m.

• Inter Kernel Parallelism
Each pixel in each output feature map is the result
of a set of convolutions. However, as these convolu-
tions are independent for different pixels, it is pos-
sible to compute all of them concurrently. This is
another source of data level parallelism that can be
exploited. Therefore in Equation (1), in order to ex-
ploit this source of parallelism, calculation should be
done for different values of r and different values of
c concurrently.

• Intra Kernel Parallelism
Finally, there is a considerable amount of parallelism
in each convolution. A convolution is essentially a set
of multiplications and additions. As each multiplica-
tion between a weight in a kernel and a pixel in an
input feature map is independent from another mul-
tiplication, all of them can be performed in parallel.

If there were unlimited area, bandwidth and on chip mem-
ory, all of the aforementioned sources of parallelism could
be exploited to expedite the neural network as much as
possible. However, in practice, this is infeasible. There-
fore, it is required to determine for a particular neural net-
work and a specific chip, what parallelism sources should
be used to what extend to minimize the execution time.
In this paper we find the optimal solution by introduc-
ing an architecture which can utilize all of the parallelism
sources and optimizing design parameters for it.

III. Proposed Architecture Template

The proposed architecture is shown in Fig. 4. The first
layer which is named A consists of blocks of Tk multipli-
ers that can be used concurrently to compute a portion
of the required multiplications of a convolution. The re-
sults of these multiplications are accumulated using corre-
sponding adder trees (B). Combination of one multiplier



∀ l ∈ {1, 2, 3, ..., L}; l : layers

∀ r ∈ {1, 2, 3, ..., Rl}, r : row in feature maps

∀ c ∈ {1, 2, 3, ..., Cl}, c : column in feature maps

∀ m ∈ {1, 2, 3, ...,Ml} : m : output feature maps in layer l

OFM [l][m][r][c] =

Nl∑
n=1

⌊Kl
2 ⌋∑

i=−⌊Kl
2 ⌋

⌊Kl
2 ⌋∑

j=−⌊Kl
2 ⌋

IFM [l][n][r + i][c+ j]×W [l][n][m][i+ ⌊Kl/2⌋][j + ⌊Kl/2⌋] (1)

Fig. 3. Available Parallelism Sources in DCNNs

block from layer A and corresponding adders form layer
B are called Parallel Convolution Engine (PCE) in
this paper. PCEs provides the ability of exploiting intra
kernel parallelism. Each convolution kernel has two in-
puts: input feature maps and corresponding weights. In
the proposed architecture, it is possible to feed in Tn dif-
ferent kernels of the same kernel stack to the convolution
engines along with Tn different input feature maps. The
results should be added together using the adder stacks,
which are labeled with C. The combination of convolu-
tional engines along with the corresponding adders, which
are labeled as D, are designed for exploiting inter kernel
parallelism.
In order to provide the ability of using the inter output
parallelism in this architecture, unit D is replicated Tm

times. Hence, each replica can be used to compute an out-
put feature map in parallel with other replications. The
architecture which is shown in Fig. 4, has the ability to
utilize all of the different parallelism sources which exist
in a DCNN. Yet, in order to achieve the optimal solution,
it is important to determine the appropriate values for
TK , Tm and Tn. We will offer a technique to find those
values in the following sections.
The limited amount of on-chip memory mandates a tiled
data transfer. We are using tiling in the kernel level as
well as feature map level. For DCNNs that have large ker-
nel sizes (unlike [7]), tiling in the kernel level improves the
performance drastically. This tiling which is extended to
the kernel level provides us with the opportunity to search
for the optimized architecture among a larger number of
candidates (i.e., the design space is a superset of the one
in [10]). In tiling, a tile with the dimension of Tr × Tc

is fetched for each input feature map in each iteration.
Likewise, for each pixel of this tile, a tile of weights with
the dimension of Ti×Tj is fetched. Yet, for an optimal ar-

Fig. 4. Proposed Architecture. Multipliers in layer A and
corresponding adders in B form Parallel Convolution Engines
(PCE) that can exploit intra kernel parallelism. Combination of
PCEs along with the corresponding adders in part C are designed
for exploiting inter kernel parallelism . Tm replication of unit D
provide the ability to exploit inter output parallelism.

chitecture, it is required to determine the suitable values
for Tr, Tc, Ti and Tj .

IV. Analytical Model

In this section, we develop an analytical model that
shows the relation between different design parameters
and attainable performance. This model is also used to
indicate the required memory bandwidth for the design.
This model can be used to determine implementing how
many replica of each module on a FPGA yields the min-
imal execution time.

A. Computation Model

The number of execution cycles is equal to the num-
ber of MAC (Multiplication and Accumulation) opera-
tions. This number can be computed using Equation (2)



in which P is the pipeline overhead.
As each convolution includes one multiplication and one
addition, the total number of required operations can be
shown by Equation (3). Hence, the computation roof can
be defined and calculated as shown in Equation (4).

