
Fast Visual Feature Selection and Tracking in a
Hybrid Reconfigurable Architecture

Alessandro Bissacco1, Soheil Ghiasi2, and Stefano Soatto1

1 Computer Science Department
University of California, Los Angeles

Los Angeles, CA 90095
{bissacco,soatto}@cs.ucla.edu

2 Department of Electrical and Computer Engineering
University of California, Davis

Davis, CA 95616
soheil@ece.ucdavis.edu

Abstract. In this work we introduce a fast visual feature tracking system which
takes advantage of dedicated hardware to perform the computationally intensive
step of selection. A software system uses the output of the hardware selector
to develop tracks using filtering, data association techniques, and image-based
validation.



2

1 Introduction

Feature selection and tracking is a crucial problem in a large number of computer vision
applications, such as autonomous navigation, surveillance, structure from motion and
scene estimation.

Current approaches to feature detection and tracking are based on detecting patches
and computing their displacement between adjacent frames using optical flow or other
differential techniques. Such algorithms perform particularly well in scenarios where
there is limited inter-frame displacement, as in case of video streams from high frame-
rate cameras. In such settings, however, online tracking of a large number of features as
required by real world applications demands for computational resources that exceed
the capacity of conventional CPUs.

In this work we propose using dedicated hardware for developing an extremely ef-
ficient implementation of feature detection and tracking. We capitalize on advances in
powerful and inexpensive reprogrammable hardware to perform the computationally
demanding feature selection process at every frame using FPGA hardware. Then track-
ing reduces to the problem of filtering and data association on the detected points,
which can efficiently be implemented in software on a standard PC.

2 Related work

The literature on feature tracking is very broad, here we will review only the approaches
most relevant to our work.

Following the seminal work of Tomasi et al. [10], a various number extensions and
variants have been proposed (see [15] and references therein).

Current feature trackers, such as [3], can track many hundreds of points at 60Hz or
greater, but suffer from limitations on the speed of selection (for adding new points to
the tracker) and require nearly all the available processing power of the CPU. By using
separate, custom hardware to select hundreds of points per frame and then associating
these points to tracks in software, we can achieve greater than 60Hz real-time tracking
without burdening the primary CPU, which can use the output of the system for other
tasks, such as structure from motion.

An approach closely related ours has been proposed in Nister et. al [13], using effi-
cient frame-by-frame corner detection and performing tracking by matching detections.
Points are extracted with a fast implementation of the Harris detector [14] and matching
is done by comparing neighbors using normalized cross correlation. The main limita-
tion of this method is the computational cost of the detection step and the fact that by
discarding the information provided by temporal continuity, contrary to our approach,
subpixel accuracy cannot be achieved.

Our tracking system consists of a number of hardware and software components.
Images are initially processed by a field programmable gate array (FPGA) which runs
a modified Harris corner detector, selecting the local maxima of the Harris function as
feature points. These are provided to the tracking system, which uses a second-order
Kalman filter to predict feature locations on the current frame. Given the prediction,
previous tracks, and newly selected points from the FPGA, a data association technique
is used to match new points to existing tracks. To assist the matching process, we use
normalized cross-correlation to prune incorrect correspondences. Finally, the new tracks
are used to predict the feature locations in the next frame.



3

Fig. 1. The components and flow of the tracking system are illustrated above.

3 Feature Detection and Tracking

In this section we describe in details the components of our system: feature selector,
filter and data association module.

3.1 Feature selection

Feature selection is implemented on a reconfigurable computer based on Field Pro-
grammable Gate Arrays (FPGA’s). The method, proposed in [9], is a simplification to
the Tomasi and Kanade selection technique [10] requiring only summations and multi-
plications on integers. We refer to the paper [9] for details.

3.2 Feature tracking

In our study of the point association and tracking problem we explored several ap-
proaches. We tested the straightforward solutions of matching selected points in adja-
cent frames first by nearest neighbor and then by Normalized Cross-Correlation of the
surrounding patches, with very little success. The main reason for the failure of these
attempts is that the output of the feature selector does not exhibit a stable behavior,
points disappear and reappear from one frame to the next, and attempts of directly
matching points in adjacent frames will inevitably produce poor results. Moreover, the
computational load for complete NCC tests is too high for a real-time application, in
particular given our goal of tracking hundreds of features at frame rates not lower than
60Hz.

