
Exact and Approximate Task Assignment Algorithms for
Pipelined Software Synthesis

Matin Hashemi, Soheil Ghiasi
Electrical and Computer Engineering

University of California, Davis
CA 95616, USA

{hashemi,ghiasi} (@ucdavis.edu

ABSTRACT
Pipelined execution of streaming applications enable process-
ing of high-throughput data under performance constraint.
We present an integrated approach to synthesizing pipelined
software for dual-core architectures. We target streaming
applications modeled as task graphs that are amenable to
static analysis. We develop a versatile task assignment al-
gorithm that considers the combined effect of workload im-
balance between processors and inter-processor communica-
tion. Our technique, which runs in pseudo-linear time, prov-
ably maximizes application throughput. Furthermore, we de-
velop an approximation algorithm for task assignment whose
complexity is strictly polynomial. It provides the designer
with an adjustable knob to controllably trade solution quality
with algorithm runtime and memory requirement. Empirical
throughput measurements using an FPGA-based dual-core
system validate our theoretical results. Our exact algorithm
consistently outperforms a recent competitor. Compared to
exact task assignment, the approximate method runs about
3 times faster, requires about 20 times less memory, and
results in only 1% to 5% throughput loss.

1. INTRODUCTION
Significant number of embedded applications are charac-

terized by their requirement to process virtually-infinite flow
of input data under performance constraints [2]. Such ap-
plications, generally referred to as streaming applications,
appear in many disciplines such as networking, signal pro-
cessing, security, and multimedia. Typically, streaming ap-
plications demand high throughput, but are not very sen-
sitive to response latency. Thus, pipelined execution is a
favorable design choice for their implementation [5].
On the other hand, continuation of Moore's law has en-

abled economical integration of many transistors on the same
die. This capability, along with fundamental limitations of
instruction-level parallelism and energy inefficiency of single-
core performance scaling have led to emergence of multicore
architectures [9]. Various manufacturer and research groups
have demonstrated effectiveness of multicore processors in
both general purpose and embedded computing [6, 10]. Mul-
ticores provide promising platforms for exploiting inherent
vertical parallelism of streaming applications.
The process of application software development for paral-

lel architectures is fairly unproductive and challenging today
[1]. As a step in addressing this issue, we present a method-
ology for synthesizing pipelined streaming applications that
execute on distributed-memory dual-core processors. Our

compilation framework admits applications modeled as task
graphs or acyclic synchronous dataflow [8]. Following static
task scheduling [7], they are assigned to processors in the
system, and executable codes are generated.

In order to maximize application throughput, we develop
a theoretically optimal task assignment algorithm that jointly
considers both inter-processor workload imbalance and com-
munication. The technique is versatile in that it can prov-
ably optimize a reasonably-arbitrary function of the two
factors. Our algorithm runs in pseudo-linear time with re-
spect to problem size, and hence, its runtime also depends
on workload intensity of application tasks. We extend our
technique to a strictly-polynomial approximation of optimal
task assignment. The approximation algorithm takes as in-
put a tolerable error bound, and guarantees that solution
quality is not degraded beyond the bound. The algorithm
runtime and memory requirement are improved with loos-
ening of the error bound. Thus, it serves as an adjustable
knob for trading application throughput with compilation
runtime and memory requirement.

In order to validate practicality of our theoretical contri-
butions, we prototype the architectures on an FPGA board.
Compared to a recent compilation scheme, our exact task as-
signment technique improves application throughput 6.4%.
Furthermore, our approximation method offers a range of
runtime-throughput tradeoff points. For example, it runs
about 3 times faster, requires about 20 times less memory,
and results in throughput degradation of about 1% to 5%.

