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Abstract—Programmable analysis of network traffic is critical
for wide range of higher level traffic engineering and anomaly
detection applications. Such applications demand stateful and
programmable network traffic measurements (NTM) at high
throughputs. We exploit the features and requirements of NTM,
and develop an application-specific FPGA based Partial Dy-
namic Reconfiguration (PDR) scheme that is tailored to NTM
problem. PDR has traditionally been done through swapping
of statically compiled FPGA configuration data. Besides being
latency intensive, static compilation cannot take into account
exact requirements as they appear during real-time in many
applications like NTM. In this paper, we make novel use of
fine-grained PDR, performing minute logic changes in real-time
and demonstrate its effectiveness in a prototype solution for
programmable and real-time NTM. We specifically make use
of flexibility available through the application and present a
number of novel tools and algorithms that enabled developing
the BURAQ system. Our results show 4x area and 1.3x latency
improvements of BURAQ from a comparative statically compiled
recent solution.

I. INTRODUCTION

Accurate traffic measurement and monitoring is keystone
in a wide range of network applications such as detection
of anomalies and security attacks, and traffic engineering. A
number of critical network management decisions such as
blocking traffic to a victim destination, re-routing traffic, or
detection of anomalies, require extraction of real-time statistics
from network traffic. A high-quality network measurement tool
is crucial in judiciously making such decisions [1], [2].

A network packet type can be identified using any number
of specific fields in an IP header, commonly referred to as
tuples. As an instance, packets originating from a particular
subnet can be classified as a type of packet. Figure-1 graphi-
cally shows an example of two types of packets in two tuple
space. We next define a rule as a combination on packet types.
For example, the two packet types of Figure-1 are combined
together in the rule R1 as shown in Table-I.

Packet classification problem has seen a number of FPGA
implementations [3], [4]. The problem fundamentally involves
matching the incoming packets with a prioritized rule-set and
taking an action per incoming packet corresponding to the
highest matched rule. Thus packet classification requires no
knowledge of past packets, or in other words it is memoryless
or stateless. On the other hand, our problem of Network Traffic
Measurement (NTM) involves maintaining state of network
over a period of time which is later analyzed to take an
action. One form of network state could be quantification

of different types of traffic observed. Such an information is
useful for network managers in a wide variety of applications
such as traffic engineering, accounting, routing and sometimes
observing network for any type of malicious activity like DOS
attacks.

Maintaining exhaustive state information as a count for
even a single tuple, e.g. 32-bit source IP addresses, requires
excessively large amount of storage. The overheads and la-
tencies associated with accessing high-density storage media
limits maintaining individual count information in real-time at
backbone line speeds. The issue has been traditionally resolved
using conservative packet sampling, which discards most of
traffic from consideration [5], [6].

Another solution to limit storage requirement is to maintain
state of interesting traffic only. This involves maintaining
count information for only the packets that the user defines
in rules [7]. A rule can be viewed as a set operation (union,
intersection, etc) on a set of prefixes. The prefixes can be
any of the tuples found in the packet-header. The term prefix
here is utilized in a general framework as a notation following
CIDR prefix type format. As an instance, Table I illustrates an
example of two rules R1 and R2 using four prefixes.

We hereby define rule-processing as a two step process
involving checking of incoming packet with the rule, referred
to as rule-checking or rule-matching, and finally incrementing
a rule-counter upon a successful match. The rule-counter
represents number of packets that matched the rule. In this
work, we target a real-time Rule-driven Network Traffic
Measurement (RNTM). A RNTM has superior accuracy than
sampling based mechanisms, however, it also introduces two
new challenges for its real-time implementation: (1) the rule-
processing is to be fast enough such that an incoming packet
can be compared with potentially complete rule-set in the
worst-case, and (2), the solution needs to be programmable
enough for frequent dynamic updates in the rule-set.

