
Optimal Integer Delay Budgeting on Directed Acyclic
Graphs

E. Bozorgzadehy S. Ghiasiy A. Takahashiz M. Sarrafzadehy

y Computer Science Department
University of California, Los Angeles (UCLA)

Los Angeles, CA 90095, USA
e-mail: elib, soheil, majid@cs.ucla.edu

z Department of Communications and Integrated Systems
Tokyo Institute of Technology

Tokyo 152-8552, Japan
email:atsushi@lab.ss.titech.ac.jp

ABSTRACT
Delay budget is an excess delay each component of a design can tolerate
under a given timing constraint. Delay budgeting has been widely exploited
to improve the design quality. We present an optimal integer delay budget-
ing algorithm. Due to numerical instability and discreteness of libraries of
components during library mapping in design optimization flow, integer so-
lution for delay budgeting is essential. We prove that integer budgeting prob-
lem - a 20-year old open problem in design optimization [7]- can be solved
optimally in polynomial time. We applied optimal delay budgeting in map-
ping applications on FPGA platform using pre-optimized cores of FPGA li-
braries. For each application we go through synthesis and place and route
stages in order to obtain accurate results. Our optimal algorithm outper-
forms ZSA algorithm [3] in terms of area by ��� on average for all appli-
cations. In some applications, optimal delay budgeting can speedup runtime
of place and route up to � times.

Categories and Subject Descriptors
B.5 [Hardware]: register-transfer-level implementation;
B.6 [Hardware]: logic design; B.m [Hardware]: miscellaneous
(design management); G.1 [Numerical Analysis]: optimization

General Terms
Algorithms, Design.

1. INTRODUCTION
Due to design complexity, optimization techniques need to be ap-

plied in multiple stages starting from high level of abstraction down
to gate level and physical design. In order to abstract the complex-
ity, each design is decomposed into a set of sub-designs. The es-
sential constraint during the design optimization flow is the timing
constraint. The sub-designs along the critical paths are the most con-
strained components during the optimization process in CAD flow.
However, timing constraint is loose on the other sub-designs. Hence
the allowable delay allocated on each sub-design can be greater than
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actual/intrinsic delay of the sub-design. This excess delay is referred
to as delay budget (or timing budget). Delay budgeting has been ex-
ploited through the whole CAD flow to improve the design quality.
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Figure 1: Delay Budgeting Problem in a DAG.

Each design is represented by a directed acyclic graph (DAG G �
�V� E�). There is a delay associated with each node. Under a given
timing constraint, delay budget at each node is the extra delay the
component can tolerate such that no timing constraint is violated.
Similar definition can be applied to budget of an edge. Budget of
each node/edge is related to timing slack of the node/edge. If there
is any node or an edge with negative slack, timing constraint is vi-
olated. However, due to dependency between the nodes, the total
timing slack of the node/edges is not the total budgets nodes/edges
can tolerate. In Figure 1, two different delay budgetings (A and B)
are applied on a DAG. Budget column of the table corresponds to ex-
cess delay that can be allocated to each node under timing constraint
(��ns). After applying any of budgeting A or B on the graph, no
other node can tolerate any excess delay. Total delay budget after
budgeting A is �� while the total delay budget after budgeting B is
only ��.

Delay budgeting has many applications in design optimization as
follows:

� Timing-driven placement and floorplanning [6, 4, 5]- In timing-
driven placement, the goal is to optimize the path delays with
lesser number of iterations. Per-net delay bounds in delay bud-
geting is applied. In [4], placement and re-budgeting are com-
bined.

� Gate/wire sizing and power optimization [10]- Under timing
constraint, gate sizing problem is to find a set of nodes/edges
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in the graph such that their physical size can be reduced by
mapping to smaller cell instances with larger delay from a tar-
get library. In general, delay budgeting can be applied during
library mapping stage.

� VLSI layout compaction [7, 8, 9]- The main objective is to
minimize the physical area of the layout. Concept of budget
is exploited to reduce wirelength . With multiple symmetry
constraints, layout compaction is solved using LP solver. LP
formulation of compaction is similar to formulation of delay
budgeting problem.