We propose to enforce temporal continuity by assuming linear dynamics for the
tracked points in the image sequence. If we assume that selected features are measure-
ments of underlying tracks whose dynamics is described by a Gaussian ARMA model,
then we have a standard problem of tracking and data association in a multitarget
environment with less-than-unity probability of detection and presence of false alarms.
This problem has been studied in the literature for decades and a number of effective
approaches have been developed (see [1] for a review).

What makes our scenario different from the one considered in the target tracking
literature is the presence of images, which can be used as a rich source of information for
discrimination and false alarm rejection in the data association step. We explored ex-
tensions to established tracking techniques by exploiting measures of similarity between
feature patches.

Tracking and Data Association. Among the various tracking algorithms proposed
in the literature, the main ones are Joint Probabilistic Data Association (JPDA [1]),
Global Nearest Neighbor (GNN [4]), and variants (Probabilistic Data Association [2],



4

Suboptimal Nearest Neighbor [5], Cheap JPDA [6], Fast JPDA [8] and Suboptimal
JPDA [7]) . In all these algorithms Kalman Filters are used for tracking, and the pre-
dictions from the filters are used to define the regions where the features are expected
to appear in the next frame - the so called validation gates. In particular, if ŷi and Si

are respectively the predicted measurement and the variance of the innovation of the
Kalman filter associated to track i, then the validation gate of track i is the set of points
y such that the normalized distance:

di(y) =
√

(y − ŷi)T (Si)−1(y − ŷi) (1)

is less than a predefined value g (typically g = 4).
The PDA is a single track-multiple measurements association algorithm. It uses a

weighted average of the measurements in the validation gate to update a track, where
the weights are the posterior probabilities that the measurements have been generated
by the track assuming less than one probability of detection and Poisson distributed
false measurements. The JPDA is a multiple track-multiple measurements association
scheme obtained by extending PDA to multiple targets, where the probabilities of all
the possible associations measurements-tracks are evaluated in order to compute the
weights. This is done by forming clusters consisting of all tracks that have measure-
ments in the intersection of their validation gates. For each cluster all the possible
associations measurement-track are considered and the corresponding probabilities are
computed. Since the number of association hypotheses increases exponentially in the
number of tracks and points in a cluster, and in test images with 1000 selections we
obtained clusters exceeding 100 tracks, a direct JPDA implementation is not possible
for a real-time application. Even though we can use one of the several suboptimal so-
lutions proposed in the literature (CJPDA, SJPDA, FJPDA), there is another main
issue. JPDA shows undesirable characteristics when used in a dense target environment
such as the one we consider. In particular track bias and track merging may occur when
several closely spaced targets travel in the same direction. To solve this problem, in [6]
a Nearest Neighbor implementation of JPDA (NNJPDA) has been suggested. In this
variant, instead of using a weighted average of the observations in the validation gate
to update a track, the observation with highest association probability is used.

In Global Nearest Neighbor, a track can be updated by at most one measurement
and a measurement can be assigned to at most one track. The first step is to form an
assignment matrix A = [di(yj)] where di(yj) is the normalized distance (1) between
track i and measurement yj . Then the solution to the track-measurement association
problem is obtained by maximizing the number of assignments while minimizing the
sum of the the normalized distances of the assigned track-measurement pairs. The
Hungarian (or Munkres) algorithm [16] can be used to find the optimal assignment, but
its complexity is O(n3), where n is the bigger between the number of measurements and
the number tracks. Since we want to be able to track hundreds of points in real time,
we consider a suboptimal solution, the Suboptimal Nearest Neighbor. This is a greedy
approach to the matching problem: it searches the measurement-to-track pair with the
minimum normalized distance, makes the assignment, removes all the pairs contaning
the assigned measurement or track, then repeats the first step until no more assigment
is possible. The complexity of this algorithm is O(n log(n)) due to the ordering step.
A further decrease in complexity can be achieved by first segmenting the input data



5

in clusters as in the JPDA algorithm, then applying the SNN matching within each
cluster.

A comparison of the performance of the discussed tracking algorithms was presented
in [11]. The tests were conducted on radar data of real closely spaced maneuvering
targets, and the results favor the Nearest Neighbor approaches. Consequently, given
also the strict computational constraints due to the goal of a real-time application, we
opted for the Suboptimal Nearest Neighbor approach.