The rather contradicting requirements of performance and
programmability impose challenges for implementation of any
RNTM system. The increasing higher network data rates
and more complex rule sets dismiss software as a viable
implementation platform, requiring custom processing solu-
tions like FPGAs tailored for the application. FPGAs provide
an interesting blend of programmability and performance.
We exploited this flexibility of FPGA devices previously in
developing a prototype for a custom RNTM solution [8]. Our
highly parallel solution provided the processing and flexibility
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Fig. 1. Two prefixes in 2D space

Two Prefixes
P1 =< 144./4, ∗, ∗, ∗, ∗ >
P2 =< 192./4, ∗, ∗, ∗, ∗ >
P3 =< 201./6, ∗, ∗, ∗, ∗ >
P4 =< 212./6, ∗, ∗, ∗, ∗ >
Rule composition using Prefixes
R1 = (P1 ∪ P2)
R2 = (P3 ∪ P4)
Boolean Rule Mapping
P1 = s1.s′2.s

′
3.s4

P2 = s1.s2.s′3.s
′
4

P3 = s1.s2.s′3.s
′
4.s5.s

′
6

P4 = s1.s2.s′3.s4.s
′
5.s6

R1 = s1.s′3.(s
′
2.s4 + s2.s′4)

R2 = s1.s2..s′3.(s
′
4.s5.s

′
6 + s4.s′5.s6)

TABLE I
RULE COMPOSITION & BOOLEAN MAPPING

s1

s2

s3

s4

s5

s6

R1 = 192./4 or 144./4

Yes

R2 = 201./6 or 212./6

Add.  R1   R2

0 0 0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 1 1

7 1 1

Add.  R1   R2

0 0 0

1 0 0

2 0 0

3 0 0

4 1 0

5 0 0

6 1 1

7 0 0

Add.  R1   R2

0 1 0

1 1 0

2 1 1

3 1 0

4 1 0

5 1 1

6 1 0

7 1 0

Fig. 2. LUT mapping of the Rule

for real-time needs. However, its large logic footprint for its
basic rule-processing component limited its ability to handle
a large-enough number of user rules simultaneously.

Partial Dynamic Reconfiguration (PDR) of FPGAs has seen
a lot of interest in the research community [9], [10]. Several
interesting solutions exploit the feature to further increase
the reprogrammability and/or to save logic-area of an FPGA
device. However, central to most of the techniques, is either
a static compilation or just-in-time compilation of the recon-
figurable FPGA-region. The static compilation is infeasible
for real-time problems like RNTM where future rules cannot
be predicted statically. In this work, we make novel use of
fine-grained partial dynamic reconfiguration feature involving
very minute logic changes in developing an innovative RNTM-
specific dynamic reconfiguration scheme of FPGA fabric. We
utilize this underlying idea to develop a novel rule-processing
building block, referred to as Dynamically Reconfigurable
Socket (DRS). Furthermore, we present algorithms and tools
that are developed to enable efficient synthesis of a pro-
grammable, scalable architecture, BURAQ, containing many
DRSs. We stress that many of our presented techniques and
algorithms are quite generic and transcend the needs of the
current RNTM application.

We demonstrate 4x area improvement of the BURAQ em-
ploying multiple DRS over the previous static-logic based
solution, enabling answering of at least 100 64-bit prefixes
simultaneously. The 64-bits can easily map 32-bits source
and destination tuples or a combination of other tuples in
the packet header. In practice, the actual parallelism may
even be better depending on the rule-set, thanks to the many
aggregation possibilities in prefixes, as was done in Rule-R1.
We also demonstrate a modest 1.3x rule-deployment latency
improvement, requiring 2.25ms for a DRS reconfiguration.
However, the rule-deployment latency is a function of both
Xilinx PDR interface (ICAP) [11] and FPGA PDR latency.
In this paper, we also analyze the two and provide insights
into latency improvement opportunities using simple updates
to Xilinx ICAP software APIs.

II. CONVENTIONAL APPROACHES

The rule matching mechanism of non-software RNTM
systems can be broadly divided two categories: logic-based bit
manipulation or memory look-up. Logic-based implementa-
tions usually utilize dedicated static logic, for e.g. a network of
comparators, to match the incoming packets against the given
rules [4], [12]. Static-logic based implementations usually
employ device registers for storing the rules. Our previous
work [8] reports such a static-logic implementation in which,
the rules are stored in the form of end-points of associated
contiguous regions like the ones shown in Figure-1.

The use of registers for rule storage is beneficial as they
can easily be overwritten to update the rule-set. However,
the scheme demands rather large amount of logic resources
to implement bit manipulation functions over the wide word
defined by packet header bits. Note that the more complex
rules involving disjoint regions in the space defined by header
bits have to be decomposed to enable architectural mapping,
which increases the required logic resources.