The most popular and efficient algorithm for delay budgeting is
zero-slack algorithm [3]. The solution is not optimal and can be far
away from optimal result. MISA algorithm proposed in [2] finds the
total budget in the graph using maximum independent set. MISA
algorithm finds a potential slack which correlates strongly with the
total budget in the graph. However, both ZSA and MISA algorithms
cannot solve the budgeting problem optimally.

In this paper, we focus on theoretical study of integer delay bud-
geting problem on the nodes in a directed acyclic graph. Objective
function in our delay budgeting problem is to maximize the total
delay budget of the nodes under a given timing constraint. The gen-
eral problem can be formulated as a linear programming problem.
However, the solution can have fractional value. According to the
following reasons optimal integer solution is preferred: First, the
budget at each node is mostly used to map the sub-design to another
component in a target library which inherently is discrete rather than
continuous. For example, delay on interconnect is discrete in a grid-
based routing methodology. In a datapath, delay of each component
can be given in terms of number of clock cycles under a given fre-
quency. Delay of gates can be scaled to integer values. In VLSI
compaction, grid constraints require integer solution [8]. Secondly,
due to numerical instability in representation of real numbers, linear
programming solvers suffer from instability and difficulty in conver-
gence. Therefore we assume the variables associated with budgets
are all integer. ZSA and MISA algorithms can be modified to gen-
erate integer budgets, but with no guarantee on the optimality of the
solutions.

The complexity of integer delay budgeting problem on DAGs has
been an open problem for over a decade [7]. Applying rounding
techniques to LP optimal solution of budgeting problem cannot pre-
serve the optimality of the integer solution. In this paper, we propose
our novel efficient graph-based transformation technique to produce
optimal integer solution from optimal LP solution. We prove that
integer budgeting problem can be solved optimally by transforma-
tion from LP relaxation solution to an integer solution in polynomial
time.

We apply delay budgeting technique in mapping a given datapath
on a FPGA platform. For faster compilation and exploiting the ar-
chitectural features of FPGAs, FPGA vendors provide a relatively
rich IP library. Using IP library of FPGAs, we show that the de-
lay budgeting plays a trade-off between latency of a datapath and
area of resources used by the application. We compare our proposed
optimal delay budgeting algorithm with ZSA. The decrease in com-
plexity of datapath improves the runtime of place and route stage,
which is the most time-consuming stage in mapping an application
on FPGA platforms. Our experimental results show the effectiveness
of budgeting on IP-based application mapping.

The rest of the paper is organized as follows: In Section 2, the
problem is formally defined. In Section 3, the budget re-assignment
is proposed. Applying budget re-assignment on LP solution of bud-
geting problem is described in Section 4 and it is proven that the
final solution is integer and optimal. In Section 5, the experimental
results on trade-off between latency and area by budgeting technique
in FPGA platform are presented. In Section 6, conclusions and some
possible future directions are outlined.

2. LP FORMULATION OF DELAY BUDGET-
ING PROBLEM IN A DAG

In a given directed acyclic graph G � �V�E�, associated with
each node vi, there is a delay variable di � � and budget variable bi.

edge eij is incident to node vj and incident from node vi. Edge eij is
called an outgoing edge with respect to node vi and an incoming
edge with respect to node vj . VI�i� is the set of incoming edges to
node vi. VO�i� is the set of outgoing edges from node vi. Primary
inputs (PIs) are the nodes with no incoming edges. Primary outputs
(POs) are the node with no outgoing edges.

arrival time of vi: If input to primary input of graph is ready at
time �, the output of node vi is ready at ai which can be calcu-
lated as ai � maxvj�VI �i� aj��di�bi�, ai � � for vi � PI .

Arrival time at a primary output is maximum summation of budget
and delay associated with each node along the path from primary in-
put up to primary output. Arrival time at each primary output cannot
exceed a fixed value, T . This is referred as required time at primary
outputs. Although requited time at primary outputs and arrival time
at primary inputs can be different, for simplicity, we assume that ar-
rival time at each primary input is zero and required time at primary
outputs is T .

Delay budgeting formulation: On a directed acyclic graph G �
�V�E� with delay di associated with each node vi and re-
quired time T :

Max
P

vi�V
bi (1)

aj � ai � bj � dj �eij � E (2)
ai � T �vi � PO (3)
ai � � �vi � PI (4)

di� bi� T � Z� �vi � V � (5)

General LP formulation of budgeting problem is

maxf
PjV j

i�� xijAx � bg.

