
A Programmable Architecture for Scalable and Real-time
Network Traffic Measurements

Faisal Khan, Lihua Yuan, Chen-Nee Chuah, Soheil Ghiasi
University of California, Davis

{fnkhan,lyuan,chuah,ghiasi}@ucdavis.edu

ABSTRACT
Accurate and real-time traffic measurement is becoming in-
creasingly critical for large variety of applications including
accounting, bandwidth provisioning and security analysis.
Existing network measurement techniques, however, have
major difficulty dealing with large number of flows in to-
day’s high-speed networks and offer limited scalability with
increasing link speeds. Consequently, the current state of
the art solutions have to resort to conservative sampling of
the traffic stream and/or accounting for only a few frequent
flows that often fail to provide accurate estimates of traffic
features.

In this paper, we present a novel hardware-software co-
designed solution that is programmable and adaptable to
runtime situations offering high-throughputs that can easily
match current link-speeds. The key to our design is orthog-
onalization of memory lookups from traffic measurements
through our query-driven measurement scheme. We have
prototyped our approach on a Xilinx platform using Mi-
croblaze soft-core processors integrated with Virtex-II Pro
FPGA fabric. We demonstrate the scalability of our archi-
tecture and also compare it with a recent offline (non real-
time) sampling-based software alternative. The comparison
shows that our architecture performs orders better in terms
of speed and throughput even while being used as an offline
solution.

1. INTRODUCTION
Accurate traffic measurement and monitoring is keystone

in a wide range of network applications such as detection of
security attacks, traffic engineering, accounting and anomaly
detection. A number of network management decisions such
as blocking traffic to a victim destination, re-routing traffic,
charging customer, or raising alarms to administrators, re-
quire extracting real-time statistics of network traffic. A
network measurement tool is crucial in judiciously making
such decisions [1,5].

Fundamentally, traffic measurement involves counting num-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ANCS’08 November 6-7, 2008, San Jose, CA, USA.
Copyright 2008 ACM 978-1-60558-346-4/08/0011 ...$5.00.

ber of packets that satisfy some criteria, commonly referred
to as user query or a rule, over a period of time. The
traffic is measured in terms of flows, where a flow refers
to a set of packets that have the same n-tuple value in
their header fields. Typical definitions of flow include the
6-tuple: {prt, tos, sip, spt, dip, dpt} where, prt is the proto-
col field, tos is type of service, sip and dip are the source
and destination IP addresses and spt and dpt are the source
and destination ports, respectively.

Traditional measurement schemes work by maintaining
unique“per-flow”based counters on high-density storage me-
dia, followed by aggregation of selected counters to answer
queries [5]. This mechanism is illustrated in Figure 1(a).
Note that there is an inherent and increasingly-widening
performance gap between high-density storage access time
and network bandwidth. Furthermore, it requires too much
processing and I/O overhead to maintain such a paradigm.
As a result, traditional schemes do not offer scalable mea-
surement solutions for high data rate networks and have
to resort to sampling [13]. The sample is processed offline
to extract any meaningful information from the collected
statistics. Cisco NetFlow [1] is one such widely deployed
sample-based traffic measurement solution.

P

A

C

K

E

T

S

Answering

Engine

Query

Answer

Counter

Selection

Logic

Per-Flow Counters Server Storage

(a) Per-flow statistics collec-
tion

P

A

C

K

E

T

S

UserQueries

Per-Query Counters

Query-driven

Profiler

(b) Query-driven measure-
ment

Figure 1: Measurement Architectures

The key issue with sample based solutions is measure-
ment accuracy [2,9]. We argue that a scalable1 solution for
real-time and accurate measurement of traffic has to dis-
pose of conventional “per-flow” -based statistics collection.
Instead, we propose a “query-driven”measurement method-
ology that works by profiling passing traffic according to the
given query to collect information of interest in real-time.
Unlike existing techniques, our solution processes streaming

1We use scalability to refer to both capability to handle
increasingly many live flows, and implementation feasibility
of an architecture with increase in number of components.
The context should clarify the exact reference in each case.

109

traffic at link speeds and hence, does not compromise mea-
surement accuracy due to sampling. Figure 1(b) depicts the
idea of our proposed solution.

We develop a novel hardware-software co-designed archi-
tecture to evaluate our idea. The architecture contains a
highly-parallel and scalable array of processing elements that
are dynamically programmed according to user queries. The
traffic flows through the array at link speed, and informa-
tion of interest are collected by processing elements. The
control unit of the architecture coordinates aggregation of
collected information and responding to queries. Further-
more, it oversees reconfiguration of processing elements.

We implemented our architecture on a commodity field-
programmable gate array (FPGA) running at modest 100-
MHz frequency. We present analytical evaluation to guaran-
tee high accuracy of measurement results in face of process-
ing element reconfiguration latency. Also, we report empir-
ical evaluations to confirm accurate processing of traffic at
multi-Gbps link speeds. In addition, we present experimen-
tal results to explore the design space of our architecture,
and to showcase improvements of our system over an offline
software-based counterpart. We further show a case study
that utilizes our query-answering engine in identifying heavy
(frequent) flows in the network.

2. RELATED WORK
The per-flow based method has been employed in sev-

eral measurement tools like NeTraMet [5], FlowScan [19],
sFlow [18] and Cisco NetFlow [1]. The scalability issues asso-
ciated with Cisco Netflow [1] have been discussed using static
and dynamic adaptive probabilistic sampling in Sampled [2]
and Adaptive Netflow (ANF) [9], respectively. Sampling,
however, captures arbitrary statistical and systematic varia-
tions in the offered traffic and favors large flows. The issue of
biasness is alleviated by utilizing sample and hold method,
where a flow is sampled based on a bernoulli trial [11]. An-
other interesting solution proposed is to smartly sample an
arbitrary small number of flows that are “best” representa-
tive of the traffic stream [8,15]. Some other elegant solutions
work by extrapolating the collected sample using statistical
inference [7]. Our proposed technique differs from above as
we advocate a non-sampled real-time streaming or online
solution which does not suffer from inaccuracies of sample
based offline solutions.

