An Approach to Low-power, High-performance, Fast Fourier Transform Processor Design

Bevan Baas

Department of Electrical Engineering

bbaas@nova.stanford.edu http://nova.stanford.edu/~bbaas/

May 23, 1997

Outline

Motivation and Introduction

- Energy-Efficient VLSI Processing
- Fast Fourier Transform Overview
- FFT Chip Architectures
- The Spiffee Processor
- Conclusion

The Fast Fourier Transform (FFT)

- One of the most widely used digital signal processing algorithms
- Used in:
 - ♦ Communications
 - ♦ Radar
 - Instrumentation
 - Medical imaging

Low Power

- As semiconductor processing technology advances....
 - Clock speeds increase
 - Integration increases
 - ➡ Power increases

Year	1995	1998	2001	2004	2007	
Technology	0.35µm	0.25µm	0.18µm	0.13µm	0.10µm	
Vdd	3.3 V	2.5 V	1.8 V	1.5 V	1.2 V	
Clock	300 MHz	450 MHz	600 MHz	800 MHz	1000 MHz	
Power	80 W	100 W	120 W	140 W	160 W	

Source: SIA Roadmap

• More and more applications are power-limited

- FFT algorithm and architecture for high energyefficiency and high-performance
- Circuits for low voltage operation
- Design of a single-chip, 1024-point, FFT processor

Outline

• Motivation and Introduction

Energy-Efficient VLSI Processing

- Fast Fourier Transform Overview
- FFT Chip Architectures
- The Spiffee Processor
- Conclusion

• $P_{active} = \sum_{all nodes} activity * C * V^2 * frequency$

Energy-Efficiency

- Goal is energy-efficiency with good performance
 - Not just low-power, which can be easily obtained by reducing performance
- For DSP, high energy-efficiency is key
 - ♦ Algorithms are often easily parallelized
 - Often insensitive to latency
 - Therefore, high-performance can usually be obtained through parallel processors

Ultra Low Power (ULP) Overview

- Key idea: Biggest gain by lowering supply voltage
 - ♦ Switching energy is a strong function of V²
- To maintain performance, must also lower V_t
 - Lowering V_t significantly requires a process change
- Adjust V_t by biasing substrate/wells

Measured V_t Adjustments

ULP Implications

- Circuits operate with "leaky" transistors (low ^I_{onf} ratio)
- Static circuits generally ok
- No pure dynamic circuits, nmos pass gates,....
- Redesign high fan-in circuits

Low Vt Design

- Nodes with high fan-in require re-design
- Memory bitline is a common structure with high fan-in
- Worst case: Reading a '0' in a column with M-1 '1's

Hierarchical-Bitline SRAM

• 2-level hierarchical bitlines

- Reduces cell leakage on bitlines
- Reduces bitline capacitance by almost 50%
- 8 Local-bitlines x 16 cells each
- 3 Separate nwell biases

Simulation Results

• 128 word memory, Vdd=300mV, parasitics included

Outline

- Motivation and Introduction
- Energy-Efficient VLSI Processing

Fast Fourier Transform Overview

- FFT Chip Architectures
- The Spiffee Processor
- Conclusion

The Fast Fourier Transform (FFT)

- Efficient method of calculating the Discrete Fourier Transform (DFT)
- Believed discovered by Gauss in 1805
- Re-discovered by Cooley and Tukey in 1965
- N = length of transform, must be composite
 - $\blacklozenge \mathbf{N} = \mathbf{N}_1 * \mathbf{N}_2 * \dots * \mathbf{N}_m$

	Transform	DFT	FFT	DFT ops /	
	Length	Length Operations		FFT ops	
	64	4,096	384	11	
	256	65,536	2,048	32	
	1,024	1,048,576	10,240	102	
65.536		4.294.967.296	1.048.576	4.096	

FFT Hardware Algorithms

- Simple, compact design more important than the number of operations
- Nearly all modern FFT processors use commonfactor, radix-2^m processors