In area of linear programming theory, there has been a deep study
on the linear programs that automatically have optimal integer so-
lutions. In particular, it is the case for network flow problems. If
matrix A is totally unimodular, the linear programming relaxation
can solves the ILP, proposed by Heller and Tompkins [1]. We ob-
serve that the linear programming relaxation of integral delay bud-
geting for a given directed path holds the sufficient condition to give
optimal integer solution, that is constraint matrix A is totally uni-
modular.

THEOREM 1. The linear programming relaxation of integer bud-
geting problem gives optimal integer solution if the input graph is a
directed path.

The aforementioned sufficient condition does not necessarily hold
for general directed acyclic graph rather than a directed path. In the
following sections, we prove that the integral budgeting problem can
be solved optimally in polynomial time, using the solution of the
linear programming relaxation problem.

3. BUDGETING ASSIGNMENT IN A DAG
In this section, we first define the maximal budgeting on a given

directed graph G � �V�E� with required time T at primary out-
puts.Arrival time of any node cannot exceed T . Otherwise the de-
pendency constraints in Equation 5 are not satisfied. Due to space
constraints, lemmas and theorems are stated with no proof. Some
basic definitions used in this section are as follow:

Definitions: required time at vi, ri, is computed as
minvj�VO�i��rj � �dj � bj��. ri � T for vi � PO. T is
required time at primary outputs in graphG. slack at node vi is
si � ri�ai. a-slack of edge eij , �aij , is: �aj��dj�bj���ai,
eij � E. Similarly, r-slack of eij , �rij is: �rj��dj�bj���ri,
eij � E. Edge eij is said to be critical if the a-slack value
and r-slack value associated with edge eij are zero. A path
in a graph which includes only critical edges is called critical
path.
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The following lemma can be easily derived from the abovemen-
tioned definitions:

LEMMA 1. In a directed graph G, if eij � E and si � sj , then
�aij � �rij � �ij .

Maximal Budgeting Graph (G�Bm): Bm is a feasible solution to
budgeting problem on a directed acyclic graph G. Feasible
solution Bm with associated objective value, jBmj, is called
maximal budgeting if no more budget can be given to any node
while the budget of any other node does not decrease.

The maximum solution B
�

is also a maximal solution. Maximal
budgeting solution Bm can be obtained by applying different algo-
rithms such as MISA algorithm [2] and ZSA algorithm [3].

LEMMA 2. In �G�Bm�, if the slack of each node is zero, Bm is
a maximal budgeting.

Non-critical edges are referred to as �-edges. According to Lemma
1 the a-slack and r-slack of a �-edge in �G�Bm� are equal, that is
�ij � �aij � �rij , �eij � �G�Bm�.

LEMMA 3. In a maximal budgeting �G�Bm�, each node (except
PIs and POs) has at least one critical incoming edge and at least
one critical outgoing edge.

Associated with solution Bm, critical graph GT � G � �V�E�
is the graph obtained from the graph G by deleting all non-critical
edges in G. GT = �V�ET �, ET � E � feij j�ij �� �g.

In any budgeting on graph G, slack of each node and edge must
be non-negative or in other words ai � T . This is referred to as
feasibility in graph. A graph with budgeting B is not feasible if
slack of a node or an edge is negative.

We propose a budget re-assignment method on a given maximal
budgeting.

Feasible Budget Re-assignment on (G�Bm): In graphGwith max-
imal budgeting solution Bm, the budgets of the nodes are
changed such that the new budgeting B�

m is still a maximal
budgeting �G�B�

m�. Budget re-assignment on graph G trans-
forms the budgeting from solution Bm to B�

m. Feasible �-
budget re-assignment on graph (G�Bm) is a feasible budget
re-assignment in which the change of budget in each node is
either �� or �.

Theorem 2 presents two sufficient conditions for feasible �-budget
re-assignment.