Memory lookup-based solutions typically utilize Ternary
Content Addressable Memories (TCAMs). TCAMs have seen
applications in some related networking applications like
packet classification [13] and IP prefix-matching [14]. TCAMs
are typically suited for packet forwarding-type applications,
where the comparisons are priority-driven and are performed
with regular IP-prefixes. However, the user rule-set in RNTM
can be more complex than an IP-prefix in that the rules are
usually independent and have equal priority. Thus, mapping
of RNTM rule sets to TCAMs would demand disentangling
of the rule-implied regions to eliminate the impact of priority-
based matching, that may translate to exponential expansion
of TCAM entires in the worst case.

III. RNTM-SPECIFIC DYNAMIC RECONFIGURATION

Look-up tables (LUTs) are the primary logic block of
SRAM-based commodity FPGAs. To map a given combina-
tional logic function onto an FPGA, it has to be decomposed
into a network of input-constrained single-output auxiliary
functions. Such an auxiliary function can be directly mapped
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to a LUT [15]. In logic-based RNTM systems, e.g. [8], the
network of bit manipulation gates forms the logic function
that is mapped to LUTs at design time. The mapping is kept
intact at runtime.

We observe that RNTM rules also exhibit specific structure
as they are composed from individual prefixes. This can be
seen in Table-I where the rules are composed of a significant
portion of source address bits, si, followed by don’t care bits.
A rule can therefore be viewed as a special Boolean function
in that it characterizes only a subset of all possible functions
on the packet header bits. Rules typically check for patterns
(including wild cards) in adjacent bits, and complex global
patterns are unlikely. The rules depicted in Table-I are realistic
examples. On the other hand, the rule function s1.s6 + s′1.s′6
is quite unlikely to appear in practice. Having made this
observation, we propose to exploit FPGA architectural features
to better serve RNTM applications.

Specifically, we propose to directly fuse user rules into
LUTs, and thus, utilize the FPGA circuitry for rule-matching.
This is in contrast with static-logic based implementations that
utilize FPGA registers to store, and other resources like LUTs
for building rule-matching circuitry such as comparators.
Figure-2 illustrates the idea using an example of three 3-input
LUTs that collectively implement the rule R1 given in Table-
I. In this scheme, the LUTs are programmed with entries that
yield a Yes answer, if the incoming packet header bits match
with the programmed rule. This ’Yes’ answer is subsequently
logged by incrementing a rule-counter, completing the two
stages in rule-processing.

A clear advantage of the proposed scheme is its sizable area
savings over static-logic based implementations, which trans-
lates to processing more rules in parallel on a given FPGA.
The flip side, however, is that runtime rule updates become
more challenging than logic-based schemes, since it demands
Partial Dynamic Reconfiguration (PDR) of FPGA resources
[16]. PDR has traditionally been region-based, which refers
to reconfiguring FPGA logic and interconnection resources
within a defined region of the chip. A condition imposed
to perform these changes is to maintain a consistent inter-
face between reconfigurable (dynamic) and non-reconfigurable
(static) regions.

In RNTM, the rules usually are dynamically derived. As
an instance, a network user may find an abnormal activity
in a subnet and wishes to zoom-in further. This operation
will involve increasing the size of the original subnet CIDR
prefix, recompiling the design and reprogramming the rule-
processing unit, similar to what is done in [17] for IP-
forwarding. Although such a conventional PDR scheme re-
duces reconfiguration latency by restricting the region size to
be recompiled, the just in-time compilation of the dynamic
design is still quite slow. The associated CAD tools that
deal with synthesis and mapping of the design onto FPGA
resources, especially placement and routing, have very long
latencies. As such, it seems impractical to generate designs
on-the-fly in real-time.

To address the problem, we exploit the inherent charac-

teristics of RNTM rules, and develop an application-specific
reconfigurable unit that can quickly admit new rules at run-
time. The basic idea of our design is a generic-enough network
of LUTs that are carefully placed and interconnected, such
that mapping a new rule only requires updating the content of
the LUTs while keeping their placement and routing intact.
As an instance, if the rule-matching unit of Figure-2 that
is initially programmed with rule-R1 is to be reprogrammed
with rule-R2, it would only require updating the three LUTs
with contents given in the third column, while keeping the
placement and routing consistent.

The proposed RNTM-specific fine-grained dynamic recon-
figuration only performs minute logic changes at the LUT-
level. These changes are expected, and are demonstrated,
to be fast, since the latency of just in-time compilation is
substantially reduced by eliminating the need for placement
and routing, and the reconfigured region is quite small. The
characteristics of RNTM problem renders the architecture
effective in handling real-life rules.

