
Power-Aware Compilation for Embedded Processors

with Dynamic Voltage Scaling and Adaptive Body Biasing

Capabilities

Po-Kuan Huang

University of California, Davis

pohuang@ece.ucdavis.edu

Soheil Ghiasi

University of California, Davis

soheil@ece.ucdavis.edu

Abstract

Traditionally, active power has been the primary
source of power dissipation in CMOS designs. Al-
though, leakage power is becoming increasingly more im-
portant as technology feature sizes continue to shrink,
traditioinal power optimization techniques often ne-
glect its contribution to total system power. In this
paper, we present a power-aware compilation method-
ology that targets an embedded processor with both
dynamic voltage scaling (DVS) and adaptive body bias-
ing (ABB) capabilities. Our technique has the unique
advantage of optimizing design power by jointly optimiz-
ing dynamic and leakage power dissipation. Consider-
ing the delay and energy penalty of swithching between
processor modes, our compiler generates code with min-
imum power consumption under deadline constraints.
Compared to not performing any optimization, or us-
ing DVS alone, our technique improves the power
consumption of a number of embedded application ker-
nels by 26%, and 14%, respectively.

1. Introduction

Power consumption has become one of the most crit-
ical embedded system design considerations due to its
significant impact on system density, battery life, re-
liable operation, packaging and cooling costs. Tradi-
tionally, active (dynamic) power has been the primary
source of power consumption of CMOS designs. How-
ever, as we move down the technology nodes leakage
power is increases exponentially, and becomes compa-
rable to (or even dominates) the active power. Hence,
joint optimization of active and leakage power is essen-
tial for efficient power optimization methodologies.

Quadratic dependence of active power to supply
voltage, and exponential effect of transistor thresh-

old voltage on its leakage current has motivated the
idea of dynamically controling the two parameters to
minimize the overall power consumption under timing
constraints. These two techniques have been tried out
on several designs, and significant power improvements
have been reported [10, 13, 11]. However, the potentials
of such architectural enhancements would not be fully
exploited without an effective mode-switching strategy.

In this paper, we present a power-aware compila-
tion methodology that targets an embedded proces-
sor with joint dynamic supply voltage and adaptive
body bias (threshold voltage adjustment mechanism)
capabilities. Our compiler assigns different basic blocks
of the code to different supply voltage and body bias
modes such that the total power consumption is min-
imized and the application deadline is met. We show
that simultaneous consideration of active and leakage
power results in improved power savings, compared to
traditional dynamic voltage scaling techniques.

2. Power-Aware Compilation

The compiler optimization goal is to minimize the
application energy consumption by assigning different
basic blocks to different operation modes subject to
meeting the deadline of the application, while consid-
ering the penalty of switching modes between basic
blocks. A similar approach has been used by Xie et
al. [4] for DVS-enabled processor, however, their tech-
nique neglects the leakage contribution to total power
consumption. We formulate the problem to consider
both dynamic voltage scaling and adaptive body bias-
ing.

We analyze the structure of the application and pro-
file the typical execution traces of the application to ex-
tract the required statistical information such as the la-
tency of each basic block and the frequency of travers-
ing edges. We utilize the extracted information to per-
form mode assignment to execution traces of the ap-



plication, under deadline constraint. We proceed to
present this problem as an MILP formulation, which
can be solved by utilization of commercially available
solvers. Once mode assignment for control flow edges
of the application is decided, appropriate mode switch-
ing instructions are inserted to the code.

Once application basic blocks are assigned to oper-
ating modes, total energy consumption of the applica-
tion can be represented as energy consumption of all
basic blocks plus the energy penalties incurred by mode
switching instructions. The energy consumption of one
basic block is determined by its latency under its as-
signed operating mode times the processor power con-
sumption under that operating mode.

The latency of the application includes the latency
of all basic blocks and the switching delay of the pro-
cessor. The latency of one basic block is equal to the
product of the number of execution cycles and the la-
tency for one iteration under the operating mode.

The optimization object of MILP is to minimize the
energy consumption for all basic blocks, and the op-
erating mode switching energy. One of the constraint
should be the summation of the latency of all basic
blocks and the operating mode switching delay.