THEOREM 2. The re-assignment of budget of f����g at each
node in graph �G�Bm� is a feasible �-budget re-assignment if

� the total amount of change in the budget of the nodes along
each critical path from PI to PO is zero (Figure 2), and

� for each �-edge eil, �il � �ki � kj� 	 �, where edge ejl is
critical. ki� and kj� are the amount of change in total budget
along any critical path from PI to node vi and vj , respectively
(Figure 2(b)).

(a)

i j

ε− edge

(b)

li

j l

Figure 2: Two Sufficient Conditions for �-budget Re-
assignment.

We show that the budget exchange between two sub-graphs under
child-parent relation satisfies the conditions, hence it is a feasible
�-budget re-assignment in graph �G�Bm�.

Parent/Child Relation: In a directed graph G, edge eij � E and
eij is critical . Node vj is child of node vi. c�vi� is used to
refer to as a child of node vi. Node vi is said to be the parent of
node vj . p�vj� is used to refer to as a parent of node vj . If vi
and vj have common child, vi 
p vj . If v� 
p v���� 
p vn,
then v� 
�

p vn. 
�
p is an equivalent relation, called parent

relation. If vi and vj have common parent, vi 
c vj . If
v� 
c v���� 
c vn, then v� 
�

c vn. Similar to parent relation,

�
c , called child relation, is an equivalent relation.

LEMMA 4. vi 
�
c vj , iff p�vi� 
�

p p�vj�.

LEMMA 5. In �G�Bm�, if vi 
�
p vj , arrival time at nodes vi

and vj are equal; ai � aj .

According to Lemma 3, each node is incident to/from a critical
edge. Consider node vi in graph G � �V�E�. Let Sp�vi� �
fvj jvi 


�
p vjg be a parent set. Let vl be a child node of vi. Sc�vl� �

fvj jvj 

�
c vlg. According to Lemma 4, sets Sp�vj� and Sc�vl� are

a pair of sets such that all the child nodes of the nodes in Sp are in
Sc. Similarly, all the parent nodes of the nodes in set Sc are in Sp.
The sets Sp�vi� and Sc�vl� are called parent-child set (Sp� Sc) asso-
ciated with node vi. Parent-child set �Sp� Sc� is shown in Figure 3.
The followings are the propositions regarding the parent-child set in
�G�Bm�.

LEMMA 6. If nodes vi 
�
p vj , there is no directed critical path

between vi and vj if �vi � V� di � �. Similarly, if nodes vi 
�
c vj ,

there is no directed critical path between vi and vj if �vi � V� di �
�.

LEMMA 7. In a parent-child set �Sp� Sc�, Sp and Sc do not in-
tersect if �vi � V� di � �.

2

4

ε-edge

critical edge

p

S Scp

1

c(S  ,S  )

7

8

6

5

3

Figure 3: �-edges with respect to Parent-Child Set (Sp� Sc�.

Let �-budget exchange in parent-child set �Sp� Sc� be decreasing
the budget of the nodes in Sp by � and increasing budget of nodes
in Sc by �, � � �.

LEMMA 8. In a given �Sp� Sc� in �G�Bm�, if � � min��ij�,
where eij is an �-edge with vj � Sc and vi �� �Sp� Sp� (incom-
ing �-edges to Sc), the �-budget exchange is a feasible �-budget
re-assignment in �G�Bm�.

4. INTEGER SOLUTION OF LP BUDGET-
ING PROBLEM

�G�B�� is the optimal solution to linear programming relaxation
of integer budgeting problem. B� is also a maximal budgeting.
Hence, budget re-assignment is applicable to �G�B��. In addition,
since B� is the optimal solution, Bm � B� for any maximal budget-
ing Bm. We define � in �-budget re-assignment on graph �G�B��
such that the budget of all the nodes become integer. We show that
during this transformation from optimal solution to integer solution
�B���, the objective value of new solution is equal to jB�j.
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Integral sequence: A sequence of nodes ISn �� v�� v�� ���� vn �
along a critical path in �G�B�� is called Integral Sequence if
a�� an � Z� and a�� ���� an�� �� Z.

Since required time T and delay of each node is an integer:

LEMMA 9. The total budget of the nodes along any integral se-
quence in �G�Bm� is integer.

COROLLARY 1. The total budgeting on any critical path from PI
(Primary Input) to PO (Primary Output) is integral.