2. BACKGROUND AND PRELIMINARIES
Application Model: We adopt the commonly used task

graph model to represent the computation and communica-
tion involved in an application. An application is repre-
sented as a directed-acyclic graph (DAG) G in which, ver-
tices of G denote the tasks or constituting computations of
the application, and edges of G represent inter-task commu-
nication. Each task can be fired, i.e. executed on a process-
ing resource, if all of its input data are available. Application
inputs are ready at the beginning of analysis.
Note that several other models of computation can be

converted to task graphs. For example, acyclic synchronous
dataflow graphs are equivalent to task graphs following static
scheduling [8]. Hence, our framework and results are read-
ily extensible to such models of computation. We use w, to
refer to estimated computation workload of task v in cycles.
The terms computation workload, latency, and delay of a
node are used interchangeably throughput the paper. Also,

978-3-9810801 -3-1 /DATE08 © 2008 EDAA

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on July 15, 2009 at 16:13 from IEEE Xplore. Restrictions apply.

let c,,, = c(uv) denote the amount of data that needs to be
communicated from task u to task v over edge eXv.
Abstract Hardware Model: Given task graph repre-

sentation of a streaming application, we aim to realize the
application by synthesizing two parallel pieces of software
that execute on embedded dual-core architectures. Dual
processing cores enable pipelined execution of the applica-
tion, which in turn, improves application throughput. Fig-
ure 1 illustrates an abstract view of our target hardware
architecture. The hardware is comprised of two simple pro-
cessors (in-order issue) that are connected using a FIFO
channel.

core 1 core2
@frequency f @frequency f

B
E=- p-proc p-proc

input output input output
Communication Link

@ bandwidth B byte/sec

Figure 1: Target hardware architecture. Processors
communicate using FIFO links.

We assume that processing cores are simple embedded
processors that operate at the same frequency f. Inter-
processor communication link provides bandwidth of B byte
per second. Thus, communicating b bytes of data from
one processor to another takes b/B seconds. In compar-
ison, inter-task communication latency is negligible when
the tasks are mapped to the same processor. Another way
to view this is to incorporate intra-processor inter-task com-
munication latency into tasks estimated workload (we).
Our objective is to develop a task graph partitioning and

task assignment algorithm that judiciously favors computa-
tion workload or communication cost for given values of f
and B. In the general case, such a versatile technique would
be superior to conventional workload-balancing or commu-
nication minimization approaches.
Execution and Performance Model: We focus on

pipelined execution of an application on target hardware
architectures. We consider partitioning and assignment of
application tasks onto pipeline processors. Figure 2.a shows
an example in which, cut 1 partitions the graph into two
sections. Tasks in the top section, i.e., a and b are assigned
to core 1, and tasks in the bottom partition (c and d) will
be executed on core 2.

Pipelined execution model implies that tasks assigned to
different processors should not cyclically depend on each
other [3]. Cycles in data dependency entangle task schedules
on the two processors, which leads to degradation of pipeline
throughput. Cut 2 in Figure 2.a illustrates an example.

DEFINITION 2.1. A partitioning is convex if and only if
there is no cycle in dependencies among tasks in different
partitions. In other words, the flow of data between convex
partitions is uni-directional.

Only convex partitions of task graph lead to competitive
solutions and hence, are valid partitions for our purpose.
For example in Figure 2.a, cut 1 is convex, but cut 2 is
non-convex.

In the steady state, performance is determined by the
slowest of 1) computation latency of any processing core,
or 2) communication latency of the inter-processor link. In
dual-cores, throughput is determined by WG1, Cc and WG2,
where G1 and G2 denote the two partitions of graph G, WG1
and WG2 is the workload of the first and second partition,

%

cut 2 ,put 1

core M* core

(A)

2 3

_ b balanced
%.
1% 2 27Z _ 'cut
2 -

.

N

1".. 1' optimal
- f _ N ~- cut

cut with minimum
(B) communication

Figure 2: a) Pipelined execution of an example
application. Cut 1 is convex, while cut 2 is not.
b) Holistic workload balancing and communication
minimization improves throughput.

and Cc denotes communication between the two partitions,
i.e., cost of cut C. Let QC denote a hardware-driven func-
tion that estimates throughput for a given task assignment,
i.e., a given cut C. An intuitive throughput estimation func-
tion would be QC = max(CC1 WC,G2f Bf- f

In the remainder of this paper, we assume that task work-
load and inter-task communication are already converted
to latency, unless otherwise noted. That is, we will as-
sume that w, is the workload of task v in time (consid-
ering f), and cXv is communication latency of eXv in time
(considering B) on a particular architecture. Therefore,
QC = max(WG1, CC, WG2) = max(WG1, Cc, WG - WG1),
where WG denotes workload of the entire application.