Due to scalability issues associated with maintaining per-
flow schemes, many researchers argue that it is infeasible
to accurately measure each and every flow on high speed
links. Instead, they advocate focusing on few most frequent
flows [11,12]. Detecting such heavy hitters, or elephant flows,
is an important monitoring task for both security-purposes
(example, denial-of-service attacks) and traffic engineering
(example., route selection). Work has been done in produc-
ing traffic summary or identifying hierarchical heavy hitters.
Aguri [6] and Autofocus [10] are traffic profilers that aggre-
gate flows and report if they are above certain threshold.
These are offline tools that work by aggregating per-flow
statistics bottom-up, i.e. from longest prefix to the short-
est. In a DDOS type attack where there could be substantial
number of low frequency flows (mice), the bottom-up strat-
egy involves storage and aggregation over huge number of
flows before the victim can be isolated. This problem is
studied by Zhang et al. in [23] by treating flow account-
ing problem as IP packet classification problem [20] using a

top-down multibit-trie based approach. However, the tries
require multiple memory accesses that makes the method
infeasible for real-time processing while using DRAMs at
current link-speeds [20]. Some other elegant solutions are
based on coincidence [14] that exploit the fact that one is
more likely to observe n consecutive packets from the same
flow if the flow is large or long-lived. These techniques also
favor large flows without knowledge of user requirements.

A recent solution, ProgME [22], addresses programma-
bility and scalability by aggregating flows based on user’s
queries. Our technique differs from ProgME that we do away
with its computational paradigm that is tuned for software
based implementation. Another solution [21] performs sim-
ilar aggregation for collecting distributed statistics on net-
work processors. Instead, we employ a novel query-driven
architecture as shown in Figure-1(b) that can perform net-
work measurements at a node on passing by traffic in real-
time.

3. MOTIVATION AND BACKGROUND

3.1 Motivation and Challenges
The core problem faced with per-flow schemes to oper-

ate in real-time is their inability to fit the flow statistics in
faster SRAMs. The SRAMs sizes are far too small and their
density does not scale with access times [4].

The query-driven measurement solution addresses the scal-
ability problem by only maintaining statistics for what is
needed by the network managers. However, by bringing up-
front the query-processing stage, the incoming packet stream
may now need to be evaluated with potentially multiple
queries until a match is found. Once a match is found, its
corresponding record(s) needs to be updated in the memory.
Thus the query-driven approach trades off memory scalabil-
ity with increase in computing requirements per packet. The
computations and the subsequent memory updates also need
to complete at latencies driven by link-speeds for the traffic
measurement system to operate in real-time.

If packet arrival rate is R (in gigabits per second), the
minimum packet size being P bits, and C counters are up-
dated by Q queries with processing overhead of T ns/query,
the memory needs to respond (for both read and write) in
(P/[R(Q + 2C)] − T)ns. Let’s consider an example of mini-
mum sized TCP headers of 40-bytes coming on OC-192 link
with link-speed of 10-Gbps. This gives 32ns to process the
packet. On a 2-GHz CPU, this translates to 64 clock cy-
cles to do the processing using which only a small set of
queries can be processed in real-time. In contrast, the num-
ber of queries are increasing at a constant pace. A uni-
processor model thus faces query-scalability problem using
query-driven measurement. This coupled with difficulties
in programming multi-core solutions [16], some researchers
argue employing hardware solutions for network measure-
ments [17]

4. PROBLEM DEFINITION
Definition 1 (Superflow). A superflow is a set of contigu-
ous flows that share portion of their CIDR prefixes. More
precisely, they define a range on the values of their individual
flow dimensions that they share as a superflow.

As an illustration, the regions S1, S2 and S3 in Figure-2(a)
describe three sets of contiguous flows representing corre-

110

sponding CIDR prefixes. User queries are usually composed
of a combination of such prefixes. For example, a query-q
may require statistics for all the flows passing through both
the superflows S2 and S3 except those that also match S1.
However, the semantics of superflows are restricted by well
defined structures that can only describe contiguous set of
flows that are described by regular CIDR prefixes. Query-q
cannot be described using any single superflow and would
require complex computations if superflow based aggrega-
tion is used. We hereby define a new concept, superegion,
that addresses the shortcomings in superflow based repre-
sentation.

11./8

192.156./16

16./8

S
o
u
r
c
e
 I
P

Destination IP

S1

S3
S1&

S3
S3

S1

S2

S1

S1&

S2
S2

192.156./16

11./8

(a) Superflows

11./8

192.156./16

16./8

S
o
u
rc

e
 I

P

Destination IP

R5R4

R1

R2 R3

192.156./16

11./8

(b) Superegions

Figure 2: Visualization of Suprflows and Supere-
gions in 2-tuple header-space

Definition 2 (Superegion). A superegion is a set of contigu-
ous flows that can entail any irregular shaped n-dimensional
structure in an n-tuple header space.

As an illustration, the query-q above can now be described
as a union of superegions, R2, R3, R4, R5, shown in Figure-
2(b). This division is however arbitrary which in the given
case is tuned for quick answering of query-q as described in
Table-2(b). Note that all superflows can by definition be
described using superegions but the reverse is not true.

4.1 Problem Statement
Given an input stream I = {(ki, ui)}, and user query

{(Ri, τi)} where Ri is a set of flows and τi ∈ N is time
allocated for answering the query, the query(rule) answer-
ing problem is to find SUM=

∑
i ui for all ki ∈ Ri such that

time, t ≤ τi

The problem at hand is to design a network measurement
system that is scalable, efficient and has the ability to pro-
cess user queries in real-time and online on streaming net-
work traffic. We can then use this platform to explore other
networking problems.