3.3 Tracking feature patches
A natural extension of conventional target tracking algorithms for the problem of feature
tracking in images is to modify the notion of normalized distance by including validation
based on the appearance of the tracked patch. Our solution consists in comparing the
patch surrounding the candidate selected point at the current frame with the patch at
the estimated track position in the previous frame. Then the normalized distance (1)
of measurement yj from track i at time t becomes:

di
t(y

j) =

{√
(yj − ŷi

t|t−1)
T (Si

t)
−1(yj − ŷi

t|t−1) if NCC(It(y
j), It−1(ŷ

i
t−1|t−1)) < h

∞ otherwise
(2)

where h is a threshold, NCC(I1(y1), I2(y2)) denotes the Normalized Cross-Correlation
between the patch centered in y1 on image I1 and the patch centered in y2 on image
I2, yi

t|t−1, yi
t−1|t−1 and Si are the prediction, filtered estimate and innovation variance

of track i computed at time t− 1.
The effect of this modification is to reject from the candidate points all the selections

whose appearance does not match the one of the track in the previous frame. This test
allows to prune out wrong potential matches and is simple enough to allow for a real-
time implementation.

3.4 Track initiation

In a scenario where track-data association is a main issue special care must be taken
in the initiation of new tracks. This problem is well know and several algorithms have
been proposed for its solution [1]. In view of some comparison studies on track initiator
performances [12], we concluded that the logic-based method [1] was the most suitable
for our application. In brief, the approach works by allowing multiple associations in
the first three measurements and validating the best match in the forth step (see [1] for
details).

4 Implementation and experiments

For image acquisition, we are using a Teli CS8550DiF DCAM-compliant CCD camera,
which has a resolution of 640x480 monochrome pixels and a refresh of 60 full (non-
interlaced) frames per second.

4.1 Feature selection

The current version of the Harris selector is implemented on a Xilinx VIRTEX WILD-
STAR/PCI FPGA board. The board has the following features: 1 million system gates,
1.6 Gbytes/second I/O Bandwidth, 6.4 Gbytes/second Memory Bandwidth Processing
clock 100 MHz, Synchronous ZBT SRAM with 100 MHz access.



6

Selection takes about 160 microseconds on average on 640 × 480 images, which is
approximately constant with the number of features, since the algorithm runs on the
entire image every frame. The board is connected to a host computer via the PCI bus.
Because of limitations on the hardware, it takes about 20 milliseconds to move data from
the camera to the memory on the FPGA board. This accidental hardware limitation
does not allow us to display the complete end-to-end system running in real time.
Therefore, for experimental purpose, we use a stored sequence of images as input to our
algorithms and measure the time required for each component. An alternative FPGA
board, the Micro-Line C6713Compact, has on-board Firewire (along with drivers for
DCAM-compliant cameras) which writes directly into memory accessible by the FPGA.
This will eliminate the memory-transfer delay and allow the system to run in real-time.
Due to its high cost, however, its purchase has been ruled out since the feasibility of
the system can be equally well illustrated by careful timing of each component.

A threshold parameter λt is used to control the number of selections per frame.
The image gradients Ix and Iy are obtained by computing the centered differences,

which amounts to convolving the image with the kernels
[
−0.5 0 0.5

]
and

[
−0.5 0 0.5

]T .
This solution is computationally efficient but it is known to be rather sensitive to the
noise. Significant improvements in accuracy and stability of results may be obtained in
the future by using smoothing kernels in the calculation on the image gradients.

In figure 2 we show the number of selections in a sample outdoor sequence, where we
can see some the fluctuations of the total number of features. Besides that, it must be
pointed out that there is significant additional interframe variation in the selections due
to disappearing and reappearing of features. The performance of the tracker are very
sensitive to the quality of the selections, but not particularly to their number. We also
show average and standard deviation of the lifetime of tracks for the previous sequence
as function of average number of selected features. The flatness of the curve shows how
the choice of the selection threshold is not critical for the overall lifetime of the tracks.