3. Experimental Results

We experimented our technique on compute-
intensive kernels of eight applications selected from
Mediabench [3] and Mibench [7] benchmarks. The se-
lected applications are from multimedia, networking
and automotive domains, which represent typical ap-
plications running on embedded processors. We ex-
tracted the control-data flow graph (CDFG) of the
testbenches using SUIF compiler infrastructure [9]
and Machine-Suif [8]. We used SimpleScalar simula-
tor [12] to obtain accurate and realistic cycle count
for each basic block, and frequency of traversing con-
trol edges over typical input data space. The simu-
lated data, along with the CDFG structure, processor
and its power model parameters were utilized to gener-
ate the MILP problem instance. We solved the MILP
problems using the commercial CPLEX solver [1] and
obtained a set of mode switching instructions for con-
trol flow edges of the applications. The MILP solution
were used to estimate the total power consump-
tion of the application running on the target proces-
sor. Total power consumption was calculated as sum
total of leakage and active power for execution of ap-
plication code, plus mode switch instructions, and
their corresponding power penalty. For each operat-
ing mode, the power consumption and clock frequency
of the processor were determined using the mod-

els and parameters adopted from [13, 11, 2, 5, 6]. The
energy and delay penalty incurred by mode switch-
ing were also taken into account.

Our optimization obtained average of 13.69% and
25.81% energy improvement over DVS optimized and
original code, while the improvement were as high as
18.26% and 27.73%, respectively.

References

[1] http://www.ilog.com/products/cplex.

[2] http://www.intel.com/design/intelxscale.

[3] C. Lee, M. Potkonjak, andW.H. Mangione-Smith. ”Me-
diaBench: A Tool for Evaluating and Synthesizing Mul-
timedia and Communications Systems”. In Interna-
tional Symposium on Microarchitecture, pages 34–41,
1997.

[4] F. Xie,M. Martonosi,S. Malik. ”Intraprogram Dynamic
Voltage Scaling:Bounding Opportunities with Analytic
Modeling”. ACM Transactions on Architecture and
Code Optimization, 1(3):1–45, September 2004.

[5] Intel Corporation. ”Enhanced Intel SpeedStep Technol-
ogy for the Intel Pentium M Processor”. March 2004.

[6] J.T. Kao, M. Miyazaki, A.P. Chandrakasan. ”A 175-mv
Multiply-Accumulate Unit Using an Adaptive Supply
Voltage and Body Bias Architecture”. Journal of Solid-
State Circuits, 37(11):1545–1554, November 2002.

[7] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, and
T. Mudge. ”Mibench: a free, commercially representa-
tive embedded benchmark suite”. In Proceeding of the
IEEE 4th Annual Workshop on Workload Characteriza-
tion, pages 3–14, December 2001.

[8] M.D. Smith, and G. Holloway. ”An introduction to ma-
chine SUIF and its portable libraries for analysis and op-
timization”. Technical report, Division of Engineering
and Applied Sciences, Harvard University, 2002.

[9] M.W. Hall, J.M. Anderson, S.P. Amarasinghe, B.R.
Murphy,L. Shih-Wei,E.Bugnion, andM.S.Lam. ”Max-
imizing Multiprocessor Performance with the SUIF
Compiler”. Computer, 29(12):84–89, 1996.

[10] R. Gonzales, B.M. Gordon, M.A. Horowitz. ”Supply
and Threshold Voltage Scaling for Low Power CMOS”.
Journal of Solid-State Circuits, 32(8):1210–1216, Au-
gust 1997.

[11] S.M. Martin, K. Flautner, T. Mudge, D. Blaauw. ”Com-
bined dynamic voltage scaling and adaptive body bi-
asing for lower power microprocessors under dynamic
workloads”. In Proceedings of the 2002 IEEE/ACM in-
ternational conference on Computer-aided design, pages
721–725, 2002.

[12] T. Austin, E. Larson, D. Ernst. ”SimpleScalar: an in-
frastructure for computer systemmodeling”. Computer,
35(2):59–67, February 2002.

[13] T.D. Burd, T.A. Pering, A.J. Stratakos, R.W. Broder-
sen. ”Adynamicvoltage scaledmicroprocessor system”.
IEEEJournal of Solid-StateCircuits, 35(11):1571–1580,
November 2000.