Processor	Architecture
LSI, L64280	radix-2
Plessey, PDSP16510A	radix-4
Dassault Electronique	radix-4
Cobra, Colorado State	radix-4
CNET, E. Bidet	radix-2,4

Outline

- Motivation and Introduction
- Energy-Efficient VLSI Processing
- Fast Fourier Transform Overview

• FFT Chip Architectures

- The Spiffee Processor
- Conclusion

Common FFT Architectures

Cached Memory

• Small cache used to hold frequently-used data

- Cache size $C=2^{\left|\log_2 E_{\sqrt{N}}\right|}$
 - E = Number of "Epochs" or passes through the data
- Partition processor based on activity
 - High activity: processor, cache
 - ◆ Low activity: main memory
 - Reduce leakage in low activity portion by increasing V_t

Cached Memory Algorithm

Previous Caching algorithms

- Gentleman and Sande, 1966
- Singleton, 1967
- Brenner, 1969
- Rabiner and Gold, 1975
- ♦ Bailey, 1990
- Carlson, 1990
- Processor's view: Fast, large memory
- Memory's view: Very large radix processor
 - ♦ Similar to Radix N^{1/E}
- Especially good algorithm for large N

Radix-2 Decimation-in-time Dataflow

Radix-2 Decimation-in-time Cached FFT Dataflow Diagram

Outline

- Motivation and Introduction
- Energy-Efficient VLSI Processing
- Fast Fourier Transform Overview
- FFT Chip Architectures

The Spiffee Processor

Conclusion

Design Goals

- 1024 complex point FFT processor
- Single-chip
- Deep pipelining
- Functional and good performance at low Vdd (400mV), low V_t (0V)
- Robust circuits to operate in a possibly noisy environment

Algorithm

Α

• Radix-2

- One butterfly / cycle
 - 1 complex multiply and
 2 complex add/subtracts
 4 multiplies and 6 adds

X = A + BW

- Cached FFT Algorithm
 - ◆ Mem = 1024 words x 36 bits
 - ◆ C = 1024^{1/2} = 32 words x 40 bits
- Non-iterative datapath
 - High usage \implies good area efficiency

Block Diagram

- SRAM Arrays (8)
 - Hierarchical bitlines, 6T cells, 128 x 36-bit
- Caches (4)
 - Dual-ported, 10T cells, 16 x 40-bit
- Multipliers (4)
 - 20-bit x 20-bit, 24-bit product 2's complement
- Adder/Subtractors (6)
 - ♦ 24-bit, CLA-Ripple
- ROMs (2)
 - ♦ Hierarchical bitlines, 256 x 40-bit

• 9-stage pipeline

MEM RD	CROSSB RD	MULT1	MULT2	MULT3	ADD/SUB CMULT	ADD/SUB XY	CROSSB WR	MEM WR
A B W	_		Вx	W		X = A+BW Y = A-BW	_	X Y

- Throughput of one complex butterfly per cycle
- Stall 1 out of every 80 cycles due to Read-after-Write hazard

Clocking

- Single-phase clock
- Each flip-flop contains minimum-size local clock buffers

• Selectable on-chip programmable oscillator or external clock

Spiffee

- 460,000 transistors
- 5.985mm x 8.204mm (0.7μm design rules, L_{poly}=0.6μm)
- $V_{tn} = 0.63V, V_{tp} = -0.88V$
- 1 poly, 3 metal layers
- Full custom
- 650-element scan path

Energy-Efficiency Comparison

• 17 times more efficient @ 1.1V

	Year	CMOS	Datapath	Supply	1024-pt	Power	Clock	Number	Adjusted
Processor		Tech	width	Voltage	Exec Time			of chips	transforms
		(µm)	(bits)	(V)	(µsec)	(mW)	(MHz)		/ mJ *
LSI, L64280	1990	1.5	20	5	26	20,000	40	20	11
Plessey, PDSP16510A	1989	1.4	16	5	96	3,000	40	1	12
Dassault Electronique	1990	1	12	5	128	12,000	20	6	1
Texas Mem Sys, TM-66	-	0.8	32	5	65	7,000	50	3	16
Cobra, Colorado State	1994	0.75	23	5	9.5	7,700	40	16	49
Sicom, SNC960A	1996	0.6	16	5	20	2,500	65	1	29
CNET, E. Bidet	1994	0.5	10	3.3	51	330	20	1	30
Spiffee1	1995	0.7	20	1.1	330	9.5	16	1	819
Spiffee1	1995	0.7	20	3.3	30	845	173	1	101

