An Approach to Low-power, High-performance, Fast Fourier Transform Processor Design

Bevan Baas

Department of Electrical Engineering
bbaas@nova.stanford.edu
http://nova.stanford.edu/~bbaas/

May 23, 1997

Outline

- Motivation and Introduction

- Energy-Efficient VLSI Processing
- Fast Fourier Transform Overview
- FFT Chip Architectures
- The Spiffee Processor
- Conclusion

The Fast Fourier Transform (FFT)

- One of the most widely used digital signal processing algorithms
- Used in:
- Communications
- Radar

- Instrumentation
- Medical imaging

Low Power

- As semiconductor processing technology advances....
- Clock speeds increase
- Integration increases
\Rightarrow Power increases

Year	1995	1998	2001	2004	2007
Technology	$0.35 \mu \mathrm{~m}$	$0.25 \mu \mathrm{~m}$	$0.18 \mu \mathrm{~m}$	$0.13 \mu \mathrm{~m}$	$0.10 \mu \mathrm{~m}$
Vdd	3.3 V	2.5 V	1.8 V	1.5 V	1.2 V
Clock	300 MHz	450 MHz	600 MHz	800 MHz	1000 MHz
Power	80 W	100 W	120 W	140 W	160 W

Source: SIA Roadmap

- More and more applications are power-limited

Areas of Contribution

- FFT algorithm and architecture for high energyefficiency and high-performance
- Circuits for low voltage operation
- Design of a single-chip, 1024-point, FFT processor

Outline

- Motivation and Introduction
- Energy-Efficient VLSI Processing
- Fast Fourier Transform Overview
- FFT Chip Architectures
- The Spiffee Processor
- Conclusion

CMOS Power Consumption

- Power $=P_{\text {active }}+P_{\text {leakage }}+P_{\text {short-circuit }}$

- $\mathbf{P}_{\text {active }}=\sum_{\text {all nodes }}$ activity * $\mathbf{C} * V^{2}$ * frequency

Energy-Efficiency

- Goal is energy-efficiency with good performance

- Not just low-power, which can be easily obtained by reducing performance
- For DSP, high energy-efficiency is key
- Algorithms are often easily parallelized
- Often insensitive to latency
- Therefore, high-performance can usually be obtained through parallel processors

Ultra Low Power (ULP) Overview

- Key idea: Biggest gain by lowering supply voltage
- Switching energy is a strong function of V^{2}
- To maintain performance, must also lower \mathbf{V}_{t}
- Lowering V_{t} significantly requires a process change
- Adjust V_{t} by biasing substrate/wells
- Substrate/well nodes routed to pads

Measured V_{t} Adjustments

- \mathbf{V}_{t} shifted by adjusting nwell/p-substrate bias

Well / Substrate Bias (Volts)	NMOS V_{t} (Volts)	PMOS V_{t} (Volts)
0.0 V	0.63	-0.88
0.5 V	0.43	-0.77

ULP Implications

- Circuits operate with "leaky" transistors (low $\frac{I_{\text {on }}}{I_{\text {off }}}$ ratio)
- Static circuits generally ok

- No pure dynamic circuits, nmos pass gates,....
- Redesign high fan-in circuits

Low Vt Design

- Nodes with high fan-in require re-design
- Memory bitline is a common structure with high fan-in
- Worst case: Reading a ' 0 ' in a column with M-1 '1's

Hierarchical-Bitline SRAM

- 2-level hierarchical bitlines

- Reduces cell leakage on bitlines
- Reduces bitline capacitance by almost 50\%
- 8 Local-bitlines x 16 cells each
- 3 Separate nwell biases

Simulation Results

- 128 word memory, Vdd=300mV, parasitics included

Non-hierarchical bitline read failure

Hierarchical bitline read

Outline

- Motivation and Introduction
- Energy-Efficient VLSI Processing
- Fast Fourier Transform Overview
- FFT Chip Architectures
- The Spiffee Processor
- Conclusion

The Fast Fourier Transform (FFT)

- Efficient method of calculating the Discrete Fourier Transform (DFT)
- Believed discovered by Gauss in 1805
- Re-discovered by Cooley and Tukey in 1965
- $\mathbf{N}=$ length of transform, must be composite
- $\mathrm{N}=\mathrm{N}_{1}{ }^{*} \mathrm{~N}_{2}{ }^{*} \ldots{ }^{*} \mathrm{~N}_{\mathrm{m}}$