0 20 40 60 80 100 120
0

200

400

600

800

1000

1200

se
le

ct
io

ns

t
0 100 200 300 400 500 600 700 800 900

0

5

10

15

20

25

30

35

40

45

50

55

selections

lif
et

im
e

Fig. 2. Left: Number of feature selected in a outdoor sequence. Right: Tracks lifetime vs.
number of selections for a 100 frame sequence: mean (solid line) and standard deviation (vertical
bars).

4.2 Data association and tracking
The data association and tracking algorithm is composed of 3 modules: track initiator,
filter/predictor, and data association.

Track initiation Modified logic-based track initiation scheme as described in [1], with
the following parameters: frames required for successful track initiation set to 4, and
maximum number of track splits in the second frame equal to 3.



7

0 10 20 30 40 50 60 70 80 90 100
100

150

200

250

300

350

t

x(
t)

22 24 26 28 30 32

235

236

237

238

239

240

241

242

243

t

x(
t)

0 100 200 300 400 500 600
100

150

200

250

300

350

x

y

290 300 310 320 330 340 350 360

220

225

230

235

240

245

250

255

x

y

(a) (b) (c) (d)

Fig. 3. Kalman filter estimates and validation gates for 50 tracks in a 100 frames clip. Estimates
shown as dots connected with solid lines, measurement as crosses connected by dashed lines
and validation gates as circles. (a) shows x coordinate of all the tracks, (b) is a zoom of the
small dashed box in (a). We can see the smoothing effect of the filter which provides subpixel
accuracy. (c) displays the prediction and validation gates of all the tracks, (d) is a zoom-in
of the small dashed box in (c). It can be seen that most validation gates contain multiple
measurements, which can be correctly associated thanks to the image-based validation and the
temporal dynamics model encoded in the tracking filter.

Feature Selection Average Number Average Number Average tracking time Frame rate
Algorithm of Selections of Tracks per frame (ms) (Hz)

Harris 1000 510 11.21 89
FPGA Tomasi-Kanade 1000 411 9.81 102

Harris 500 318 5.40 185
FPGA Tomasi-Kanade 500 250 4.74 211

Harris 200 128 2.54 393
FPGA Tomasi-Kanade 200 114 2.52 397

Table 1. Results and timing of the tracker with different selection algorithms

The track initiation is computationally the most expensive part of the algorithm.
If larger number of tracks or bigger frame rates are desired, big speed gains can be
achieved by removing this module and initiating a track for each new selection.

Kalman prediction and filtering. We model the position x(t) of the features on the
image as second order Brownian motion:

[
x(t + 1)
v(t + 1)

]
=

 1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

[
x(t)
v(t)

]
+ w(t) ,

[
x(0)
v(0)

]
=

[
x0

0

]
, w(t) ∼ N (0, Q))

y(t) =

[
1 0 0 0
0 1 0 0

][
x(t)
v(t)

]
+ v(t) , v(t) ∼ N (0, R) (3)

where y(t) are detected point coordinate, v(t) is i.i.d Gaussian noise with variance
Q = diag(

[
qx qy qv qv

]
), R = rI, x0 is the position in the first frame, qx, qv, r are

parameters to be tuned according to the dynamics of the scene: qx set to a small number
or zero, qv related to the velocity of the features, and r based on the confidence in the
measurements (because of discretization not smaller than 0.5). A linear time invariant
Kalman filter is derived from the motion model (3). The initial variance P0 of the filter



8

Fig. 4. Left: FPGA selection output, sample frame. There are 1162 feature selected, obtained
with threshold parameter λt = 50. Right: Tracking output, sample frame, obtained with selec-
tions in figure 4 as input. Tracks are displayed as dots of different colors, their total number
in this frame is 562.

estimate is obtained by first solving the Riccati equation for the filter, then applying
n0 prediction steps to the result. n0 measures the number of measurements needed to
reach the steady state and is a parameter of the algorithm. In this way we guarantee a
monotonically decreasing error variance S, therefore a decreasing validation gate area.

Data association. For track-measurement association we implemented the Subopti-
mal Nearest Neighbor algorithm with modified normalized distance as described in 3.2 .
A number of optimizations have been applied to the original algorithm in order to allow
for real-time performance. First a JPDA-like clustering step is performed to reduce the
number of the association hypotheses. Then tracks and measurements are organized in
a structure with spatial information that allows to prune out pairings exceeding the
maximum distance defined by the validation gate of the track. Finally, an optimized
implementation of Normalized Cross Correlation has been included. Parameters of the
algorithm are the size of the patch used for the NCC test and the threshold h used for
calculating the normalized distance (2).