IV. DYNAMICALLY RECONFIGURABLE RULE SOCKET

We now discuss our rule-processing block, the Dynamically
Reconfigurable Rule Socket (DRS or just Socket). A high
level design of DRS is shown in Figure-3 targeting 64-bits
of rule-matching. The DRS is composed of two high-level
components corresponding to rule-processing requirements: a
generic rule-matching module combined with state update and
control logic. Both components have static layouts throughout
the lifetime of the system.

The rule-checking module utilizes a reduction-tree to check
for patterns in adjacent header bits. While the tree is effec-
tive for practical rules, it cannot admit a hypothetical rule
that refers to a complicated global pattern. The design is
intentionally constrained to improve the logic footprint of the
module for practical application scenarios by trading off rule-
generality. The illustrated rule-checking module is an example
that involves 23 4-input LUTs, and admits a rule on 64-bit
source and destination addresses. To support more tuples in
the rule one would have to add more LUTs, corresponding to
the size of the new tuples, to expand the reduction tree.

New rules are dynamically updated or plugged into a socket
during runtime. Plugging of a new rule into the DRS follows
PDR of rule-matching LUTs. The result of rule matching is
forwarded to the state update and control logic that maintains
a streaming count representing number of packets that have
matched the programmed rule. The count is continuously
checked against a user-programmed threshold value, that raises
a threshold-met (or simply met) alert whenever the threshold is
met. The met signal is basically a socket’s unique identification
(ID) code in a system.

The DRS goes in idle mode once the threshold has been
met. Its count value needs to be reseted before it can proceed
with the next round of statistics collection. A simple resetting
scheme could be through the use of an explicit reset signal
going into the DRS. In a system involving multiple DRS, this
could be achieved by either having a unique reset signal for
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Fig. 3. Socket Architecture

every individual DRS or by pipelining a common reset line
across multiple DRS. Whereas the former solution requires
multiple reset lines, the latter option involves additional iden-
tification bits along with the reset-signal for the reset to be
properly recognized at the target DRS. Thus, both solutions
incur overheads in terms of FPGA interconnect and logic area.

We propose an

Add      V1   V2

000 0     1

001       0 0

010       0 0

011       0 0

100       0 0

101       0 0

011       0 0

111       0 0

Reset LUT

D Q

Reset

Fig. 4. Reset Mechanism

innovative remote-
synchronization
mechanism that completely
does away with explicit
input-signals. The
proposed scheme, used in
the context of reset here,
works over a dedicated
LUT as shown in Figure-4.
The Reset-LUT is remotely overwritten using fine grained
PDR using a control-processor with a configuration that
has an effect of inverting its current output. Two such
LUT configurations that can invert the LUT’s output are
shown in Figure-4 in columns V1 and V2. The associated
logic surrounding the LUT then decodes this logic-inversion
and generates a signal that can be used for any kind of
remote synchronization between the activating processor and
custom logic: DRS-reset in the current case. The innovative
PDR based synchronization and reprogramming protocols
employed in our work not only simplify DRS external
interface by reducing the number of DRS IO-pins, but also
reduce its logic footprint. We will further discuss the savings
when we compare our DRS with a previous static-logic
solution in Section-VII.

V. SYSTEM DESIGN CHALLENGES

We have so far presented our base socket. A practical use
of the socket requires its system integration. The integration
poses several challenges. In this section, we discuss the
challenges and our strategies in dealing with them.

Fig. 5. SPT Software Architecture

A foremost question, that we also briefly discussed in
Section-III, is careful placement and interconnection of the
socket to enable RNTM-specific PDR. This is because one
exactly needs to be aware of two things for reprogramming
the LUTs in the socket: (1) their exact FPGA placement,
and (2) the LUT pin-mapping to incoming inputs. One would
assume that such an information might be readily available
during the course of synthesis and placement using the CAD
tools. However, the tools do not detail such fine place and
route information for an automated retrieval, requiring visual
lookups in the complicated routed design. Such a latency
intensive step is clearly beyond a network-manager’s job
description and must need to be addressed. We address the two
issues using our socket placement tool and LUT pin-mapping
algorithm that will be presented shortly.