Number of Execution Cycles =

⌈ M
Tm

⌉×⌈ N
Tn

⌉× RC

TrTC
×⌈K

Ti
⌉×⌈K

Tj
⌉× (TrTc ×⌈TiTj

Tk
⌉+P )

(2)

Num of Ops = 2 × R × C × M × N × K × K (3)

Computation Roof =
Number of Operations

Number of Execution Cycles

=
2×M ×N ×K2

⌈ M
Tm

⌉ × ⌈ N
Tn

⌉ × ⌈K
Ti
⌉ × ⌈ K

Tj
⌉ × ⌈Ti×Tj

Tk
⌉

(4)

The optimal architecture minimizes the number of execution
cycles, i.e., maximizes the computation roof. Notice that the
nominator in Equation (4) only depends on DCNNs. Hence,
for a particular neural network, the total number of operations
are constant. A well designed accelerator is able to achieve a
computation roof that fully utilizes all of the resources of a
particular FPGA.

B. On-Chip Buffers

The estimated computation roof can be achieved if with the se-
lected parameters, the required data transmission is less than
the maximum available bandwidth. Computations are per-
formed on the input feature maps and weights and the re-
sults are stored as output feature maps. Hence, three different
buffers are required to hold the necessary data. The required
sizes for input feature maps, weights and output feature maps
are shown in Equations (5), (6) and (7) respectively.

βin = Tn(STr + Ti − S)(STc + Tj − S) × 4 Bytes (5)

βwght = Tm × Tn × Ti × Tj × 4 Bytes (6)

βout = Tm × Tr × Tc × 4 Bytes (7)

It is possible to prove that for the most efficient implementa-
tion of Equation (1), the number of loads and stores can be
calculated using Equations (8), (9) and (10).

αin =
M

Tm
× N

Tn
× R

Tr
× C

Tc
× K

Ti
× K

Tj
(8)

αwght =
M

Tm
× N

Tn
× R

Tr
× C

Tc
× K

Ti
× K

Tj
(9)

αout = 2× M

Tm
× R

Tr
× C

Tc
(10)

Using these values and buffer sizes, the required Computation
To Communication ratio (CTC) can be computed as shown in
Equation (11). The CTC is a measure for reuse of data which
is fetched to the on-chip memory.

CTC =
Total required computation

Total Required communication
=

2×M ×N ×R× C ×K2

αin × βin + αwght × βwght + αout × βout
(11)

Fig. 5. Design space exploration for Layer 1 of the DCNN of Fig. 1

Fig. 6. Normalized performance for dynamic and static
configuration

V. Experimental Results

To find the set of parameters that maximize the performance,
we explore the design space by enumerating over all possible
configurations and computing the Computation Roof . This
enumeration must be performed under four constraints:
1. The sum of all required buffers in a design must be less

than or equal to the available on chip memory.
2. The required bandwidth should be less than or equal to

the available bandwidth on a particular platform.
3. Only a certain number of Computational Engines (CE)

can be implemented on any chip. We adopt the number
of CEs from [10] to enable a fair comparison. However, as
we use Parallel Convolution Engine, the number of CEs
should be decreased proportional to Tk. As it is shown in
Equation (12).

Tm × Tn ≤ # CEs

Tk
(12)

We find optimal design parameters for the DCNN which is
shown in Fig. 1 Under the bandwidth and area constrains of
Xilinx Virtex7 485t FPGA.

A. Impact of Reconfigurability

Initially, the accelerator supports flexible Tm, Tn and Tk. Sub-
sequently, Tk is fixed for every layer. Finally Tm, Tn and Tk

are fixed for all layers. The normalized performance of these



TABLE I
Performance Comparison

ICCD2013[8] FPL2009[6] PACT2010[1] ISCA2010[2] ISFPGA2015[10] Proposed Sol.
Precision fixed point 48bits fixed fixed point 48bits fixed 32bits float 32bits float
Frequency 150 MHz 125 MHz 125 MHz 200 MHz 100 MHz 100 MHz
FPGA Chip VLX240T SX35 SX240T SX240T VX485T VX485T
CNN Size 2.74 GMAC 0.26 GMAC 0.53 GMAC 0.26 GMAC 1.33 GFLOP 1.33 GFLOP

Performance 17 GOPs 5.25 GOPs 7.0 GOPs 16 GOPs 61.62 GFLOPs 84.2 GFLOPs
GOPs/Slice 4.5E-04 3.42E-04 1.9E-04 4.3E-04 8.12E-04 11.09E-04

TABLE II
Layer Specific Optimal Solution, Layer Specific Optimal Solution with fixed Tk and Static Optimal Solution for the

proposed accelerator (FPGA: Xilinx Virtex7 485t, DCNN: AlexNet [7]). L stands for Layer.