5. PROGRAMMABLE SOLUTION FOR NET-
WORK TRAFFIC MEASUREMENTS

In this section, we describe the details of our solution for
the problem of real-time traffic measurements. To the best
of our knowledge, we have developed the first system that
not only supports real-time network measurements but can
also admit new queries during normal operation.

We addresses the bottleneck posed due to query lookups
by hardwiring them in a custom processing engine. The

problem due to slower DRAM updates is tackled using a
two-pronged strategy. First, we reduce the number of up-
dates using our query-driven approach. Secondly, we paral-
lelize the query processing such that the incoming data can
be processed in real-time, thereby finenesses the need for
its sampling. Consequently, our focus has been on simpli-
fying the common case, i.e. the flow identification or query
answering. We use superegions to define the rules that are
not only more powerful than superflows but also simpler to
process. Their only downside being extra checks required to
process. However, we utilized the mutual exclusiveness of
the checks to parallelize them in the processing engine. We
will shortly discuss the details of evaluating a query when
we discuss our datapath.

The measurement solutions detailed in literature mostly
place their processing kernels in either a complete software
or a hardware domain. However, we note that the problem
has an interesting blend of contrasting requirements such as
user level configurability as well as need for fast real-time
response. Whereas configurability and control can be ef-
ficiently handled in software, a hardware domain is more
appropriate for fast real-time processing. We therefore ex-
ploit the advantages of either domain by mapping the op-
erations that are best suited for respective goals: a general
purpose processor for processing control and configurations
on a hardware datapath that matches incoming flows in real-
time with the configured superegions. A high level diagram
of our co-designed architecture is presented in Figure-3. We
next discuss its details.

5.1 Parallel and Pipelined Programmable Ar-
chitecture

The design presented in Figure-3 employs a high degree of
parallelism that can be scaled according to the needs of the
deployment. It consists of a control processor and a hard-
ware datapath that is composed of parallel and pipelined
Processing Elements, PEs. The synchronization between the
datapath and the control unit is done using a timer while
interaction between the cycle-accurate hardware and non-
cycle accurate software is streamlined using the Glue-Logic.

The PEs are arranged in parallel and pipelined datapath
and can be independently configured for concurrent match-
ing of different superegions. The task level parallelism of
a PE is combined with architectural pipelining to main-
tain scalability of the datapath. Note that a PE can in-
dependently keep track of a superegion. The pipelining en-
sures that data and control information streams through the
PEs unidirectionally on separate channels. Thus datapath
size alteration requires simple plugging-in or removal of PEs
within a chain during design synthesis which has no effect
on operating effectiveness of others. We will further discuss
scalability of the datapath when we evaluate our design.

5.1.1 Control Processor

The control processor orchestrates both spatial and tem-
poral allocation and programming of PEs to service incom-
ing user queries. By orthogonalizing query-control from its
corresponding statistics-collection, our architecture can be
dynamically configured during normal operation to admit
new user queries or switch its focus from one application
to another. This dynamic change in behavior does not in-
volve an FPGA (or device) level (re)configuration which is
prohibitively expensive for networking applications. In con-

111

Control

Proc

Processing

Elements

Timer

Glue

Logic

Router Interface

Packet Headers

Queries

Interface

Figure 3: Architecture

trast, this is done through a relatively simple changing of
values in PE registers. These changes are controlled by the
control processor. We will discuss latency of these changes
under reconfiguration-latency when we discuss the results.

5.1.2 Programmable Processing Element

We call the basic unit of hardware that can independently
keep a log of a superegion as Processing Element. It keeps
runtime statistics of incoming flow by using one or more
32-bit counters. PE architecture is shown in Figure-4.

PEs are parameterizable and programmable. They can be
statically parameterized (static configuration) during hard-
ware synthesis to employ 2n number of counters and dynam-
ically programmed by the control processor(dynamic config-
uration) during runtime to track different superegions. PEs
can also be dynamically programmed to operate in either a
single or multiple counter mode. A single counter can ac-
commodate statistics-collection for a defined superegion. In
certain networking applications, like Heavy Hitter Identifi-
cation (discussed later), there is a need to track subregions
within a superegion for finer resolution of statistics. The
multiple counter mode is useful in such situations. When
used in multiple counter mode, a PE auto sub-divides the
search space into as many superegions, thereby avoiding al-
location of dedicated PEs. We refer to the level of sub-
divisioning as zoom ratio (ZR).

The PEs have separate data and control channels. The
data channel is 32-bits wide and passes-on the incoming data
at the output irrespective of the PE’s operating mode or
state (discussed shortly). A PE also passes on the control
codes and signals to the next PE in the chain unless it is
waiting for configuration codes. By keeping data and control
on separate channels, a PE in a row can remain active while
other PEs in the same row are being configured.

The PEs also employ a timer counter that represents the
number of interrupts (or timer expirations) after which a
PE’s collected statistics are due to be returned to the control
processor. All the dynamic configurable parameters of a PE
are controlled through the control processor.

5.1.3 Operation

A PE logs superegions by comparing incoming flows with
the four configured end points of the superegion for a con-
figured user defined duration. On a successful match, one
of the 2n counters in the PE is incremented. As mentioned
earlier, multiple counters serve to sub-division a defined su-
peregion. This sub-divisioning is further made dynamically
configurable to be active or inactive. If enabled, it can be

further configured to occur on either source or destination
address space. A sample 4-way partitioning occurring at
destination address space for the superegion R2 given in
Figure-2(b) is shown in Figure-6. The selection of the parti-
tion is being done by utilizing some of the bits in the incom-
ing flow. Exactly which bits are responsible for this selection
is again programmed by the control processor. The parti-
tioning and subsequent count update is controlled within the
PE by Counter Index Logic.