The sockets are independent rule-processing units. In prac-
tice, one would like to have as many sockets in the system
as possible to concurrently process maximum number of
rules permitted by the device resources. A multiple-socket
design raises possibilities of interesting applications as well
as design challenges. One of them being area scaling of the
system with increasing sockets. Another subtle, but interesting
design question is collection of met-signals by the individual
sockets. The challenge here lies in designing a mechanism that
guarantees proper collection of the asynchronously generated
met-signals within a predictable latency.

A. Socket Placement Tool

We address the issue of LUT identification for rule-update
in a socket by locking the LUTs that contribute to the rule-
matching functionality to resources with known locations. A
Socket Placement Tool (SPT) was developed that automates
generation of a multi-socket system and the locking of repro-
grammable components within a socket.

The SPT performs three main functions prior to hands-off
to synthesis and placement tools:

1) A quick feasibility check of the desired multi-socket
system in terms of FPGA area.

2) Evaluation of placement possibilities for sockets and
locking down their reprogrammable LUTs to known
FPGA locations, i.e. generation of placement constraints.

3) Generation of the RTL Verilog files that correspond to
the user required multi-socket system.

Note that only reprogrammalbe LUTs within a socket are
constrained. The rest of the socket is left for unconstrained
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layout by the CAD tools. However, in doing so, the SPT makes
sure that enough FPGA resources are left non-utilized near
reprogrammable LUTs. This is done to make sure that a socket
components do not get significantly displaced on the FPGA
die or else the system will yield poor static-timings.

The three SPT steps are illustrated in Figure-5. The SPT tool
relies on empirically developed models for socket placement.
For the sake of brevity, we skip the fine details of the models
but will present system level results in Section-VII

B. LUT Pin Mapping Detection Algorithm

The knowledge of LUT input pin mapping is critical for
PDR as it defines how the LUT-codes need to be assembled. A
LUT-code is a bit-vector whose individual bits define the LUT
output corresponding to an input that it uses as an address.
As an instance, the two pin-mappings A and B as shown in
Figure-6, correspond to same LUT functionality but different
LUT codes, B1. The Xilinx CAD tools, that we employ in
our work, can internally come up with any such pin-mappings
which are also not readily available to an end-user. One way to
avoid this is by having the SPT lock down the pin-mappings
as well at the expense of reduced routing flexibility.

We present a novel algorithm using which the LUT pin
mapping can be evaluated even after the sockets have been
programmed into the FPGA, thus making the pin-locking con-
straints redundant and letting the CAD tools have full routing
flexibility. Our technique involves programming the LUTs
with beacon-codes that can help decipher the pin-mappings.
The main steps involved in the algorithm are depicted in
Figure-6. The key observations behind our algorithm are that:

• The number of minterms, or set-bits in the LUT code,
remain identical; though they may vary in their position
as the pin-mappings get altered.

• The minterms correspond to the specific input combina-
tions for which the LUT is programmed for. An alteration
in position of these inputs on the LUT pins results in a
similar repositioning of minterms in the LUT codes.

As an instance, consider the code B1 in Figure-6 that
programs the LUT for a simple Boolean function, S1.S2′.S3′.
The two pin-mappings have identical number of minterms
in the LUT-code. Furthermore, repositioning of input-pins
in pin-mapping B results in an alteration of LUT-code but
the functionality of the LUT remains consistent with the
programmed Boolean function.

We use the above observations in developing a LUT pin
mapping detection algorithm. The algorithm initially programs
the LUT whose pin mapping is desired with a beacon code
such as B2. The beacon code has a unique pattern in that
its minterms follow Gray-code: in this case S1.S2′.S3′ +
S1.S2.S3′ + S1.S2.S3.

Combining the above two observations, we know that any
alteration in pin-mapping will be preserved in a similarly
altered LUT-code. We read the internally altered code, such
as B2 in pin-mapping B, using similar fine-grained PDR
APIs that we used for LUT writing. The read code is next
checked for a minterm that involves only a single logic-high

input-pin. This minterm corresponds to input-pin combination
I ′2I1I

′
0. Since input-pins have a one-to-one mapping with

inputs, we conclude that this minterm must be S1.S2′.S3′ that
also involves only a single high input. In other words input-
pin I1 must be connected to input S1. We next proceed to
the minterm involving two logic-high input-pin combination:
I2I1I

′
0. Following the same argument as above, this minterm

should correspond to S1.S2.S3′ in the programmed Boolean
function. As we have already found out the mapping of pin I1
to S1, the other high input-pin in the minterm, i.e. I2, must
be mapped to input S2. The pin-mapping of the final input S3

then becomes implicit to the remaining input-pin I0.