3. OPTIMAL TASK ASSIGNMENT
In this section, we present provably-optimal throughput-

driven application partitioning, TAP, that maximizes through-
put by minimizing QC. The method works on planar graphs,
and thus, if the input SDF graph is not planar it goes
through a planarization phase which is discussed in Section
5. That section also shows that a large class of streaming
applications are intrinsically planar.

Let G(s, t) denote the planar application task graph with
source vertex s and sink vertex t (Figure 3.a). Recall that G
is planar if and only if it can be drawn on a two-dimensional
(2D) plane with no crossing edges. Given a planar DAG
G, its dual graph G* is well-defined by assigning vertices
to faces of G, and connecting them using dual edges. The
dual graph of a planar DAG G(s, t) is denoted by G* (v8, vt)
(Figure 3.b).
We follow a number of steps to find the path in G* that

minimizes Qc. First, we move node weight values (task
workloads) from vertices to edges in the following manner:
Each node v C V(G) propagates the sum of its weight w(v)
and the propagated weights from its incoming edges to its
right-most outgoing edge. Figure 3.a shows an example.
Therefore, there are two values associated with each edge.
For example in Figure 3.a, edge(a,c) has two values: cost
c = c(a, c), and also a weight w = 0. Moving weights in this
manner has the following interesting property:

THEOREM 3.1. For every convex cut C in G, WG1 is
equal to Wc. (note that WG1 - Z1, w(v) and Wc -

eeCC w(e)).
Figure 3.a shows an example. Sum of the weights of cut

edges (dotted lines) is Wc = (0) + (We) + (wc) + (wa + wb),

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on July 15, 2009 at 16:13 from IEEE Xplore. Restrictions apply.

(B) g

Figure 3: A) moving weights from vertices to edges.
B) constructing the dual graph. A convex cut C and
its corresponding simple path P are illustrated.
which is equal to sum of the weights of all vertices in the
upper partition WG1 = Wa + Wb + WC + We. In general, the
above theorem states that we can obtain both the compu-
tation workload of the upper-partition of the cut C and the
inter-partition communication traffic, by only traversing cut
C. This means that the cost function QC can be calculated
as QC = max(Wc, CC, WG- WC) which depends only on
edges in cut C and no other parts of the graph.

Subsequently, we construct the dual graph G* = (V*, E*)
from the original task graph G = (V, E). We transfer w(e)
and c(e) values to the corresponding edge (e*) in G*:

V e c E 3 e C E*
c(e) = c(e) and w(e) = w(e)

Observe that a convex cut C in G(s, t) is a simple path
P from v8 to vt in G* (Figure 3.b). It implies that s and t
belong to different partitions, and any path in G from s to
t is cut exactly once.

QC = QP = max(Wp, Cp, WG-Wp)
CP and Wp are simply CC and Wa but are calculated from
the path P which is dual of the cut C. Wa = WP -

E,,P w(e) and CC = Cp = 5E,p c(e).
Although QC can be readily calculated using cut C, there

could be exponentially many convex cuts in the graph. We
argue that not all such cuts have to be evaluated. Let G' =
(V', E') denote the expanded G* that is created according
to the following rules:

V - {V V C V1, 0 < W < WG}
E - {(viW , vjw+w(v ,j) (vi, vj) C E*}

That is, G' is constructed from G* by duplicating each ver-
tex WG times. Edges in G' have no weights, and their cost

is equal to the cost of corresponding edge in G*. For every
edge (vi, vj) in G* there are WG corresponding edges in G',
from vertex vij to vertex Vj-+-(-i Vj} for all 0 < w < WG,
where w(vi, vj) is weight of the edge (vi, vj) in G*. However,
if we fix the starting vertex, let's say vj,,= , then there is ob-
viously one corresponding edge in G' which is Vj.+.(± ,Vg).