S
o
u
rc
e

A
d
d
re
s
s
 S
p
a
c
e

Destination Address Space

0.0.0.0 4.0.0.0

Incoming

Destination

Address =

12.1.2.3

= 00001100.1.2.3

8.0.0.0 12.0.0.0

3.255.255.255 7.255.255.255 15.255.255.255
11.0.0.0

11.255.255.255

Figure 6: Auto Sub-Divisioning

5.1.4 Configuration

Configuration of a PE involves returning collected statis-
tics and rearming it with new configuration information. As
mentioned earlier, configuration of a PE is done dynamically
through the control processor. A PE configuration consists
of superegion boundaries (S1, S2, D1, D2 in the figure),
duration for which statistics are to be collected (Timer),
weather the PE is to be configured for auto sub-divisioning
or single count mode (Is HH) and if source or destination
space sub-division is used (Is SD, Shift). The duration for
statistics collection is encapsulated in a timer count value
that represents number of interrupts to occur before the
collected statistics of a PE are due to be returned at the
control processor. Thus the user configured value set in the
system timer serves as the minimum resolution at which the
circuit can be observed and operated.

Configuration was one of the challenging tasks in our de-
sign. The difficulty arises as multiple PEs might be con-
currently expecting configuration information or wishing to
send their statistics on the same datapath channel. We solve
the problem using our communication synchronization pro-
tocol which is a three state state-machine shown in Figure-5.

During the normal operation, a PE keeps collecting statis-
tics corresponding to a configured superegion in the Collect
state. Once the timer count expires, the PE statistics are
due to be returned in Send state. In this state, a PE first
checks to see if there are any incoming control values (In-
coming Ctrl signal). These values may represent statistics
being returned by PEs that are earlier in the chain to the
current PE. The current PE first forwards these values and
then sends its own statistics. Thus the values belonging to a
PE ahead in the chain are also received earlier than the re-
maining at the control processor. When all the count values
of a PE are passed-on to the next PE in the chain, the PE
goes in Rearm state where it waits for control codes repre-
senting reconfiguration. Any control code that the PE now
receives is assumed to be for itself and is not forwarded to the
remaining PEs in the chain. In this way, the synchroniza-
tion protocol ensures that reconfiguration also takes place
in the same sequence as statistics were returned, i.e. the PE
earlier in a chain is configured before the remaining.

112

Input Control Logic Is_HH Is_SDShift

D1

S_d1 S_d2

D_d1 D_d2

>=

<=

<=

S1-T S2-T

S1-T S2-T

>=
Counter

Index Logic

>>

>>S_d1

D_d1

S1_Shift

D1_Shift

Output

Control

Logic

/

Timer

Transfer_count

Data_in

Count_in_valid
Transfer_count
Count_out_valid

Data_out

Control_in

Control_in_valid

Control_out_valid

Interrupt_in Interrupt_out

Control_in

Control_in_valid

D2

S1 S2

Control_in

Control_out

32

Is_SRC

Figure 4: Processing Element

Rearm

Collect

Send

!Done

Done

Rearming

Interrupt and

timer count > 0
Interrupt and

timer count = 0

Incoming Ctrl
!(Incoming Ctrl) and

!(Done Sending) Done

Sending

Figure 5: Synchronization Proto-
col

5.1.5 Glue Logic

Besides configuration, another core problem we faced is
the classic co-designed problem in interfacing fast, cycle ac-
curate and parallel hardware with non-cycle accurate and
slow software. The Glue-Logic addresses the problem by
acting as a handshaking interface between the two domains
and synchronization protocol (SP). It receives and acknowl-
edges data and control codes from software-processor and
passes on these values to the datapath-engine. As software-
processor are slower than the hardware, they may take mul-
tiple clock cycles to send a value resulting in empty bubbles
where no valid value is present in a cycle. The presence of
these bubbles can fail the synchronization protocol and are
therefore taken care of in the glue logic that sends the infor-
mation to the datapath along with certain extra signals for
proper interpretation of the information.

Besides acting as an interface, another function of the glue
logic is to facilitate the control processor in properly config-
uring PEs. On occurrence of an interrupt, there could be
multiple PEs in different rows that are ready to return their
collected statistics. One naive way to interface the controller
with the datapath would be to use as many return links as
datapath rows. However this design not only uses redun-
dant links, as the controller can only service one link at any
given time, but is also unscalable2. We therefore use a single
return queue interfaced to the control unit and employ an
ordering sequence for row configuration. This sequence is
dynamically calculated in the control unit and is sent to the
glue-logic that uses this information to activate a required
row in the datapath.

6. EMPIRICAL EVALUATION

6.1 Experimental Setup
A prototype of the presented design has been developed

using Xilinx Virtex II 2VP30 Pro FPGA and Xilinx Embed-

2For example, Xilinx’s Microblaze processor has an upper
limit of 8 point to point links

ded Design Kit (EDK). We used the FPGA for performing a
rapid exploration of statically parameterizable components
of the architecture. The EDK provides soft-core Microblaze
processors that can be readily instantiated in the designs
and mapped on FPGA devices. It further provides point
to point Fast Simplex Links (FSLs) for communication that
act like FIFOs whose sizes can be configured. We used EDK
Version 9.1 to map our controller on a Microblaze soft-core
processor and used FSLs to connect it with datapath logic.
The prototype was operated at a clock frequency of 100-MHz

We employ data from CAIDA [3] to test our design and
employed another Microblaze processor for mimicking net-
work data source. The data processor reads in the dataset
and sends it on to the datapath using an FSL. However
since reading and writing comes with its own overhead, the
network mimicker was seen to be utilizing only 20% of our
datapath’s processing capacity/bandwidth. We were also
restricted on the 64k size of the memory that can be al-
located to a microblaze and therefore used a part of the
dataset of 5000 (source, destination) tuples. As part of our
later experiements, we integrated CompactFlash with Mi-
croblaze processor and were able to test using datasize as
big as 410, 000 packets. The query set consisted of randomly
generated primitives that are maintained in the control pro-
cessor. However, it should be noted that the data-source
setup is only meant for comparison with a software alterna-
tive and is not a necessity for our design.