Transform Length	DFT Operations	FFT Operations	DFT ops / FFT ops
64	4,096	384	$\mathbf{1 1}$
256	65,536	2,048	$\mathbf{3 2}$
1,024	$1,048,576$	10,240	$\mathbf{1 0 2}$
65,536	$4,294,967,296$	$1,048,576$	$\mathbf{4 , 0 9 6}$

FFT Notation

- Butterfly
B

- Dataflow diagram

FFT Hardware Algorithms

- Simple, compact design more important than the number of operations
- Nearly all modern FFT processors use commonfactor, radix- 2^{m} processors

Processor	Architecture
LSI, L64280	radix-2
Plessey, PDSP16510A	radix-4
Dassault Electronique	radix-4
Cobra, Colorado State	radix-4
CNET, E. Bidet	radix-2,4

Outline

- Motivation and Introduction
- Energy-Efficient VLSI Processing
- Fast Fourier Transform Overview
- FFT Chip Architectures
- The Spiffee Processor
- Conclusion

Common FFT Architectures

- Single memory

- Dual memory (ping-pong)

- Pipelined - $\log _{\mathrm{r}} \mathrm{N}$ stages

- Array

Cached Memory

- Small cache used to hold frequently-used data

- Cache size $C=2^{\left|\log _{2} \sqrt[E]{N}\right|}$
- E = Number of "Epochs" or passes through the data
- Partition processor based on activity
- High activity: processor, cache
- Low activity: main memory
- Reduce leakage in low activity portion by increasing V_{t}

Cached Memory Algorithm

- Previous Caching algorithms

- Gentleman and Sande, 1966
- Singleton, 1967
- Brenner, 1969
- Rabiner and Gold, 1975
- Bailey, 1990
- Carlson, 1990
- Processor's view: Fast, large memory
- Memory's view: Very large radix processor
- Similar to Radix N1/E
- Especially good algorithm for large \mathbf{N}

Radix-2 Decimation-in-time Dataflow

Radix-2 Decimation-in-time Cached FFT Dataflow Diagram

Outline

- Motivation and Introduction
- Energy-Efficient VLSI Processing
- Fast Fourier Transform Overview
- FFT Chip Architectures
- The Spiffee Processor
- Conclusion

Design Goals

- 1024 complex point FFT processor
- Single-chip
- Deep pipelining
- Functional and good performance at low Vdd (400mV), low V_{t} (0V)
- Robust circuits to operate in a possibly noisy environment

Algorithm

- Radix-2

- One butterfly / cycle
- 1 complex multiply and
 2 complex add/subtracts $\Rightarrow 4$ multiplies and 6 adds

- Cached FFT Algorithm

- Mem = 1024 words x 36 bits
- $C=1024^{1 / 2}=32$ words $\times 40$ bits
- Non-iterative datapath
- High usage \Rightarrow good area efficiency

Block Diagram

- SRAM Arrays (8)
- Hierarchical bitlines, 6T cells, 128×36-bit
- Caches (4)
- Dual-ported, 10T cells, 16×40-bit
- Multipliers (4)
- 20-bit x 20-bit, 24-bit product 2's complement
- Adder/Subtractors (6)
- 24-bit, CLA-Ripple
- ROMs (2)
- Hierarchical bitlines, 256×40-bit

Pipeline Diagram

- 9-stage pipeline

- Throughput of one complex butterfly per cycle
- Stall 1 out of every 80 cycles due to Read-afterWrite hazard

Clocking

- Single-phase clock
- Each flip-flop contains minimum-size local clock buffers

- Selectable on-chip programmable oscillator or external clock

Spiffee

- 460,000 transistors
- $5.985 \mathrm{~mm} \times 8.204 \mathrm{~mm}$ ($0.7 \mu \mathrm{~m}$ design rules, $\mathrm{L}_{\text {poly }}=0.6 \mu \mathrm{~m}$)
- $\mathrm{V}_{\mathrm{tn}}=0.63 \mathrm{~V}, \mathrm{~V}_{\mathrm{tp}}=-0.88 \mathrm{~V}$
- 1 poly, 3 metal layers
- Full custom
- 650-element scan path