I0

I1

I2

(I2 I1.I0) B1    B2

000 0      0

001 1      1

010 0      0

011 0      1

100 0      0

101 0      0

110 0      0

111 0      1

S3 I0

I1

I2

S1

S2

S1

S2

S3

(I2 I1.I0) B1    B2

000 0      0

001 0      0

010 1      1

011 0      0

100 0      0

101 0      0

110 0      1

111 0      1

A

Step-B: Correspondence: Set-bit corresponds to Address-bits I0/I1

A

B

C

Pin-Mapping A Pin-Mapping B

Step-A: Analysis: LUT Code corresponding to LUT functionality, O=S1, is read and 

Set-bit position analyzed

B

Step-C: Deduction: Input pins I0/I1 are connected to S1

O O

C

Fig. 6. LUT Pin Mapping Detection Algorithm

C. Met-Signal Synchronization

There could be a number of ways to realize a multi-socket
system. Depending on the design, the met-signals, propagation
and collection in the system may involve different challenges.
As an instance, a naive system realization could be a direct
socket connection with a collection unit. Since the collection
unit can only process a single met-signal at a time, the
asynchronously generated met-signals from multiple sockets
would require serialization. The serialization will consequently
require logic-expensive arbitration schemes in case multiple
sockets need to send their met-signals simultaneously.

A solution to the area expensive arbitration could be to
automate the met-signal serialization by chaining the sockets
such that the mets hop through the sockets before being
received at the destination. The presented DRS is designed
for ease in such kind of chaining, or pipelining. The chaining
removes arbitration costs. However, as the mets actually are
sockets’ unique ID codes in the system, long chains tend to
increase their sizes resulting in logic overheads.

We address the arbiter size versus socket-ID size issue
by having a combination of the above two solutions using
multiple short chains as shown in the DataEngine section of
Figure-7. However, as the sockets are independent entities with
met-signals being asynchronously generated and propagating
on a common bus in a chain, they require some form of
synchronization to avoid bus conflicts. For example, a socket
may overwrite a met-signal generated by the next socket in
the chain in the absence of a synchronization scheme. We
resolve the issue using our novel Hole Propagation based Met-
signal Synchronization scheme. We will discuss details of the
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scheme when we discuss the threshold-collection unit in the
next section.

VI. BURAQ: DRS BASED STATEFUL PROGRAMMABLE

REAL-TIME RNTM SYSTEM

The BURAQ system is comprised of a PC based control
and analysis front-end and an FPGA based back-end Data
Processing unit. A high level depiction of the system is given
in Figure-7. The division is broken on the lines of domains that
are more suitable for respective types of processing: general
purpose processors for processing control and configurations
on a customized hardware data-engine that matches incoming
flows in real-time with the configured Boolean mappings. We
next discuss the specifics of our system.

Control

Proc

DataEngine

Glue 

Logic

&

Threshold

Collection

Unit

Data

Proc

Control & 

Analysis

Front-End

Data Processing FPGA Unit

Fig. 7. BURAQ System Architecture

A. Control and Analysis Module

The PC based front-end Control and Analysis module is
responsible for interacting with the user and mapping his
requirements on the FPGA processing unit. It collects the user-
queries, converts them into the bit-vector based DRS mapping
and sends them over an Ethernet link to the FPGA processing
unit. It also collects the measurement results back from the
processing unit that are eventually conveyed back to the user.

B. Data Processing FPGA Unit

The Data Processing FPGA unit is subdivided into a cus-
tomized data-engine and two soft-core processors. The data-
engine itself is composed of number of sockets employing a
high degree of parallelism that can be scaled according to the
needs and resources of the deployment.

The sockets are arranged in parallel and pipelined fashion.
Each socket can be independently configured for concurrent
rule-processing. The task level parallelism of a socket is
combined with architectural pipelining to maintain scalability
of the system. The pipelining only ensures that incoming
packet data and met-signals stream through the sockets.

1) Data Processor: The Data Processor (DP) works at
the network layer and is primarily responsible for outside
communication over the Ethernet interface. The processor
receives two types of packets, data and control, and returns
back status packets. It extracts the data and control information
out of the packets and forwards them to the data-engine and

to the control processor respectively. It also receives status
or threshold responses from the data-engine through control
processor that it routes back to the front-end.