Based on Lemma 9, each node with fractional budget belongs to
an integral sequence. Hence, within an integral sequence, it is suffi-
cient to re-assign the fractional budget only on the nodes in an inte-
gral sequence. On the other hand, in graph G, there are several in-
tegral sequences connected to each other. Therefore in re-assigning
the budget between the nodes, the required conditions in Theorem
2 have to be satisfied in all those sequences. Hence, the goal is to
apply budget re-assignment of the fractional budgets on the nodes
in graph in �G�B�� to obtain integer solution. Since the budget re-
assignment needs to be applied between the nodes with fractional
budget , we reduce the graph �G�B�� to graph Gf , the fractional
adjacency graph defined as follows:

Fractional Adjacency Graph : Graph Gf is the fractional adja-
cency graph corresponding to given graph �G�B��. The nodes
in graph Gf are a subset of nodes in graph G that have non-
integer (fractional) budget. A critical edge between two nodes
in graph Gf represents the existence of a directed critical path
between two nodes in graph G such that there is no fractional
budget along the path and arrival time of each node along the
path is not integer. There is a �-edge between two nodes vi
and vj , if there is no critical path between the two nodes but
at least a path with �-edges along the path. Among all differ-
ent paths between the two nodes, the minimum of total � value
of the �-edges along each path is the � value of the �-edge in
graph Gf .

Two adjacent nodes vi and vj in graph Gf represents the two im-
mediate nodes on a directed critical path in graph G with fractional
budget, both belonging to same integral sequence.
�-budget re-assignment is applied on graph Gf such that the bud-

get of all the nodes become integer. Only fractional value of budgets
need to be re-assigned in order to obtain integer solution. Hence �
is a fractional value less than unit. As described in previous section,
feasible budget-reassignment can be applied on a parent-child set on
graph G. Similar argument can be applied to graph Gf as follows:

LEMMA 10. In graph Gf , if node vi 
�
p vj , the fractional val-

ues of arrival time at both nodes are equal, i.e., ai�	ai
 � aj�	aj 
.

LEMMA 11. If nodes vi 
�
p vj in graph Gf and there is a di-

rected critical path between nodes vi and vj in graph G, there has
to exist at least one node on the path between the nodes vi and vj in
graph G.

The set Sp�vi� � fjjvj 
p vig is the set of nodes in graph Gf

such that each node shares at least a common child with another
node in Sc�vi�. The set Sc�vi� � fjjvj 
c vig is the set of nodes
in which each node in the set shares a parent at least with one another
node in the set. In Figure 4, a parent-child set in Gf is shown.

According to Lemma 11, Lemma 12 is derived.

LEMMA 12. Sp�vi� and Sc�vj� do not intersect (eij � E�Gf�).

On a given parent-child set in graph Gf , we apply �-budget ex-
change. If fractional budget in graph Gf are re-assigned by budget
re-assignment on parent-child set, the fractional budget is removed
from each parent node and re-assigned to one of its successor in the
graph. Hence, the fractional budgets are re-assigned from PIs to POs,
in one direction within an integral sequences. There are �-edges in
a given graph Gf . In order to have a feasible budget re-assignment
on parent-child set, we show that the sufficient conditions outlined
in Theorem 2 are satisfied in a given graph Gf as well.

Parent Set Sp

Child Set Sc

(Sp, Sc)

Figure 4: Parent-Child Set (Sp,Sc) in graph Gf of graph G.

LEMMA 13. �-budget exchange on a parent-child set in graph
Gf is a feasible �-budget re-assignment if � � min��ij � ��, where
�ij is �-edge. �ij is an incoming edge to child set. �i is the fractional
value at parent nodes.

αj

i

j

Sp(α)

α= αi

Sc(α)

p

ε-edge

β-budget re-assignment

Figure 5: �-edge incident to a child node in �Sp� Sc��.

If � is less than the fractional value of budget in parent nodes,
after budget re-assignment, arrival time at parent node is reduced by
�. Hence, if � is equal to fractional value of the arrival time, arrival
time at all parent nodes become integer. On the other hand, � need to
be at most as large as the minimum available budget in parent nodes.