Therefore, for every path P in G* from v, to vt, there is
one and only one corresponding path P' in G' if we start
P' from a fixed v,=,. If we fix x = 0 and always start
from vo0, then P' will end in vte where w is equal to Wp,
because by definition Wp is sum of the above mentioned
w(vi, vj) for all edges in the path. Therefore, index of the
vertex where P' ends in G' is equal to Wp, or equivalently
gives the summation of task workloads in the top partition
(Figure 4).

If two paths from v80 arrive at the same vte, they both
incur the same workload of m in the top partition. There-
fore, only the path with minimum cost needs to be con-
sidered. Hence, we run the single-source shortest path on
graph G', with one source vS0 and multiple destinations
Vt, (VO < w < WG). This will give us the minimum cost
path among all paths with the same weight in G*. In other
words, this will give us one minimum-cost path P for every
weight amount Wp from 0 to WG. For every weight amount
ranging from 0 to WG, since Qp = max(Wp, Cp, WG-WP)
and Cp is minimum, we have the minimum Q for that weight
amount. Finally, we search among all WG number of min-
imum values of Q and pick the one which is globally mini-
mum (Figure 4.e). The expanded graph G' of the previous
example in Figure 3 is too large to be drawn here. Figure 4
shows steps of the algorithm on a smaller example.
W\

1 4

(A)

\w

1,0 4,3

3,1 *. / 2,4

(B)
A

Or...- 00 WP=WC=WGl

° 3't 2 WI
0 C 0 2\'>| 3 4 3
0 0 ' - 4
0 0 4S5 G

0 0 06 3
O 2°%, 4 _

0 0 076
O O(7=WG

c w

1,0 4,3
2~~~~~~~

3,1* V 2,
3,1 Vm 2,4

3 (C)

C shortest path WG2 Q
for this WG1? = WG,WGl

1+4=5 7-3=4 5

1+2=3 7-4=3 (

3+4=7 7-4=3

3+2=5 V 7-5=2 5

(E)

Figure 4: Example: A) planar DAG G with vertex
weights and edge costs. B) G after moving weight
values to edges. C) dual graph G* with edge costs
and edge weights. D) expanded graph G' with edge
costs. E) optimum cut.
Complexity: Creation of graph G' is the most intensive

phase of the algorithm. For a task graph with N vertices,
the expanded graph G' has O(N.WG) vertices. Finding the
single-source shortest-path problem on G' has the same com-
plexity, because the number of edges in G' is O(N.WG). The
complexity of our exact algorithm is pseudo-linear, due to
its dependency on workload values. In other words, its run-

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on July 15, 2009 at 16:13 from IEEE Xplore. Restrictions apply.

time would change for the same task graph, if the static
schedule, tasks internal computation or target architecture
is modified. The amount of required memory is also propor-
tional to the number of vertices in the expanded graph G',
and thus, its memory requirement is also O(NWG).

4. APPROXIMATE TASK ASSIGNMENT
In this section, we present an approximation method for

task assignment with strictly-polynomial complexity. The
approximation algorithm takes as input a tolerable error
bound, c, and guarantees that solution quality is not de-
graded beyond the bound. In other words, throughput of
the near-optimal solution is not more than a factor of 1 + e
worse than the optimal throughput.
We reduce the complexity by simplifying graph G' in the

exact algorithm. The number of vertices in the expanded
graph G' is reduced from O(N.WG) to O(N log WG) by ju-
diciously trimming all the WG possible values of w to only
log WG distinct numbers. For this purpose we need an ap-
proximation function y = f(w) to return a representative
value y for a range of w values.