2) Control Processor: The Control Processor (CP) acts as
an arbiter between the data-engine and front-end Control and
Analysis unit. It receives the LUT read and write requests
through DP and honors them using PDR of the sockets.
The reconfiguration is done by invoking lower level Xilinx
APIs and modules that interact directly with FPGA-fabric for
reconfiguration. This can be best visualized as a stack of
horizontal layers on an FPGA fabric as shown in Figure-8.
It is to be noted that the APIs are solely available in the soft-
core processors instantiated on the FPGA fabric and work over
a dedicated hardware unit, the Internal Configuration Access
Port (ICAP).

ICAP

API

CP

Threshold

Sockets

Collection

Unit

Fig. 8. Socket Reconfiguration and Threshold Collection

3) Glue Logic and Threshold Collection Unit: A classic
co-designed problem is in interfacing fast, cycle accurate and
parallel hardware with non-cycle accurate and slow software.
The Glue-Logic addresses this problem by acting as a hand-
shaking middleman to co-ordinate data transfer between the
DP and the data-engine.

The issue of threshold-met signal synchronization is also
addressed here using the novel Hole-Propagation scheme. The
basic principle of the technique is to withhold met signal going
over to the next socket in a chain unless there is space, or a
hole, available there. These holes are initially created when
the last socket in a chain is polled by the threshold-collection
unit, that continues polling end of the chains in a round-robin
fashion. The presence of a hole lets the preceding socket to
forward its met-signal, thereby transferring the hole one socket
backwards. Thus, as met-signals move forward within a chain,
the holes proceed backward, ensuring all the met-signals get
properly received at the CP.

VII. EMPIRICAL EVALUATION

A prototype of the presented design is developed using
Xilinx Virtex-II Pro XC2VP30 FPGA and Xilinx Embedded
Design Kit (EDK) 9.1. Xilinx Microblaze soft-core processors
were instantiated on the FPGA fabric connected with FIFO-
based Fast Simplex Links (FSLs). The prototype was operated
at a clock frequency of 100-MHz.

A. Single Socket Evaluation

We compare our DRS with an outstanding example of
a static-logic implementation [8], referred here as Static in
short. We compare FPGA logic utilization and rule deploy-
ment latency. The logic utilization comparison is presented
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in Figure-9, where it is broken down into rule-matching and
state-maintenance components.

It can be noticed that Static employs quite a significant
number of flip-flops (FFs) (246) and LUTs (223) than DRS (33
and 58 respectively). These two elements form core of device-
slices and as such reflect in a higher slice consumption budget
of Static (137) compared to a DRS (37), a 3.7x improvement.
Static further requires a high number of FFs. This is due to
the use of FFs for rule storage as was discussed in Section-III.
The issue is resolved in the DRS that maps the rules on LUTs.

The novel synchronization mechanisms utilizing PDR fur-
ther help DRS in having a much simplified external interface.
This is because dedicated inputs are no longer required for
DRS reprogramming. As such, the number of IO pins in a
DRS have been reduced to 75 from 160 in the Static.

A comparison of reconfiguration latency between the DRS
and the Static is next presented in Figure-10. DRS involves
reprogramming of 25 LUTs, 23 in rule-matching and 2 in the
state-update (Reset and Threshold LUTs). We program all the
25 LUTs in the DRS, though in practice lesser number of
LUTs may actually need to be programmed. Configuration in
the case of Static is however more involved. The configuration
latency of the Static reported in Figure-10 is derived from the
smallest 3x3 Static architecture as reported in [8]. The critical
path latency is about the same in both the solutions.

B. Xilinx API Evaluation for PDR

The units of partial dynamic reconfiguration in Xilinx
devices is a frame, involving a number of FPGA resources.
Our proposed scheme requires updating specific bits in a frame
that correspond to the contents of the target LUT. Detailed
composition of frame bits, however, is a Xilinx proprietary
information. Xilinx provides ICAP application programming
interface (API), which enables constrained manipulation of
frame bits. The API was our only mechanism for updating
configuration bits of a specific LUT within the frame bits.

Reconfiguration latency of the DRS is due to calls to three
API operations (1) reading-in of the frame involving the target
LUT, (2) modifying the required LUT bits in the frame,
and (3) writing-back the frame to the device. To the best
of our knowledge, there exists no mechanism in the API to
allow multiple LUT changes within a frame, thereby requiring
multiple API calls that adversely affect reconfiguration latency.