* Adjusted_transforms_per_mJ = Tech * ((DPath*2/3) + (DPath*1/3))₁₀ Power * Exec_Time

Improvements Using Well/Substrate Biasing

Estimated Performance in a Low-V_t Process

 Portions of Spiffee were fabricated in a low-V_t 0.8μm process with L_{poly}=0.26μm and included an identical programmable oscillator

- Measurements predict at Vdd=0.4V:
 - ◆ 57MHz @ less than 9.7mW
 - ♦ 1024-pt FFT in 93µsec
 - More than 66 times more efficient than previously best known

• Input = $\cos(2\pi \times 23/N) + \sin(2\pi \times 83/N) + \cos(2\pi \times 211/N) - j \sin(2\pi \times 211/N)$

Outline

- Motivation and Introduction
- Energy-Efficient VLSI Processing
- Fast Fourier Transform Overview
- FFT Chip Architectures
- The Spiffee Processor
- Conclusion

Contributions

- FFT caching algorithm for high energy-efficiency
- Hierarchical-bitline SRAM and ROM memories for low-V_t operation
- Design of a 1024-point, single-chip, full-custom, FFT processor
 - Fabricated and fully functional on first-pass silicon
 - 17 times more efficient than the previously most efficient known
 - ◆ Functional at 173MHz @ 3.3V

ULPAcc

- 16-word x 24-bit dualported memory
- 24-bit accumulator
- On-chip controller and oscillator
- 11,700 transistors

Srambb

- 128-word x 36-bit array
- On-chip controller, buffers, and oscillator
- 46,200 transistors

Multbb

- 20-bit x 20-bit multiplier
- On-chip controller, buffers, and oscillator
- 28,500 transistors

Other Projects and Publications

- Memory optimizing simulator
- MCM Test Chip
- Publications
 - B. M. Baas, "An Energy-Efficient Single-Chip FFT Processor," Proceedings of the 1996 IEEE Symposium on VLSI Circuits, Honolulu, HI, USA, 13-15 June 1996.
 - ◆ J. B. Burr, Z. Chen, B. M. Baas; "Stanford Ultra-Low-Power CMOS Technology and Applications," in Low-power HF Microelectronics, a Unified Approach. Stevage, UK: The Institution of Electrical Engineers, 1996.
 - B. M. Baas, "An Energy-Efficient FFT Processor Architecture," StarLab Technical Report NGT-70340-1994-1, January 25, 1994.
 - B. M. Baas, "A Pipelined Memory System For an Interleaved Processor," StarLab Technical Report NSF-GF-1992-1, June 18, 1992.

Future Work

- Investigate multiple datapath/cache pair systems
- Investigate multiple processor systems
- Modify Spiffee to be usable in a system
- Possible commercialization

Acknowledgements

- Parents and family
- Advisors and mentors
 - Prof. Len Tyler, Prof. Kunle Olukotun, Prof. Allen Peterson, Jim Burr, Masataka Matsui
- Other faculty
 - Prof. Don Cox, Prof. Thomas Cover, Prof. Teresa Meng
- ♦ Colleagues
 - Vjekoslav Svilan, Yenwen Lu, Gerard Yeh, Ely Tsern, Jim Burnham, Birdy Amrutur, Gu-Yeon Wei, Dan Weinlade, STARLab members
- Support
 - Michael Godfrey, Marli Williams, Doris Reed
 - NSF, NASA, MOSIS, AISES-GE, Texas Instruments, Sun