In Figure 5, an �-edge incident to a child node is shown. Let �i
and �i be the fractional value of arrival time at nodes vi and vj ,
respectively. In �-budget re-assignment, if � � �i , for � � �,
� � � is True. Assume � � �. The value of � is computed as
follows:

�jp �

�
�i � �j if �i � �j
� � �i � �j if �i � �j

(6)

When �i � �j , � � �i. Since � � �i, � � �. Hence the inequal-
ity of Theorem 2 is held. Hence � value in �-budget re-assignment
can be computed independent of �-edges incident to child set as fol-
lows:

LEMMA 14. Let �Sp� Sc� be a parent-child set with �p, the frac-
tional value at the arrival time at the parent nodes. Assume that �p
is the smallest fractional value of arrival time at all the nodes in
graph Gf . �-budget exchange of � � �p from parent nodes to child
nodes is a feasible budget re-assignment.

After budget re-assignment on parent-child set �Sp� Sc�, arrival
time at each parent node becomes integer with � � �p. If budget
of any node in parent set or child set becomes integer, the node is
removed from Gf . In this budget re-assignment, an integer budget
of any node in graph G never becomes fractional. Hence no node is
added to graph Gf after budget re-assignment. Since arrival time at
a parent node becomes integer, all the edges connecting the parent
nodes to the child nodes are removed from graph Gf . Similarly no
edge is added to graph Gf after budget re-assignment.

Assume that generating the parent-child sets and applying budget
re-assignment on the parent-child sets in graph Gf continues. An
important fact is that after budget re-assignment, the parent nodes do
not have any outgoing edges in graph Gf . Hence, the corresponding
nodes cannot become parent nodes anymore. Therefore we have the
Lemma as stated below:
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LEMMA 15. Each node in graphGf can only be once in a parent
set during sequential parent-child budget re-assignment.

Note that after each �-budget exchange, the outgoing edges of
parent nodes are removed. No more outgoing edges are added to
parent nodes in Gf since arrival time at parent nodes are integer. On
the other hand, integer budget of a node never becomes fractional
after any �-budget exchange. Since each node can only once appear
in a parent set, the number of parent-child which can be generated
followed by budget re-assignment on each set is O�jV j�, where V is
set of nodes in graph G.

THEOREM 3. Sequentially generating parent-child set followed
by �-budget re-assignment in the order of increasing fractional value
of arrival time at parent nodes of the parent-sets with � � �p,Gf �
� in O�jV j�.

If graph Gf � �, the budget of all the nodes in graph G are
integer. Hence, Theorem 3 shows that a maximal integer solution
can be obtained from LP solution using �-budget exchange on graph
Gf . The following lemma proves that during budget re-assignment
optimality is preserved.

LEMMA 16. In graph Gf corresponding to �G�B��, jSp�vi�j �
jSc�vj�j if eij � Gf .

THEOREM 4. In any feasible �-budget re-assignment on parent-
child set (Sp� Sc) in graph �G�B��, the total budget does not change.

Hence after applying the budget re-assignment on �G�B��, the
solution is still optimum .

Each parent-child set construction takes O�jEj� and budget re-
assignment takes O�jEj�. Updating graph Gf takes O�jEj�. This
repeats O�jV j� times. However, by amortized analysis we see that
the complexity of O�jEj� during the process applies to a set of edges
during the current iteration and then those edges are removed from
graph Gf before the next budget re-assignment. Hence the total
complexity is O�jEj� � O�jV �j�. The result is transformation from
solution B� to a new solution �G� �B���� in which integer budget
is assigned to each node while objective value does not change, i.e.,
jB�j.

THEOREM 5. The solution to linear programming relaxation prob-
lem of integer delay budgeting problem on graph G � �V�E� can be
transformed to optimal integer solution in polynomial time �O�jV j��.

5. APPLICATION
In this section, we apply delay budgeting in mapping datapath of

an application on FPGA platform. Delay budgeting is exploited in
library mapping. First we describe the experimental setup and then
we present some experimental results applied to some DSP bench-
marks.