We selected ProgME [22] as our comparison baseline so-
lution as it incorporates state of art in traffic measurement
technology. For making the comparison fair, we employ
an identical dataset on both ProgME and our architecture
that is iteratively reprocessed until the queries are answered.
However, there exist some core differences between the two
solutions, like the usage of BDD based data structures, flowsets,
by ProgME and superegions in our case. These along with
some other minor differences make an accurate comparison
between the solutions quite difficult. We will highlight the
impact on the figures when we discuss the results. The re-
sults reported by ProgME were taken on an AMD Opteron-
285 running at 2.6 GHz.

113

6.2 Design Space Exploration

6.2.1 Area
There are a number of statically configurable parameters

in our design like the amount of parallelization and pipelin-
ing (rows and columns) of the datapath and the ZR (number
of counters) of a PE. To limit the huge number of possi-
ble test cases, we synthesize an equal number of rows and
columns and only vary the counters in the PE. We were not
able to test cases employing 4 and 16 counters on the 5 × 5
architecture due to FPGA area limitations.

This area statistics are summarized in Figure-8 which
shows logic utilization in terms of FPGA slices for differ-
ent configurations. It can be noticed that a 3× 3 array with
16 counters/PE approximately takes as many slices as a 5×5
implementation with 2 counters/PE. The question of either
to use small number of counters with higher number of PEs
or vice versa in a design is application dependent. We will
shortly demonstrate potential uses of employing more PEs
or counters.

6.2.2 Configuration Time
As discussed in section-5.1.4, (re)configuration involves

collecting statistics from PEs and re-arming them with new
boundaries by the control processor. The time it took for
reconfiguring our various implementations is presented in
Figure-9. Each point in the chart involves one complete re-
configuration of the datapath, for example all the 9 PEs in
the case for 3 × 3 implementation. It can be seen seen that
configuration overhead increases significantly as ZR is in-
creased to 16. This is due to significant increase in number
of counters being returned in the latter case.

An important thing that can be deduced from the values
in the figure is that our highest configuration time translates
to missing out 160 packets3, which is significantly smaller if
complete FPGA were to be reprogrammed. Moreover, this
is only a one time cost that can be further scaled down by
overlapping configuration of a PE with statistics gathering
using another identically configured PE.

6.2.3 Scalability
The scalability of our architecture depends on how area

and processing overheads scale with an increase in the num-
ber of PEs and their counters. These are also presented
in Figure-8 and Figure-9 for area and configuration time re-
spectively. It can be seen that for different ZRs, the increase
in either area or configuration time is sub-linear with the
increase in number and size of PEs, or in other words, the
initial cost of area and configuration time is higher than sub-
sequent increments. The trend in area is due to the fact that
a significant portion of the circuit, involving control logic
and interconnections, remains ineffected with the increase in
datapath size. Moreover, a PE’s area also has a sub-linear
growth rate with increasing ZRs as shown in Figure-7. The
rate of increase in configuration time is sub-linear because a
good chunk of processing by the control processor involving
configuration is overlapped while the datapath is busy col-
lecting samples. These sub-linear growth rates of area and
configuration overheads demonstrate the scalability of our
design.

3Assuming 500-bytes sized packets on OC-192 link

6.3 Performance

6.3.1 Speed
We next analyze the case where number of queries exceed

the available resources in our prototype solution. Although
we believe that this situation should not arise in the prac-
tice, as the system is to be pre-synthesized with as many PEs
as there could be potential requirement, the case is however
interesting as it would basically involve storing the dataset
and its reiteration after re-arming the PEs with new supere-
gions. In such a situation, the system would behave as any
other offline solution.

We perform such a comparison between latency of our
technique with ProgME using a dataset of 100-k headers as
number of queries are varied. This is presented for our imple-
mentation in Figure-10. ProgME’s computation paradigm
makes it difficult to have a one-to-one comparison. The
matching process takes place sequentially with a number of
flowsets mapped to a hash table until a match is found. The
depth of the match dictates the overall latency. This can
be seen in Figure-11 where the x-axis represents the num-
ber of hash table entries compared for matching a flowset.
The first case is very fast as it does not require building the
BDD based representation. Although quite data dependent,
it is expected that in steady state there would be around 4
candidates in the hash table which basically translates to a
latency of 4 sec taken by ProgME.

6.3.2 Throughput
Our architecture takes 2 clock cycles to process a two-

tuple header in real-time. Thus while processing as online
measurement tool, the throughput of our prototype is 50
million packets/second which is more than enough to process
in real-time at current link speeds as reported in Table-1.

We also compared steady state performance of our exper-
imental prototype where data was sent using data mimicker.
The throughput in this case was determined by the speed of
the mimicker, which was quite slow. It was seen to be sup-
porting 7.68 million headers/second. ProgME in contrast
supported 50-k headers/second that essentially translates to
a sampling factor of 50 on a 10-Gbps link using an average
packet length of 500 bytes.

Finally, we analyze and compare throughput of our solu-
tion with ProgME when both are used as offline tools. The
offline processing essentially means that we process a sam-
pled snapshot of network data. This situation can arise if
the prototype design have less PEs than number of queries,
which would necessitate reiteration of the dataset and re-
arming its PEs with new queries in successive iterations.
We realize such a situation using query-set of size 100 on
our various prototype sizes. Such an analysis and its com-
parison with ProgME is presented in Table-2.