DEFINITION 4.1. The approximation function y = f(w)
is defined as f (0) = 0, f(w) = (1 + 6) Ll[og1+, 6 > o

We apply this function whenever a new edge is to be added
to graph G'. Thus, for a path P from v, to vt in G*, the
approximation function is applied K times, where K is the
number of edges in path P. Figure 5 shows an example in
which, path P is marked with dashed lines. All paths start
from v,0. In path P, weight of the edge from v, to Vm is
equal to 1, and based on Figure 5.b, f (O + 1) = 1, therefore
the first edge of this path is from v80 to vmi. Now, the next
edge starts from Vml. 1 + 4 = 5 and f(5) = 4, therefore,
the second edge is from vm1 to V74 (Figure 5.c). As a result
Wp of this path is equal to 4 which is an approximation
of its original value Wp = 5 (Figure 5.d). We denote the
approximated Wp with lp.

Therefore, the number of vertices in graph G' is O(N logWG)
because the above approximation function will result in one
of the following possible distinct numbers for y: 0, 1, 1 + 6,
(1+a(1+ 6) +)L+ 2

0 3 +0 0

step 3VS Vt P +1 3E 1

(A) 1Vm 4-

w y=f(w)
0

i +3 2

0 0 0 0 4=LJp
1 i -----s m +4V,r

2-3 2
(B) 4~7 | 4 1 approximated graph G'

(B) 4-74 ~~~~~~~~~~(C)
Figure 5: Example: A) dual graph G* from Figure 4,
B) an illustrative approximation function with 1+6 -
2. C) the resulted graph G'.

LEMMA 4.1. For approximation function y = f(w) de-
scribed in Definition 4.1, 6 < y < w

PROOF: (1 + 6)Liog s6J < (1 + 6)'Og1'w < (1 + 6) Liog- 6I+1-1
hence based on definition of approximation function we have
y<w<(1+6)y, and thus 4+ <y <w. U

THEOREM 4.1. For every path P from v8 to vt in the ex-
panded graph G', the approximated weight lp is within the
following range from its original value Wp, where K is the
number of edges in path P. wP < ip < Wp

Intuitively, since we use the approximation function K num-
ber of times for a path P, we add the above error (1 + 6)
not once but K times.

COROLLARY 4.1. If we set 6 - F where 0 < c < 1 and
F is the number of faces in task graph G:

Wp <'P < Wp

This means that for every path P from v8 to vt in the ex-
panded graph G', the approximated weight 'p is within the
above range from its original exact value Wp.

THEOREM 4.2. Let Qp = max ('p, Cp,WG- 'P) de-
note approximated value of our original cost function Qp -
max(Wp, Cp, WG- Wp). We have

Qp <Qp <Qp(1 +6)

For brevity we omit details of the proof. In short, we first
ignore the Cp part of function Qp and consider two cases,
Qp = Wp iff Wp > WG - Wp, and Qp = WG - WP iff
Wp < WG- Wp. In both cases we apply Corollary 4.1 and
eventually prove that Qp < Qp < Qp(1 + c) is true in both
cases. Then we add Cc into the equations and will see that
it does not change the result.
The above theorem states that the error in calculating the

cost function is bounded within a factor of 1 + c. Therefore,
the near-optimum solution found in the approximated graph
G' is not more than a factor away from the optimum solution
which we can find in the original graph G'.

5. EVALUATION AND DISCUSSION
Setup and Methodology: Our evaluation is based on

measurements of application throughput on actual hard-
ware. We use Digilent XUP Virtex-II PRO FPGA board
to prototype single and dual core architectures. Xilinx Mi-
croBlaze soft processors are used as processor cores. Mi-
croBlaze is a MIPS-based 32-bit, in-order, single issue soft
processor whose architectural parameters can be configured.
In our experiments, processors have a FPU, an integer di-
vider/multiplier, and sufficient on-chip memory to contain
both data and instructions. Inter-processor FIFO communi-
cation channel is implemented using Xilinx 32-bit Fast Sim-
plex Links (FSL) with buffer size of 1024 words. Processors
and FSL both run at 100MHz.
We utilize MIT Streamlt [11] compiler to evaluate our

algorithms. Streamlt is a language and open-source com-
pilation framework for static-rate streaming applications.
Its compiler takes as input an application specified in syn-
chronous dataflow (SDF) semantics with Streamlt syntax,
and after static scheduling and partitioning of the graph,
generates parallel C codes for the target architecture. Par-
allel codes should be compiled for the target uni-processor
to generate executable binary.
One step of the aforementioned compilation flow is to

partition the application graph to assign tasks to proces-
sors. We implement our algorithm (TAP) within Streamlt
to replace its built-in task assignment algorithm, while uti-
lizing its static scheduling and code generation capabilities.

