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Microprocessor Scaling is Slowing
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Today’s Microprocessors

* Scalar programming model
with no native data
parallelism

* SSE is the exception

* Few arithmetic units - little
area

* Optimized for complex
control

* Optimized for low latency
not high bandwidth

* Result: poor match for
many apps
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Future Potential is Large
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Parallel Processing is the Future

Major vendors supporting
multicore

* [ntel, AMD
Excitement about IBM Cell

Hardware support for threads

Interest in general-purpose
programmability on GPUs

Universities must teach
thinking in parallel




Long-Term Trend: CPU vs. GPU
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Recent GPU Performance Trends

Programmable 32-bit FP multiplies per second
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Functionality Improves Too!

10 years ago:

* Graphics done in software

9 years ago:

* Full graphics pipeline

Today:

* 40x geometry, 13x fill vs. 5 yrs ago
* Programmable!

Programmable, data parallel
processing on every desktop

The GPU is the first commercial data-
parallel processor




The Rendering Pipeline

Application 'Compute 3D geometry
Make calls to graphics API

Transform geometry from 3D to

Geometry 2D (in parallel)

— Generate fragments from 2D
geometry (in parallel)

Rasterization

Composite Combine fragments into image

GPU



The Programmable Rendering Pipeline

Apblication If Compute 3D geometry
oP Make calls to graphics API

Geometry Transform geometry from 3D to

(Vertex) 2D; vertex programs

Rasterization || Generate fragments from 2D
(Fragment) geometry; fragment programs
Composite | Combine fragments into image

GPU




NVIDIA GeForce 6800 3D Pipeline
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Programming a GPU for Graphics

Application specifies
geometry = rasterized

Each fragment is
shaded w/ SIMD program

Shading can use values
from texture memory

Image can be used as
texture on future
passes



Programming a GPU for GP Programs

Draw a screen-sized
quad

Run a SIMD program
over each fragment

“Gather” is permitted
from texture memory

Resulting buffer can be
treated as texture on
next pass



GPUs are fast (why?) ...

Characteristics of computation permit efficient
hardware implementations

High amount of parallelism ...

... exploited by graphics hardware

High latency tolerance and feed-forward dataflow ...
... allow very deep pipelines

... allow optimization for bandwidth not latency

Simple control
Restrictive programming model

Competition between vendors



... but GPU programming is hard

Must think in graphics metaphors

Requires parallel programming (CPU-GPU,
task, data, instruction)

Restrictive programming models and
instruction sets

Primitive tools
Rapidly changing interfaces

Big picture: Every time | say “GPU”,
substitute “parallel processor”



GPGPU in Scientific Visualization

Flowfield Vis:
“a million particles with ease” @ 60 fps

Tensorfield Vis:
CPU — GPU Speedup =1 : 150 (1)

, o
Online decompression:

Interactively Visualize 20 GB of data
on a 256 MB GPU

Focus and Context Raycasting:
High Quality interactive visualization
of large datasets on $400 hardware

a winning team
(winner of IEEE 2005 VIS Competition)

Courtesy Jens Kriiger (TU Miinchen)




GPGPU Effects

Fire

Let your Virtual Reality come to live
with interactive GPGPU effects!

(all off these effects are simulated and rendered on the
GPU in realtime)

Smoke

Courtesy Jens Kriiger (TU Miinchen)




Challenge: Programming Systems

Programming
Model

High-Level
Abstractions/
Libraries

Low-Level
Languages

Compilers

Performance Analysis Tools

CPU
Scalar
STL, GNU SL, MPI, ...
C, Fortran, ...
gcc, vendor-specific, ...

Lots
— applications

Stream?

GPU
Data-Parallel?

Brook, Scout, sh, Glift
GLSL, Cg, HLSL, ...
Vendor-specific

—

None
kernels




Glift: Data Structures for GPUs

Goal

e Simplify creation and use of random-access GPU data
structures for graphics and GPGPU programming

Contributions
» Abstraction for GPU data structures Aaron E. Lefohn, Joe Kniss,
Robert Strzodka, Shubhabrata
. . Sengupta, and John D. Owens.
* Glift template hbrary “Glift: An Abstraction for
. Generic, Efficient GPU Data
* |terator computation model for GPUs Structures”. ACM TOG Jan

2006.




Today’s Vendor Support

High-Level Graphics Language

OpenGL 0 D3D o

Low-Level Device Driver




Possible Future Vendor Support

High-Level Graphics L

OpenGL 0 D3D o

Low-Level Device D




ATI CTM
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Big Picture Research Targets

We-don*tknow what
e Data structures architecture will win. But
o Top-down approach rather we know it will be parallel.

than bottom-up ... what SHOULD we support?
» |nteraction of algorithms and data structures
» Export to multiple architectures

» Self-tuning code
e Communication between GPUs
* Programming systems for multiple parallel architectures

* Major obstacle: difficulty of programming. Danger of fragmentation!
Opportunity for education as well.

e Learn from past

e Explore portable primitives

What we’re good at: using GPUs as first class computing
-~ resources




Rob Pike on Languages

Conclusion CO L nge

A highly parallel language used by non-experts.

Power of notation

Good:
make it easier to express yourself
Better:
hide stuff you don't care about | gxposing Parallelism
Best:
hide stuff you do care about Control Flow
Give the language a purpose. Data Locality

Synchronization




Moving Forward ...

What will DX10 give us?
What works well now?
What doesn’t work well now?

What will improve in the future?
What will continue to be difficult?



The New DX10 Pipeline

fixed
programmable
B memory
Input Vertex Geometry Setup N Pixel N Output
Assembler Shader Shader Rasterizer Shader Merger

44 A4 A 4 4

Sampler Sampler Stream out | Sampler

[courtesy David Blythe]




What Runs Well on GPUs?

GPUs win when ...
Limited data reuse

Memory BW Cache BW
P4 3GHz 6 GB/s 44 GB/s
NV GF 6800 36 GB/s

High arithmetic intensity: Defined as math
operations per memory op

Attacks the memory wall - are all mem ops necessary?

Common error: Not comparing against optimized
CPU implementation



Arithmetic Intensity

Historical growth rates (per year):
* Compute: 71%

0 » DRAM bandwidth: 25% GFLOPS
O- * DRAM latency: 5%
40 -
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[courtesy lan Buck]




Arithmetic Intensity

GPU wins when...

Pentium 4 3.0 GHz

Arithmetic intensity
v Segment

3.7 ops per word
11 GFLOPS

Segment

[courtesy lan Buck]




Memory Bandwidth

9- GPU wins when...
& 8- Streaming memory
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Memory Bandwidth
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GeForce 7800 GTX Pentium 4

Streaming Memory
System

e Optimized for
sequential performance

GPU cache is limited

* Optimized for texture
filtering

» Read-only

* Small

Local storage
 CPU >> GPU

[courtesy lan Buck]




What Will (Hopefully) Improve?
Orthogonality

Instruction sets

Features

Tools
Stability

Interfaces, APIs, libraries, abstractions
Necessary as graphics and GPGPU converge!



What Won’t Change?

Rate of progress

Precision (64b floating point?)
Parallelism

Won’t sacrifice performance

Difficulty of programming parallel hardware
... but APIs and libraries may help

Concentration on entertainment apps



GPGPU Top Ten

The Killer App

Programming models and
tools

GPU in tomorrow’s
computer?

Data conditionals

Relationship to other
parallel hw/sw

Managing rapid change in
hw/sw (roadmaps)

Performance evaluation
and cliffs

Philosophy of faults and
lack of precision

Broader toolbox for
computation / data
structures

Wedding graphics and
GPGPU techniques