As expected, the throughput of our design is increasing
with number of PEs. Though not shown in the table for
brevity, increasing the number of counters/PE, or having a
finer resolution on flow distributions in the assigned query
space, has no effect on the throughput. Another important
observation that can be gleaned from the table is that our
design is orders (1-2) faster than ProgME despite using the
slow data mimicker. Based on these observations, we con-
tend that a designer would like to have a higher number
of single-counter PEs in the design if her need is only to
evaluate flow statistics streaming through the network. The

114

0

100

200

300

400

500

600

700

800

900

1000

1 2 4 16
Counters

F
P

G
A

 S
lic

es

Figure 7: PE Area Comparison

0

2000

4000

6000

8000

10000

12000

14000

16000

3x3 4x4 5x5

Implementation

F
P

G
A

 s
lic

es

ZR=1
ZR=2
ZR=4
ZR=16

Figure 8: Datapath Area

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

3x3 4x4 5x5

Implementation

T
im

e
(m

se
c)

ZR=1
ZR=2
ZR=4
ZR=16

Figure 9: Configuration Time

Media Link Packets / second (Millions)
Speed (Mbps) PL = 40 PL = 500 PL = 1000 PL = 1500

OC3 150 0.4687 0.0375 0.0187 0.0125
OC12 625 1.9531 0.1562 0.0781 0.0521
OC48 2500 7.8125 0.625 0.3125 0.2083
OC192 10000 31.25 2.5 1.25 0.8333

Table 1: Data Throughput for different media and Packet lengths (PL)

ProgME 3x3 4x4 5x5
0.0616 0.6347 0.9902 1.7211

Table 2: Throughput Com-
parison for Offline Process-
ing(Millions packets/sec)

cut-off value of the PEs is dependent on device limitations
and user requirements.

7. CASE STUDY: IDENTIFYING HEAVY HIT-
TERS IN PASSING TRAFFIC

Query processing, outlined in section-4.1, is the key func-
tion that an online measurement system has to perform at
wire-speed. A system with real-time query processing capa-
bility can also be utilized to identify heavy hitters in passing
traffic. Given a system that can answer queries, we utilize
a recursive top-down query generation hueristic to detect
heavy hitters. The scheme, called Multi-Resolution Tiling
(MRT) algorithm [22], relies on the simple but powerful ob-
servation that if a superflow does not contain θ fraction of
the entire traffic, then no flow of that superflow can be a
heavy hitter. That is in search for the elephants, if a super-
flow is not a heavy hitter, all of its constituting flows can be
discarded from further consideration.

An iteration of the algorithm is illustrated in Figure-12.
Initially, the two-dimensional sample space is equally par-
titioned into four sub-regions using a zoom ratio (ZR) of
four. Corresponding queries are generated to collect statis-
tics for every sub-region. Only those sub-regions that exceed
the threshold, marked with a cross in the figure, are selected
for further zooming-in in the next-iteration. MRT thereafter
continues iterating between partitioning, statistics-collection
and zooming-in phases until a desired level of resolution is
achieved.

We modify the MRT algorithm for our hardware-software
codesigned architecture. We define regions of interest in our
architecture using superegions. The superegions that meet
the θ-threshold requirements are then queued in software
that are later mapped to query answering hardware engine
as the resources get available. Another interesting modifi-
cation in our architecture is efficient use of sub-divisioning
heuristic that helps expedite the HHI process. The heuristic
makes intelligent use of ease in checking individual bits in
hardware, thereby trading area with identification latency
of a HH.

7.1 Analytical Evaluation

00800000

00FFFFFF

00FFFFFF

Source

D
e
s
ti
n
a
ti
o
n

Source

D
e
s
ti
n
a
ti
o
n

00FFFFFF00800000

00800000

00BFFFFF

00BFFFFF

x

Figure 12: MRT with zoom ratio of four

In this section, we analytically discuss our design and pro-
vide measures to estimate its performance. The next section
discusses our empirical performance. We first define some
notation that is used in our subsequent discussion. Let

θ denote the threshold in terms of link usage.
Ts denote the inspection time during which incoming pack-

ets are logged.
Tc denote the configuration time during which the PEs

are configured.
ns

i represent the number of packets observed for supere-
gion i during Ts

nc
i represent the number of packets for superegion i that

could not be observed during Tc

λ denote packet arrival rate (We assume Poison arrival).
λi represent the arrival rate of packets within a supere-

gion i under consideration. Thus λi = q ∗ λ ≤ λ, where q
represent fraction of total flows passing through the region
under consideration. We refer to this parameter as the flow
ratio.

Then the minimum number of packets needed for a flow/superegion
to be declared as containing a heavy hitter is given by

N = θ ∗ λ ∗ (Ts + Tc)

However, packets can only be observed during Ts, during
which

115

Ns
i = θ ∗ λ ∗ Ts

packets at least need to be logged in order to declare the
presence of a heavy hitter.

As there could be mismatches between Ns
i and N , it raises

the possibilities of false negatives and positives that are dis-
cussed next. Note that ns

i and nc
i are independent of each

other according to the memoryless property of Poisson dis-
tribution.

7.2 False Positive:
A false positive is a false indication that a heavy hitter is

found. It can occur if ns
i + nc

i < N when Ni
s ≤ ns

i . Thus
the probability of false positive can be given as

Pp = P [ns
i + nc

i < N |Ni
s ≤ ns

i]

=
1

P [Ns
i ≤ ns

i]
∗ P [ns

i + nc
i < N & Ns

i ≤ ns
i < N]

=
1∑∞

l=Ni
s P [ns

i = l]
∗

N−1∑

j=Ns
i

P [nc
i < N − j and ns

i = j]

=
1

1 − ∑Ni
s−1

l=0 P [ns
i = l]

N−1∑

j=Ni
s

[

N−j−1∑

k=0

P [nc
i = k]] ∗ P [ns

i = j]

using independence. After a few more steps we get

Pp =
e−λi.Tce−λi.Ts

1 − e−λi.Ts
∑ Ns

i
−1

l=0
(λi.Ts)l

l!