5.1 Experimental Setup
In Figure 6, CAD flow of IP-based (or core-based) mapping an ap-

plication on a FPGA is illustrated. Xilinx Coregen tool generates and
delivers parameterizable cores optimized for target architecture. The
parameters include data width, registered output, number of pipeline
stages, etc. Core layout is specified up front. Cores are delivered
with optimally floorplanned layouts. Also, performance of cores are
independent of FPGA device size. Hence, more predictable results
can be obtained during front-end optimization. Since CoreGen cores
are pre-optimized, they are considered as black boxes during the syn-
thesis. Hence, synthesis is ignored in core-based design. In a rich
core library, there can exist several cores realizing same functionality
with different implementation and latency (in terms of clock cycle).
Figure 7 demonstrates a trade-off between latency and area of a core-
Gen 16-bit multiplier with target FPGA VirtexE, Xilinx. Slices are
the logic blocks in VirtexE FPGA series.

We start from a DAG representation of an application. Therefore
in this experiment, resource sharing is not applied. Each node corre-
sponds to a computation in data path. This assumption is reasonable

Application Description (VHDL)

Delay Budgeting

(Optimal)

IP Core mapping

Xilinx

Coregen

Lib

Xilinx Place and Route

Figure 6: Mapping an Application on FPGA Using IP Library.
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Figure 7: Area vs. Latency for a 16-bit CoreGen Multiplier.

for pipelined datatpath or loops of datapaths. Benchmark in our ex-
periments is a set of some standard DSP benchmarks. The type of
computations are multiplier, adder, subtracter and shifter. We as-
sume all the datapaths are 16-bit wide.

Each computation is assigned to a resource generated from Core-
Gen tool based on delay budget allocated to the node. We apply a
delay budgeting algorithm to allocate the delay budget at each node.
Then the whole circuit is placed and routed on a FPGA device. We
used ISE 4.1 place and route tool provided by XilinxTM . The tar-
get device is VirtexE 300 under clock frequency of �� MHz.

Among different computations in the applications, Coregen has
a relatively complete library (See Figure 7). Hence we applied de-
lay budgeting only among the nodes that correspond to computation
type multiply. We conducted two sets of experiments. Once we ap-
plied our optimal delay budgeting and once we applied a heuristic
budgeting (ZSA like) to distribute the latency in graph.

5.2 Experimental Results
The original latency and other characteristics of the benchmarks

are given in Table 1.

Benchmark Nodes Latency Slices LUTs
Diffeq 10 18 780 1030
ARF 28 20 1982 2476

FDCT 42 14 2044 1734
EWF 34 25 1138 1472
DCT 33 14 1618 1338

Table 1: Benchmark Information and Core-based Implementa-
tion Results.

Table 2 summarizes the implementation results of applying delay
budgets to the applications. Latency of each application is the origi-
nal latency reported in Table 1 plus the excess latency (�T ) applied
to the circuit. The excess latency in distributed in graph using delay
budgeting algorithm. We use both exact (our optimal method) and
heuristic (ZSA like) methods. Area (number of used slices of FPGA
device) and place-and-route runtime and total budget are reported.
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Benchmark Runtime �T=0 �T=1 clk cycle �T=2 clk cycle �T=4 clk cycle �T=6 clk cycle
Area Heuristic Optimal Imp Heuristic Optimal Imp Heuristic Optimal Imp Heuristic Optimal Imp

Diffeq area(slices) 780 740 700 5.7% 708 652 8% 708 652 8% 672 582 15.5%
PAR(sec) 15 10 10 1 11 9 1.2 14 9 1.56 11 7 1.6
Budget(clk cyc) - 2 3 50% 4 6 50% 8 12 50% 12 18 50%

ARF area(slices) 1982 1806 1803 0.2% 1670 1665 0.3% 1662 1553 6.6% 1518 1290 15%
PAR(sec) 45 42 29 1.5 43 26 1.65 42 25 1.68 39 20 1.95
Budget(clk cyc) - 32 38 19% 36 48 33% 44 68 54% 52 88 69%

Fdct area(slices) 2044 1867 1734 7.1% 1728 1491 14% 1718 1474 14.2% 1574 1222 22.3%
PAR(sec) 48 39 39 1 38 36 1.05 36 36 1 43 21 2.04
Budget(clk cyc) - 14 20 43% 22 34 54% 38 62 63% 54 90 66.7%