Energy-Efficiency Comparison

- 17 times more efficient @ 1.1V

Processor	Year	CMOS Tech ($\mu \mathrm{m}$)	Datapath width (bits)	Supply Voltage (V)	$\begin{gathered} \text { 1024-pt } \\ \text { Exec Time } \\ (\mu \mathrm{sec}) \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { Power } \\ & (\mathrm{mW}) \\ & \hline \end{aligned}$	Clock (MHz)	Number of chips	Adjusted transforms $/ \mathrm{mJ}$ *
LSI, L64280	1990	1.5	20	5	26	20,000	40	20	11
Plessey, PDSP16510A	1989	1.4	16	5	96	3,000	40	1	12
Dassault Electronique	1990	1	12	5	128	12,000	20	6	1
Texas Mem Sys, TM-66	-	0.8	32	5	65	7,000	50	3	16
Cobra, Colorado State	1994	0.75	23	5	9.5	7,700	40	16	49
Sicom, SNC960A	1996	0.6	16	5	20	2,500	65	1	29
CNET, E. Bidet	1994	0.5	10	3.3	51	330	20	1	30
Spiffee1	1995	0.7	20	1.1	330	9.5	16	1	819
Spiffee1	1995	0.7	20	3.3	30	845	173	1	101

Clock Speed Comparison

- Caching

 algorithm allows deep pipelining and high performance

Energy x Time

Improvements Using
 Well/Substrate Biasing

Estimated Performance in a
 Low- V_{t} Process

- Portions of Spiffee were fabricated in a low- $\mathrm{V}_{\mathrm{t}} 0.8 \mu \mathrm{~m}$ process with $L_{\text {poly }}=0.26 \mu \mathrm{~m}$ and included an identical programmable oscillator

- Measurements predict at $\mathrm{Vdd}=0.4 \mathrm{~V}$:
- 57 MHz @ less than 9.7 mW
- 1024-pt FFT in 93usec
- More than 66 times more efficient than previously best known

Example Input - Output

- Input $=\cos \left(2 \pi^{*} 23 / \mathrm{N}\right)+\sin \left(2 \pi^{*} 83 / \mathrm{N}\right)+\cos \left(2 \pi^{*} 211 / \mathrm{N}\right)-j \sin \left(2 \pi^{*} 211 / \mathrm{N}\right)$

Outline

- Motivation and Introduction
- Energy-Efficient VLSI Processing
- Fast Fourier Transform Overview
- FFT Chip Architectures
- The Spiffee Processor
- Conclusion

Contributions

- FFT caching algorithm for high energy-efficiency
- Hierarchical-bitline SRAM and ROM memories for low- V_{t} operation
- Design of a 1024-point, single-chip, full-custom, FFT processor
- Fabricated and fully functional on first-pass silicon
- 17 times more efficient than the previously most efficient known
- Functional at $173 \mathrm{MHz} @ 3.3 \mathrm{~V}$

ULPAcc

- 16-word x 24-bit dualported memory
- 24-bit accumulator
- On-chip controller and oscillator
- 11,700 transistors

Srambb

- 128-word x 36-bit array
- On-chip controller, buffers, and oscillator
- 46,200 transistors

Multbb

- 20-bit x 20-bit multiplier
- On-chip controller, buffers, and oscillator
- 28,500 transistors

Other Projects and Publications

- Memory optimizing simulator
- MCM Test Chip
- Publications
- B. M. Baas, "An Energy-Efficient Single-Chip FFT Processor," Proceedings of the 1996 IEEE Symposium on VLSI Circuits, Honolulu, HI, USA, 13-15 June 1996.
- J. B. Burr, Z. Chen, B. M. Baas; "Stanford Ultra-Low-Power CMOS Technology and Applications," in Low-power HF Microelectronics, a Unified Approach. Stevage, UK: The Institution of Electrical Engineers, 1996.
- B. M. Baas, "An Energy-Efficient FFT Processor Architecture," StarLab Technical Report NGT-70340-1994-1, January 25, 1994.
- B. M. Baas, "A Pipelined Memory System For an Interleaved Processor," StarLab Technical Report NSF-GF-1992-1, June 18, 1992.

Future Work

- Investigate multiple datapath/cache pair systems

- Investigate multiple processor systems
- Modify Spiffee to be usable in a system
- Possible commercialization

Acknowledgements

- Parents and family
- Advisors and mentors
- Prof. Len Tyler, Prof. Kunle Olukotun, Prof. Allen Peterson, Jim Burr, Masataka Matsui
- Other faculty
- Prof. Don Cox, Prof. Thomas Cover, Prof. Teresa Meng
- Colleagues
- Vjekoslav Svilan, Yenwen Lu, Gerard Yeh, Ely Tsern, Jim Burnham, Birdy Amrutur, Gu-Yeon Wei, Dan Weinlade, STARLab members
- Support

■ Michael Godfrey, Marli Williams, Doris Reed

- NSF, NASA, MOSIS, AISES-GE, Texas Instruments, Sun