L
Layer Specific Solution Layer Specific Solution (Fixed Tk) Static Solution

Tm Tn Tk Cycles GFLOPS Tm Tn Tk Cycles GFLOPS Tm Tn Tk Cycles GFLOPS

1 16 3 10 117975 89 48 3 3 124025 85 16 3 9 127050 83

2 4 24 5 233280 96 10 16 3 255879 87 16 3 9 279936 80

3 15 32 1 79092 95 16 10 3 79092 95 16 3 9 87204 86

4 15 32 1 118638 95 32 5 3 118638 95 16 3 9 129792 86

5 10 48 1 79092 95 10 16 3 79092 95 16 3 9 86528 86

S 628077 656726 755642

three experiments is shown in Fig. 6. Performance is defined
as 1/(execution cycles).
Layer Specific Optimal Solution: In this case Tm, Tn and
Tk are fully flexible and the optimal solution is shown in Ta-
ble II. This configuration delivers the best performance but
demands a very complex interconnection network.
The design space for layer 1 of the DCNN is shown in Fig. 5.
In this Figure, the red line is the available bandwidth and any
black point indicates a potential design with a certain CTC
and GFLOPS. For any point in the design space, the slope of
the line from the origin to that point gives the required band-
width. The target of this exploration is to find the design with
the highest GFLOPS. Among points with highest GFLOPS,
point A is the best candidate because it has the best CTC.
Layer Specific Optimal Solution (Fixed Tk): In the sub-
sequent experiment, (Tk) is fixed across different layers. As
it is shown in Table II, due to the reduced flexibility the per-
formance is dropped by 4.5 %. However, the architecture no
longer needs to support dynamic sizes for PCE across different
layers. Static Optimal Solution: In this experiment Tm, Tn

and Tk are fixed and the optimal solution is shown in Table II.
For a completely static accelerator the number of execution
cycles increases by 13% compared to the dynamically recon-
figurable accelerator. However, for the comparison between
dynamic and static reconfigurability in [2, 10] and this paper,
the required area for the interconnection network is not taken
into account. Hence, the speedup of 13% is only a very loose
upper bound. This indicates that the achievable speedup of
dynamic reconfigurability can never be better than 13%.

B. Performance Comparison

Performance Comparison Versus CPU: Based on the ex-
ecution time which is reported in [10] the proposed accelerator
in this paper has a speedup of 23.24X and 6.4X compared to
the single and 16 threaded CPU based implementation.
Performance Comparison Versus Other Accelerators:
The performance of different accelerators are reported for dif-
ferent DCNNs on different FPGAs. Hence, before comparing
the performances, it is required to normalize the data as de-
scribed in [10]. The result are shown in Table I. Compared
to the previous approaches, the proposed accelerator has the
highest performance density. The speedup of our approach is
37% compared to the second best solution (ISFPGA2015 [10]).
In order to determine which accelerator performs better when
more resources are available, the design space is explored for
an FPGA with 2 times more area and bandwidth than Virtex7
485t and the results are shown in Table III. For this FPGA,
our accelerator can achieve a speedup of 1.9X compared to
the offered approach in [10]. This shows that the proposed
solution can utilize the resources better for more sophisticated
chips which will be offered in the future. The normalized per-
formance for the proposed solution and the solution which is
offered in [10] are compared in Fig. 7.

VI. Conclusion

In this paper, a new accelerator for DCNNs is proposed.
This accelerator can effectively leverage all of the available
parallelism sources to minimize the execution time. Moreover,



TABLE III
Static Optimal Solution for proposed accelerator and ISFPGA2015 [10] on an FPGA with 2X larger area and bandwidth

compared to the baseline FPGA (Virtex7 485t). DCNN: AlexNet [7]

ISFPGA2015 [10] Proposed Accelerator
Speedup

Tm Tn Cycles GFLOPS Tm Tn Tk Cycles GFLOPS

Layer 1 48 3 366025 29 48 3 5 75625 139 4.84

Layer 2 64 12 145800 154 64 3 5 116640 192 1.25

Layer 3 64 15 41067 182 64 3 5 43602 171 0.94

Layer 4 64 15 59319 189 64 3 5 64896 172 0.91

Layer 5 64 15 39546 189 64 3 5 43264 172 0.91

Total 651757 344027 1.89

Fig. 7. Normalized performance for proposed solution and
ISFPGA2015 [10] on Xilinx Virtex7 485t and an FPGA with 2X
larger area and bandwidth

we proposed an improved tilling technique that increases the
performance by utilizing the tiling in the convolution kernel
level. We also developed an analytical model for the proposed
architecture and used that model to determine optimized de-
sign parameters for a real-life neural network and a particular
FPGA. Experimental results show that the proposed solution
outperforms all previous work. Specifically, our accelerator
has a speedup of 1.9X compared to the state-of-the-art DCNN
accelerator.
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