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on July 15, 2009 at 16:13 from IEEE Xplore. Restrictions apply.

The generated parallel C codes are compiled and loaded into
MicroBlaze processors. Subsequently, applications through-
puts are measured during execution.
Task Graph Composition and Planarization: Se-

mantics of Streamlt are closely related to that of synchronous
dataflow (SDF) graphs: Task-level parallelism is explicitly
specified in semantics, and tasks internal computations are

specified in a sequential C-like language. In addition, tasks
are composed using a few basic guidelines. Specifically, tasks
are referred to as filters, where a filter node has one input
edge and one output edge. A number of filter nodes can

be composed to form larger filters, according to one of the
following composition rules: 1) Pipeline, 2) SplitJoin and 3)
FeedbackLoop.

Pipeline implements a chain of filters in which, a node gets
its input from previous filter and passes its output to next
node. SplitJoin is used to specify independent data-parallel
or task-parallel streams that diverge from a common split-
ter and merge into a common joiner. SplitJoin is similar
to scatter-gather operator in parallel computing. Feedback-
Loop also has a splitter and a joiner, but the joiner appears

first in dataflow to join input with the output of the feedback
path. Application graphs that are hierarchically composed
using Pipelines, SplitJoins, and FeedbackLoop composition
rules will belong to class of series-parallel graphs, and hence
are planar by construction [4].
Although our algorithm requires application task graphs

to be planar, this is not a real impediment to its practical-
ity. Streamlt task graphs are planar by construction, which
implies that many existing streaming applications are, or

can be, modeled with planar task graphs. In addition, our

proposed method is applicable to other programming lan-
guage in which, specified applications can be non-planar.
We present a simple transformation to temporarily planarize
the graph, and revert it back after task assignment.

Imagine a particular embedding of a non-planar task graph
on the 2-D plane. There are at least two edges crossing. Let
us insert a dummy node, with zero workload, at the crossing
point to temporarily eliminate this crossing. This procedure
can be repeated for all crossings to get a temporarily pla-
narized graph, with some dummy nodes. The planarized
graph is partitioned using our algorithm, and subsequently,
dummy nodes are removed from the graph. Proof and ex-

amples are eliminated due to page limitation.
Workload and Communication Estimation: We pro-

filed MicroBlaze processor to estimate its CPI (cycle per in-
struction) distribution. Subsequently, tasks internal compu-

tations are analyzed at high-level, and a rough mapping be-
tween high-level language constructs and processor instruc-
tions is determined. The mapping is guided and verified by
comparison with generated assembly for the processor. For
SDF-compliant streaming applications, control-flow charac-
teristics are minimal. As a result, we employed first order
estimation techniques such as average if-then-else path la-
tencies, and expected number of loop iterations, whenever
needed. The analysis derived w', which represents clock
cycles needed for every firing of node v.

Computing inter-task communication cost is simpler due
to our application model. For applications modeled in SDF,
each node appears a specific number of times in the steady
state schedule. Assume node v is fired n(v) times in an ex-

ecution period. Note that n(v) is calculated statically for
SDF applications [7, 8]. The number of data samples pro-

duced and consumed per firing of each node is also specified
at compile time. Let p(uv) denote the number of data sam-
ples sent from u to v, every time u is fired. It follows that:

w(v) = n(v) x w'(v), and c0 -(V)xp(u)B

Where w(v) is estimated workload of node v, and cu, is
estimated communication latency from task u to v, in case
they are assigned to different processors. B denotes the
bandwidth of the inter-processor channel.
Testbenches: Figure 6 shows the benchmarks used in

our experiments. They represent commonly used streaming
applications that are typically utilized in portable, multime-
dia and signal processing embedded systems. The applica-
tions are selected from the Streamlt benchmark set, having
in mind the data and instruction memory constraints of our
FPGA board. The last three columns show the number of
vertices, edges and faces of the task graph (equal to vertices
in dual graph).