When no measurements can be associated to a track, the measurement update is
step is not performed and an additional prediction step of the Kalman filter is applied.

A track is terminated when either a maximum number of consecutive predictions
steps is attained, or the norm of the innovation exceeds a defined threshold, both pa-
rameters of the algorithm.

Figure 3 shows the trajectories of the filtered estimate for a small number of tracks
in a video clip. It is clear from the zoomed plot how the filter successfully interpolates
the noisy measurements. Figure 3 depicts also the predicted positions together with the
validation gates. We can see how the gates become smaller as new measurements are
associated to the track.

To illustrate the performance of our tracker, we show in Table 1 the results of
tracking a sequence of 100 frames with different selection algorithms and thresholds
(see figure 4 for sample frames).



9

The Harris feature selector used in these experiments is the implementation available
in the Intel OpenCV library [3]. It is clear from the data that the Harris corner detection
significantly improves the number and quality of the tracks.

The timings in Table 1 were measured on a Pentium IV 3.2 GHz PC with 1 Gbyte
of RAM and do not include selection time.

5 Conclusions

In this work we developed a hybrid scheme for fast feature selection and tracking. A
hardware reconfigurable architecture is dedicated to the feature selection process, which
allows for high framerate selection in full resolution videos. A software module then per-
forms tracking by using filtering and data association techniques on the selected points.
We complemented state-of-the-art data association approaches with image-based vali-
dation to prune incorrect matches and allow for higher tracking accuracy. We demon-
strated the excellent performances of our approach in terms of computation time and
tracking results.

References

1. Y. Bar-Shalom and T. E. Fortmann. Tracking and Data Association. Academic-Press,
Boston, 1988

2. Y. Bar-Shalom and X. R. Li. Multitarget-multisensor tracking: principles and techniques.
Storrs, CT: YBS, 1995

3. Jean-Yves Bouguet. Pyramidal Implementation of the Lucas Kanade Feature Tracker.
Included in OpenCV documentation, 2000.

4. S. S. Blackman. Multiple target tracking with radar applications. Norwood MA: Artech
House, 1986.

5. A. Farina and F. A. Studer. Radar data processing I - Introduction and Tracking. Research
Studies Press, 1985.

6. R. J. Fitzgerald. Development of practical PDA logic for multitarget tracking by micro-
processor. In Multitarget-Multisensor Tracking: Advanced Applications, 1990.

7. A. Roecker and G. L. Phillis. Suboptimal joint probabilistic data association. IEEE
Transactions on Aerospace and Electronic Systems, 29, 2 (1993).

8. B. Zhou and N. K. Bose. Development of practical PDA logic for multitarget tracking by
microprocessor. In IEEE Trans. Aerosp. Electron. Syst., 29(2), 352-363, 1993.

9. A. Benedetti and P. Perona. Real-time 2-D Feature Detection on a Reconfigurable Com-
puter. In Proc. CVPR, 1998

10. C. Tomasi and T. Kanade. Detection and Tracking of Point Features. Tech. Rep. CMU-
CS-91-132, Carnegie Mellon University, Apr. 1991.

11. H. Leung, Z. Hu and M. Blanchette. Evaluation of Multiple Radar Target Trackers in
Stressful Environments In IEEE Trans. Aerospace and Electronic Systems, 35(2), 1999.

12. Z. Hu, H. Leung and M. Blanchette. Statistical performance analysis of track initiation
techniques. In IEEE Transactions on Signal Processing, 45, 2, 445-456, 1997.

13. D. Nister, O. Naroditsky and J. Bergen. Visual Odometry In Proc. CVPR 2004.
14. C. Harris and M. Stephens. A combined corner and edge detector In Proc. Alvey Confer-

ence, pp. 189-192, 1988.
15. S. Baker and I. Matthews. Lucas-Kanade 20 Years On: A Unifying Framework In Proc.

International Journal of Computer Vision, March 2004.
16. H. W. Kuhn. The Hungarian method for the assignment problem. In Naval Research

Logistics Quarterly, 2:83, 1955