N−1∑

j=Ns
i

[

N−j−1∑

k=0

(λi.Tc)
k

k!
]
(λi.Ts)j

j!
(1)

The numerator in the above equation defines probability
that the threshold requirements were seen to meet during
inspection time but it was an incorrect observation which is
divided with the probability that the first argument holds,
i.e. threshold requirements were seen to meet. This numera-
tor itself defines probability of incorrectly detecting a heavy
hitter and can be given as:

P ′
p = e−λi.Tce−λi.Ts ∗

N−1∑

j=Ns
i

[

N−j−1∑

k=0

(λi.Tc)
k

k!
]
(λi.Ts)

j

j!
(2)

7.3 False Negative:
A false negative is defined as incorrect absence of a heavy

hitter indication during inspection period. This could occur
when ns

i + nc
i ≥ N when ns

i < Ns
i . Thus the probability of

false positive can be given as

Pn = P [ns
i + nc

i ≥ N |ns
i < Ns

i]

and following the same line of derivation as used above
gives

Pn =
1

∑ Ni
s−1

l=0
(λi.Ts)l

l!

Ni
s−1∑

j=0

[1 − e−λi.Tc

N−j−1∑

k=0

(λi.Tc)
k

k!
]
(λi.Ts)j

j!
(3)

The numerator in the above equation defines probability
of missing a heavy hitter which can be given as follows:

P ′
n = e−λi.Ts

Ni
s−1∑

j=0

[1 − e−λi.Tc

N−j−1∑

k=0

(λi.Tc)
k

k!
]
(λi.Ts)j

j!
(4)

7.3.1 Analysis
The variations in false positive and negative are next plot-

ted along with probabilities of missing-out detection of heavy
hitter, i.e. numerators of the corresponding expressions for
false positive and negative. These are presented in Figure-13
and Figure-14 respectively. The significance of these curves
lie in identifying confidence of reported results. They more-
over help a user to tune-in some key parameters in obtaining
a desired level of accuracy from the architecture.

The curves are plotted using parametric values as tab-
ulated in Table-3 unless given in the plots themselves. It
can be noticed that polarities of false negative and positive
switch at the threshold point. This is expected as it rep-
resents a true absence of alarm for false negative below the
threshold point. Similarly, the shooting up of false positive
alarm above the threshold depicts the probability of an in-
correct alarm. Ideally, we would like to have sharp slopes of
these curves at the thresholds to maximize the confidence.
The sharpening of the slopes can be observed with increas-
ing inspection times while having an inverse relation with
packet lengths and configuration times. This is because with
a greater inspection time, there is a larger collected sample
using which a higher degree of confidence can be deduced.
Similarly, increasing the average packet length or configura-
tion time decreases the proportion of inspected traffic with
respect to uninspected traffic that translates to lesser con-
fidence level on the collected statistics. We did not plot
the variations with increasing link speeds as their pattern
can be easily deduced along the lines of above argument,
i.e. with increasing link speeds, one should be seeing more
steeper switchings quite similar to decreasing packet lengths
as there would be now more packets to base a decision. This
is significant as it shows that the performance of our design
scales with link speeds.

It should be noted that a higher probability of false nega-
tive above the threshold point does not represent an inferior
performance of our design. It only represents possibility that
the absence of the alarm could be incorrect and has to be
seen in conjunction with probability of actually missing out
a HH (given in dotted lines in the graphs). A similar argu-
ment holds for the case of false positive and probability of
incorrect HH detection (also plotted in the graphs).

The plots in Figure-13 show extremely low chances of eval-
uating an incorrect HH in our architecture (the dotted lines).
Furthermore, it can be seen that an increase in inspection
times to 1ms considerably reduces these chances which al-
most get reduced to zero for sampling time of 32ms. A
similar observation can be seen for probability of missing
out a heavy hitter in Figure-14(a).

7.4 Empirical Evaluation
We discussed how our solution performs when used as an

offline or online measurement solution in section-6.3.2. Here
we will detail processing time of our solution as an offline
tool for HHI. This is plotted in Figure-15 where a sampled
dataset of 5, 000 headers is reiterated for a given MRT it-
eration. However, we stress again that this setup is not a

116

θ 1%
Tc 0.05 msec
Ts 32 msec

Packet Length 500 bytes
Link Speed 10 Gbps

Table 3: Parameters

necessity of our design but merely done as a means for com-
parison with ProgME which utilizes a different algorithm for
its MRT progression. A ZR of unity in the figure describes a
design where partitioning or zooming-in is done using soft-
ware by mapping different sub-regions at different PEs. We
employ software zooming-in of ratio 2.

As expected, the delay is seen to be decreasing with in-
creasing ZRs. However interestingly, the increase is not lin-
ear with corresponding increase in ZRs. ProgME in contrast
was seen to be taking 963 msec with a ZR of 16 on an AMD
Opteron-285 running at 2.6 GHz, which is still a magnitude
more than our worst performing case.

7.5 Architectural Tradeoffs
The HHI problem demonstrated benefits of employing higher

ZRs. However, a higher ZR comes with a price in area over-
head as noticed in Figure-7. We note that a 3 × 3 datapath
prototype with 16 counters takes approximately as much
area as 5 × 5 datapath prototype using 2 counters. How-
ever, the performance of former is significantly better for
HHI than the latter. This is in contrast to using a higher
PEs and less ZRs type datapath for a query-answering type
of application. A correct balance between ZR and PEs is
therefore application dependent. We leave the selection of
operating balance between the two at the discretion of the
user.

8. CONCLUSION
We have presented a programmable, adaptable and scal-

able hardware-software co-designed solution for real-time
network traffic measurement. We prototyped our design
on a Virtex-II Pro platform operating at a mere 100-MHz
and showed the superiority of our query-driven measure-
ment paradigm against per-flow based solutions. We demon-
strated heavy hitter identification problem as one of the po-
tential networking problems to utilize the query-answering
platform. To the best of our knowledge, this is first real-
time network measurement solution, offering a high degree
of accuracy and performance. Comparison with a recently
proposed network measurement solution validates superior-
ity of our prototype.

9. REFERENCES
[1] Cisco NetFlow. http:

//www.cisco.com/warp/public/732/Tech/netflow.