Ewf area(slices) 1138 1094 1016 7.2% 1058 982 7.2% 1054 942 10.6% 1018 906 11%
PAR(sec) 24 21 18 1.67 19 17 1.11 20 17 1.17 19 15 1.27
Budget(clk cyc) - 2 6 200% 4 10 150% 8 18 125% 12 26 116%

Dct area(slices) 1338 1091 1032 5.4% 1038 996 4% 1031 990 4% 977 918 6%
PAR(sec) 38 19 18 1 20 15 1.33 19 14 1.36 18 13 1.4
Budget(clk cyc) - 24 27 12.5% 30 34 13.3% 42 48 14% 54 62 8%

Average area(slices) 1456 1327.6 1257 5.4% 1240 1157.2 7% 1234.6 1122.2 10% 1151.8 983.6 14.6%
PAR(sec) 34 26.2 22.8 1.15 26.2 20.6 1.27 26.2 20.2 1.29 26 15.2 1.7
Budget(clk cyc) - 14.8 18.8 27% 19.2 26.4 37.5% 28 41.6 49% 36.8 56.8 54%

Table 2: Area (#slices-logic blocks), total Budget, and Runtime of Place-and-Route (sec) vs. delay budget (clk cyc).Imp column
compares Optimal over heuristic. It indicates the percentage of improvement for area and budget and the ratio of runtime for PAR
runtime.

The first column shows the place and route (PAR) runtime, area of
slices when no delay budget is applied. The next columns show
the area and PAR runtime for different excess delay to required time
(�T ) of �, �, , and � clk cycles. The Imp column shows the percent-
age of improvement in area in different delay budgeting computed as
�Area�Heu��Area�opt��

Area�Heu�
� ���. Similarly Imp is computed for total

budget. The Imp column computes the improvement in runtime as
ratio of PAR runtime�Heu�

PAR runtime�opt�
.

The results show the average improvement in area for ����, ��,
��� and ���� in terms of number of slices when optimal algorithm
is used for budgeting compared to area resulted by heuristic delay
budgeting for different �T . The larger �T , the more delay budget
is distributed. Although budget increases significantly by �T , the
improvement in area is not as significant as budget. One reason is
that there does not necessarily exist another component in the target
library for large delay budget. For example in Fdct, there are some
multipliers on non-critical path with large delay budget which is not
exploited in library mapping. Although the area of applications by
optimal delay budgeting is always smaller than the area resulted by
heuristic method by ��� on average, runtime of place and route in
some application does not speed up. One reason is that some of ap-
plications such as Fdct are I/O bounded. A main portion of place
and route is dedicated to I/O placement and routing. In other bench-
mark such as ARF the runtime of place and route gets almost two
times faster. On average for excess delay budgeting of � cycles, the
runtime of place and route gets faster by factor of ���. Note that we
only applied budgeting to multipliers. Also the size of benchmarks
are relatively small. Although speedup in PAR runtime were not sig-
nificant in these applications, due to lesser complexity and smaller
structure, the effect on runtime for place and route can be more vis-
ible when these applications are integrated into larger systems and
mapped on large FPGAs.

As a result, delay budgeting gives the opportunity of mapping the
applications to components in the target library with simpler struc-
ture and smaller area. Comparing the result of the first column when
no budget is applied with the results of the next columns demon-
strates this fact. However, the current libraries are not rich enough
and do not contain different components with different latencies for
same functionality. Developing complete libraries facilitates the de-
sign CAD tool to exploit the existing delay budget to improve design
quality.

6. CONCLUSIONS
General delay budgeting can be solved using linear programming

solver. Due to numerical instability and discrete behavior of libraries
of components, integer solution is required. Complexity of integer

budgeting has been an open problem for the last decade. In this pa-
per, using optimal solution to LP relaxation of budgeting problem,
we transform the solution to optimal integer solution. We re-assign
the fractional value of budget associated with the nodes in the graph
such that budget of each node becomes integer. We prove that dur-
ing this transformation (O�jV j��), objective value from optimal LP
solution does not change. Hence an optimal integer solution is ob-
tained in polynomial time. We applied our budgeting technique in
mapping applications on FPGA device. Using IP library of different
computations, delay budget is exploited to improve the area, hence
to speedup the runtime of place-and-route. Our optimal algorithm
outperforms ZSA algorithm [3] in terms of area and design time sig-
nificantly.
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