The XC2VP30 device has a frame size of 824 bytes. Xilinx
requires at least 2 frames (one pad frame) to be fed for a
frame to be configured on an 8-bit ICAP port. Assuming
ICAP operating at 100-MHz, a frame can be rewritten back in
24.72µs, compared to 90µs that the API rewritting involves.

We suspect that it is quite easy for Xilinx to improve ICAP
API to provision for multiple LUT changes within the same
frame in a single call. Such simple updates to frame manip-
ulation API, which constitute the chunk of reconfiguration
latency for DRS, can substantially improve the latency of DRS
reconfiguration, which translates to avoiding packet loss and/or
less buffering requirement in the RNTM system.

C. LUT Pin Mapping Algorithm Evaluation

We next evaluate the benefits of LUT pin mapping detection
algorithm. We do this by generating a number of designs
involving chains of LUTs of different logic depths. The
designs are constrained for locking LUT-inputs at particular
LUT-pins, and are implemented for Xilinx Virtex-II pro device.
The results so obtained for average and maximum delay for all
the nets/wires corresponding to constrained and unconstrained
designs are presented in Figure-12 and 13. Each point in the
plots is an average of five experiments for pin-to-pin delays
involving a chain of LUTs of size given on x-axis.

It can be seen that locking input-pins degrades the routing
quality, yielding inferior timing results. The average delay is
consistently better while having a relaxed pin assignment. The
maximum pin-to-pin delay is also better without constraints
in the majority of cases, as the tools have more flexibility
in optimal routing in an unconstrained environment. The
same observations are also noticed for our socket, presented
in Figure-11. The maximum delay shows that the LUT-pin
mapping detection algorithm hands off a considerable 8%
static timing improvement to our socket timing.

D. BURAQ System Evaluation

We finally evaluate BURAQ’s total system area for various
data-engine sizes. We use SPT tool for quick generation of
systems of varying total sockets and chain lengths, i.e sockets
per chain. The results are presented in Figure-14. Each point in
the Figure represents a system having total number of sockets
as given in the legend, broken into chains represented on
x-axis. Thus the mid-point of the top-most curve represents
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100 sockets broken into 50 chains or a chain length of 2
sockets/chain.

We note that the biggest BURAQ system can have up to 100
sockets, an improvement of 4x over Static system [8], despite
the sockets being slightly less than 4x size improvement
over the Static. This is because a socket’s simpler design
simplifies associated logic, making room for a bigger system.
We further note that there is a slight dip in the curves. The
dip is due to a completely parallel or a serial data-engine
corresponding to the end points, both of which incur logic
overheads as was discussed in Section-V-C. The SPT utilizes
these results to quickly come up with a best possible data-
engine configurations for a user required system.

VIII. CONCLUSIONS AND FUTURE DIRECTIONS

We presented a self-reconfigurable platform tailored to
NTM applications. The key building block in our architecture,
called dynamically reconfigurable socket (DRS), contains a
reduction tree composed of carefully placed LUTs, which
match packet headers against a rule using FPGA look up
circuitry. Plugging a new rule only requires updating the
contents of the LUTs, while keeping their placement and
routing intact. Xilinx ICAP interface is utilized to dynamically
map incoming rules to the architecture, via reconfiguring of
LUT programming bits.

We also presented several issues involved in development
of a NTM system that contains many DRSs. Specifically, we
discussed an algorithm for detection of LUT pin mapping, and
a tool for efficient floorplanning of the DRS array. Also, the
integration of the DRS array into a complete NTM solution
was discussed.

Our evaluations demonstrate 4x improvements over a com-
petitor that utilizes static logic, which lead to a higher level
of parallelism under area constraint. To an end user, these
savings translate into a higher number of rules that can be
answered in parallel using the same resources. Our scheme
is also competitive with static logic-based implementations,
in terms of reconfiguration latency. Additionally, our study
provides helpful insights to reduce the latency via simple
updates in the ICAP API.

Our future work include investigation of just in-time and
incremental compilation of processing rules to further reduce
dynamic reconfiguration latency. On the application front, we

plan to interface our NTM system with a data mining and
rule generation engine to automatically search for patterns of
interest in traffic. Our architecture complemented with such
an engine could extract signature-less spatiotemporal traffic
patterns, such as new traffic anomalies.
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