[2] Sampled NetFlow. http://www.cisco.com/en/US/
docs/ios/12_0s/feature/guide/12s_sanf.html.

[3] CAIDA: Cooperative Association for Internet Data
Analysis. http://www.caida.org/home/.

[4] B. Amrutur and M. Horowtiz. Speed and power
scaling of srams. In IEEE J. Solid-State Circuits,
volume 35(2), 2000.

[5] N. Brownlee, C. Mills, and G. Ruth. Traffic Flow
Measurement: Architecture. RFC 2722, 1999.
http://www.ietf.org/rfc/rfc2722.txt.

[6] K. Cho, R. Kaizaki, and A. Kato. Aguri: An
Aggregation-based Traffic Profiler. In Proc. Quality of
Future Internet Services, 2001.

[7] N. Duffield, C. Lund, and M. Thorup. Estimating
Flow Distributions from Sampled Flow Statistics. In
SIGCOMM, 2003.

[8] N. G. Duffield, C. Lund, and M. Thorup. Flow
Sampling Under Hard Resource Constraints. In
SIGMETRICS, 2004.

[9] C. Estan, K. Keys, D. Moore, and G. Varghese.
Building a Better Netflow. In SIGCOMM, 2004.

[10] C. Estan, S. Savage, and G. Varghese. Automatically
inferring patterns of resource consumption in network
traffic. In SIGCOMM, 2003.

[11] C. Estan and G. Varghese. New Directions in Traffic
Measurement and Accounting: Focusing on the
elephants, ignoring the mice. ACM Transactions on
Computer Systems, 21(3):270–313, 2003.

[12] C. Estan, G. Varghese, and M. Fisk. Bitmap
Algorithms for Counting Active Flows on High Speed
Links. In Proceedings of the 3rd ACM SIGCOMM
conference on Internet measurement, 2003.

[13] W. Fang and L. Peterson. Inter-as: Traffic Patterns
and their Implications. In Proceedings of IEEE
GLOBECOM, 1999.

[14] M. Kodialam, T. Lakshman, and S. Mohanty. Runs
bAsed Traffic Estimator (RATE): A simple, memory
efficient scheme for per-flow rate estimation. In
INFOCOM, 2004.

[15] A. Kumar and J. Xu. Sketch Guided Sampling –
Using On-Line Estimates of Flow Size for Adaptive
Data Collection. In INFOCOM, 2006.

[16] J. Mudigonda, H. M. Vin, and S. W. Keckler.
Reconciling performance and programmability in
networking systems. In SIGCOMM, pages 73–84, 2007.

[17] V. Paxson, K. Asanovic, S. Dharmapurikar,
J. Lockwood, R. Pang, R. Sommer, and N. Weaver.
Rethinking hardware support for network analysis and
intrusion prevention. In USENIX Hot Security,
August-2006.

[18] P. Phaal, S. Panchen, and N. McKee. InMon
corporation’s sFlow: A Method for Monitoring Traffic
in Switched and Routed Networks, 2001. RFC 3176.

[19] D. Plonka. FlowScan: A Network Traffic Flow
Reporting and Visualization Tool. In USENIX LISA,
pages 305–317, 2000.

[20] G. Varghese. Network Algorithmics. Morgan
Kaufmann, 2005.

[21] T. Wolf, R. Ramaswamy, S. Bunga, and N. Yang. An
architecture for distributed real-time passive network
measurement. In MASCOTS, pages 335–344, 2006.

[22] L. Yuan, C.-N. Chuah, and P. Mohapatra. ProgME:
towards programmable network measurement. In
SIGCOMM, pages 97–108, 2007.

[23] Y. Zhang, S. Singh, S. Sen, N. Duffield, and C. Lund.
Online identification of hierarchical heavy hitters:
algorithms, evaluation, and applications. In IMC,
2004.

117

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

50 100 200 400 800 1600

Queries

T
im

e
(s

ec
)

Figure 10: Queries and latency

0

1

2

3

4

5

1 2 3 4 5

Candidates in Hash Table

T
im

e
(s

ec
)

Figure 11: Flowsets and latency

0 0.005 0.01 0.015 0.02
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

λ
i
 / λ

P
p a

nd
 P

p' Pp
Pp'

Ts=1ms
Ts=32ms

Ts=32us

32ns

Ts=32ns

32us

32ms
1ns

(a) Varying Sampling Time

0 0.005 0.01 0.015 0.02
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

λ
i
 / λ

P
p a

nd
 P

p' Pp

Pp'

Tc=0.05ms
Tc=0.5ms
Tc=5ms

0.05ms

0.5ms

5ms

(b) Varying Configuration Time

0 0.005 0.01 0.015 0.02
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

λ
i
 / λ

P
p a

nd
 P

p' Pp

Pp'

PL=40

PL=1000
PL=500

40

500

1000

(c) Varying Packet Lengths

Figure 13: False Positives

0 0.005 0.01 0.015 0.02
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

λ
i
 / λ

P
n a

nd
 P

n'

Pn
Pn'

Ts=1ms
Ts=32ms

Ts=32us
Ts=32ns

32ns

32us

32ms

1ms

1ms

32us

(a) Varying Sampling Time

0 0.005 0.01 0.015 0.02
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

λ
i
 / λ

P
n a

nd
 P

n'

Pn
Pn'

Tc=0.5ms
Tc=5ms

Tc=0.05ns

(b) Varying Configuration Time

0 0.005 0.01 0.015 0.02
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

λ
i
 / λ

P
n a

nd
 P

n'

PL=40
PL = 500
PL=1000

Pn

Pn'

40

500

1000

(c) Varying Packet Length

Figure 14: False Negatives

0

10

20

30

40

50

60

70

1 2 4 16

Zoom Ratio

T
im

e
(m

se
c)

3x3
4x4
5x5

Figure 15: HHI Time Comparison

118