Task Graph
Appli- Description Structure
cation V L PI
BSORT Bitonic Sort 756 1012 259
MATMUL -Blocked Matrix Multiply 23 23 3
FFT - Fast Fourier Transform 152 207 58
TDE Freq. Domain Convolution 46 52 9

FILTER Discrete Filter 53 5

Figure 6: Benchmark applications.
Results and Discussion: Our first experiment results,

depicted in Figure 7, compares applications throughput us-
ing Streamlt and our exact task assignment (TAP) algo-
rithms. Throughput is measured as the number of outputs
(data samples) per second produced by single- and dual-
core hardware. Columns 3 and 4 represent the normalized
throughput values with respect to a uni-processors. All pro-
duced data samples are 4 bytes in our applications. In all
cases, TAP matches or outperforms Streamlt. The improve-
ments are as high as 12.6%, and 6.4% on average.

Appli- Strea. vs. TAP vs. TAP vs.
cation StreamIt TAP uni-proc uni-proc Strea.

(norm.) (norm.) (%)

BSORT 296.3 319.2 1.58 1.70 7.7
MATMUL 186.3 208.0 1.38 1.55 11.6
FFT 417.7 470.4 1.58 1.77 12.6
TDE 933.8 933.8 1.61 1.61 0.0

FILTER 34.6 34.6 1.88 1.88 0.0

Average T TJ 1.61 J 1.70 [6.4
Figure 7: Comparing measured throughput of
Streamlt and TAP task assignment.

Memory Throughput
Runtime Consumption (outputs

Application (second) (MB) per sec.)
BSORT 31.8 2543 319,200
MATMUL 57.5 321 208,000
FFT 46.7 2553 470,400
TDE 76.6 844 933,800

FILTER 121.5 1366 34,640
Figure 8: Runtime and memory requirement for op-
timal task assignment.

Recall that TAP runs in pseudo-polynomial time in prob-
lem size. Its runtime and memory requirement depend on
the value of estimated workload. TAP's runtime and mem-
ory demand is quite reasonable for small benchmarks. To

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on July 15, 2009 at 16:13 from IEEE Xplore. Restrictions apply.

experiment the effectiveness of our approximate task assign-
ment algorithm, we intentionally inflate workload estimation
by two orders of magnitude. This pronounces the inability
of exact algorithm to scale arbitrarily. Note that inflating
workload estimation preserves their relative intensity, and
ideally, should not affect task assignment quality.

Figure 8 shows the time and memory required to run the
exact task assignment algorithm, along with the optimal
throughput. Interestingly, the runtime for BSORT, which has
the most number of tasks, is the smallest. Also, it takes
over two minutes for FILTER, a small application with only
53 tasks. This is because TAP runtime is a strong function
of total workload, which does not necessarily correlate with
number of tasks. Total workload also depends on intra-task
computation and static schedule. Moreover, TAP allocates
up to 2.5 GB of memory, which impedes its utilization in
many systems.

Epsilon Runtime(%)o Memory(o) Throughput(%)
BSORT

0.1 18.2 1.8 99.2
0.5 14.5 0.9 98.7
0.9 13.8 0.7 98.7

MATMUL
0.1 41.4 20.0 100
0.5 40.9 20.0 100
0.9 40.2 19.9 95.3

FFT
0.1 34.5 1.8 100
0.5 33.8 1.7 98.1
0.9 33.4 1.7 93.2

TDE
0.1 36.9 9.2 100
0.5 36.9 9.1 93.3
0.9 36.8 9.1 92.6

FILTER
0.1 41.4 9.1 95.2
0.5 41.1 9.1 91.9
0.9 37.9 9.1 93.9

Figure 9: Normalized runtime, memory and
throughput for selected approximation bounds.

Subsequently, we apply our approximate task assignment
algorithm to trade throughput for algorithm time and mem-
ory requirement. Figure 9 shows the same parameters as
Figure 8 for the near-optimal solution offered by the approx-
imate algorithm. Throughput, runtime and memory values
are normalized with respect to their values in Figure 8. For
example, in BSORT with c = 0.1, the approximate algorithm
finds a near-optimal assignment with 99.2% throughput of
the exact algorithm, while it consumes only 1.8% memory
and 18.2% time. Due to page limitation, we report the re-
sults for only three values of c.
The approximation bound (e) serves as a knob for design-

ers to adaptively favor throughput over time and memory
consumption. In our experiments, application graphs are
small and therefore, loosening the bound does not have a
large impact on solution quality or optimization cost. In
other words, the trimmed graphs at c = 0.1 and e = 0.9
look very similar. There are two important points to no-
tice here: Firstly, as expected, the results are within the
proved bound in all cases. Secondly, for a given applica-
tion, throughput at a larger e does not have to be worse
than throughput at a smaller c. Approximation bound only
guarantees a lower bound on quality loss, but it does not
provide provably monotone quality degradation.

Figure 10 visualizes the geometric mean of throughput-
memory and throughput-runtime tradeoff points, over all e
values and applications. Note that due to space limitation,
Figure 9 only reports data for three e values. On average,
finding the near-optimal solution requires 30.4% to 33.1%
time, 4.6% to 5.6% memory, and results in 94.7% to 98.9%
throughput, compared to the optimal solution.

-Memory - Runtimel

s

-O

sL

100.(

99.(

98.(

97.(

96.(

95.(

94.(

0

0

0.0 20.0 40.0 60.0 80.0 100.).0

Memory% and Runtime%

Figure 10: Geometric mean of throughput degrada-
tion vs. runtime improvement.

6. CONCLUSIONS
We presented a methodology for synthesizing streaming

applications on embedded dual-core architectures. We de-
veloped a task assignment algorithm and proved its opti-
mality in maximizing the throughput. Also, we devised an
approximation method to reduce the runtime and memory
consumption from pseudo-linear to linear. We proved that
the quality of the near-optimal solution remains within a
factor of 1 + e from the optimal solution, for arbitrary e val-
ues. We measured the application throughput on operating
hardware. Measurements validated our mathematical con-
tributions. On average, the approximate method runs about
3 times faster, requires only about 5% memory, and results
in throughput loss of about 1% to 5%.

7. REFERENCES
[1] K. Asanovic et al. The landscape of parallel computing

research: A view from berkeley. Technical Report
UCB/EECS-2006-183, EECS Department, University of
California, Berkeley, Dec 2006.

[2] S. S. Bhattacharyya et al. Synthesis of embedded software from
synchronous dataflow specifications. Journal of VLSI Signal
Processing Systems, 21(2):151-166, 1999.

[3] J. Cong et al. Synthesis of an application-specific soft
multiprocessor system. In FPGA, 2007.

[4] M. I. Gordon et al. A stream compiler for
communication-exposed architectures. In ASPLOS, 2002.

[5] M. I. Gordon et al. Exploiting coarse-grained task, data, and
pipeline parallelism in stream programs. In ASPLOS, 2006.

[6] H. P. Hofstee. Power efficient processor architecture and the
cell processor. In HPCA, 2005.

[7] E. A. Lee and D. G. Messerschmitt. Static scheduling of
synchronous data flow programs for digital signal processing.
IEEE Transactions on Computers, 36(1):24-35, 1987.

[8] E. A. Lee and D. G. Messerschmitt. Synchronous data flow. In
Proceedings of the IEEE, 1987.

[9] J. Parkhurst et al. From single core to multi-core: preparing for
a new exponential. In ICCAD, 2006.

[10] M. B. Taylor et al. Evaluation of the raw microprocessor: An
exposed-wire-delay architecture for ilp and streams. In ISCA,
2004.

[11] W. Thies et al. Streamit: A language for streaming
applications. In Proceedings of the International Conference
on Compiler Construction, 2002.

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on July 15, 2009 at 16:13 from IEEE Xplore. Restrictions apply.

