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Figure 1: Sample applications of the proposed strategy. Left figure shows the David Head model: initial mesh (top left), 30% sifted mesh
(top right), 60% mildly-simplified mesh (bottom left), and 95% extremely-simplified mesh (bottom right). Middle figure shows the successful
elimination of obtuse triangles on a challenging Gargoyle model. Right figure shows the elimination of short edges from a Voronoi mesh.

Abstract

In many geometry processing applications, it is required to improve an initial mesh in terms of multiple quality objectives.
Despite the availability of several mesh generation algorithms with provable guarantees, such generated meshes may only
satisfy a subset of the objectives. The conflicting nature of such objectives makes it challenging to establish similar guarantees
for each combination, e.g., angle bounds and vertex count. In this paper, we describe a versatile strategy for mesh improvement
by interpreting quality objectives as spatial constraints on resampling and develop a toolbox of local operators to improve
the mesh while preserving desirable properties. Our strategy judiciously combines smoothing and transformation techniques
allowing increased flexibility to practically achieve multiple objectives simultaneously. We apply our strategy to both planar and
surface meshes demonstrating how to simplify Delaunay meshes while preserving element quality, eliminate all obtuse angles
in a complex mesh, and maximize the shortest edge length in a Voronoi tessellation far better than the state-of-the-art.

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computer Graphics]: Computational Geometry and Object

Modeling—Curve, surface, solid, and object representations

1. Introduction

A mesh is a discrete representation of a geometric domain, con-
venient for computing. Generating good quality meshes is a key
step in geometry processing pipelines, e.g., graphics and visu-
alization [AUGAO08, LM15], finite element analysis [HL88] and
computer-aided design [Lee99, TBG09, RMM™*16].

In this paper, we address the problem of improving an input mesh
in terms of a given set of quality objectives. While it is easier to
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achieve one objective at a time, improving one property without
degrading others is a challenging problem for several graphics ap-
plications, including simplifying oversampled 3D scan data, level-
of-detail (LoD) rendering, and isosurface extraction.

For example, mesh simplification attempts to reduce the size in
order to decrease the computational cost of subsequent tasks such
as rendering, simulation, animation, etc. In order to preserve visual
fidelity, it is necessary to tolerate only marginal changes within
some accepted tolerance. This class of problems includes mesh
smoothing, mesh deformation, parameterization, surface approxi-
mation and mesh segmentation [BKP*10].
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Contribution. We describe a versatile strategy for mesh improve-
ment by interpreting quality objectives as spatial constraints on re-
sampling. Our main contribution is a derivation of a succinct spatial
representation for points satisfying various objectives using a col-
lection of geometric primitives, which allows us to extend known
resampling operators to a larger class of problems and greatly sim-
plifies the implementation of complex constraints.

Leveraging ideas from smoothing and transformation tech-
niques, we obtain a practical approach to achieve multiple objec-
tives simultaneously. We develop a toolbox of resampling operators
that can be scheduled to achieve a wide range of quality objectives.
These objectives include, but are not limited to, mesh simplifica-
tion by removing vertices while preserving angle bounds; elimina-
tion of obtuse angles; improving angle, edge length and aspect ra-
tio bounds; and elimination of short edges in Voronoi tessellations.
Typical inputs to our strategy are produced by standard meshing
packages. While we do not guarantee an improvement in terms of
input quality, our strategy may not make much progress on random
inputs; it is more of a clean-up process than a standalone mesher.

Figure 1 illustrates a few examples. The David Head model
is used to demonstrate Delaunay sifting, i.e., simplification while
preserving all angle, edge length, and smoothness bounds, on top
of traditional simplification which trades-off smoothness for fewer
vertices to yield lower LoDs. The Gargoyle model demonstrates the
successful elimination of all obtuse angles from a complex model
with highly detailed features. Finally, given a sizing function de-
fined by a grayscale image, the initial Voronoi tessellation was pro-
cessed to eliminate short Voronoi edges while preserving visual fi-
delity.

Improving a mesh greedily by a sequence of local updates, i.e.,
hill-climbing, is hardly novel and was previously explored, for ex-
ample, in [Joe89, KS08]. What distinguishes our work is the ability
to capture the feasibility regions to achieve a wide range of quality
objectives by resampling, or detect that local improvement is not
possible when the regions are empty, in contrast to other methods
that rely on a few deterministic rules, e.g., Delaunay refinement and
off-centers for Delaunay meshing. We believe the local resampling
operators we develop can greatly enrich existing tools for mesh im-
provement, e.g., [BDK*03], as demonstrated by our results.

2. Related Work

We summarize the most related work under three categories. A
more comprehensive account can be found in [AUGA08,BPK*07].

Mesh Improvement and Quality Remeshing: Smoothing
methods represented by the Centroidal Voronoi Tessellation
(CVT) [DFG99] and its variants [DGJ03, WHWB16,JFL14,DW03]
work by moving vertices to optimize an energy function. Other
optimization-based smoothing techniques for various quality ob-
jectives including angle bounds, edge length and triangle areas
compute locally optimal moves [ABE99, Renl16]. On the other
hand, transformation methods may add or remove vertices and
work by vertex clustering [LT97, SWO03], vertex removal [SZL92],
edge and half-edge collapses [HDD*93, ATC*08], and incremen-
tal decimation [WK03,KCS98, EMA*13]. Our work is inspired by

Poisson-disk sampling which we discuss in more details in Section
3; see the recent work in [AGY*16].

Mesh Simplification and Feature Preservation: It is often de-
sired to reduce the size of data, e.g., during surface reconstruc-
tion [PGK02, MDO3]. This often results in sacrificing critical fea-
tures [CY16]. The Quadric Error Metric (QEM) methods achieve
simplification by optimizing the position of the vertex to collapse
into [GH97], with no guarantees on the angle bounds or smooth-
ness of the output. Unlike the majority of remeshing algorithms that
assume features are specified in advance, e.g., [GYJZ15], our con-
straints implicitly preserve features up to a smoothness parameter,
which makes it closer to the approach in [LT98]. The recent work
in [HYB™*16] is similar to ours as they consider multiple objectives,
i.e., angle bounds and the Hausdorff error, along with reducing the
vertex count. Although their approach can be superior in Hausdorff
error, our approach is simpler and more versatile.

Delaunay Refinement (DR): Starting with an initial triangu-
lation, DR repeatedly refines any triangle with a small angle
by inserting its circumcenter as a new vertex. Despite the the-
oretical guarantees on the asymptotic mesh size, unnecessarily
high densities are often produced in practice, such as in Trian-
gle [She96, She02]. For smaller meshes of better quality, aCute
unifies vertex insertion schemes (circumcenter, sink, off-center)
and incorporates smoothing [EU09b, EU09a]. Our work can be re-
garded as a generalization of these schemes as we define feasi-
ble regions for resampling rather than a few specific points. For
surface remeshing, DR provably improves quality and can sim-
plify with various guarantees [BOOS] while preserving sharp fea-
tures [CDS12]. To achieve multiple criteria in practice, interleav-
ing DR with optimization turns out to be effective [TWADO09]. We
adopt a similar paradigm using combinations of operators that work
well in practice for different objectives. The limitations of the im-
plementation reported here with respect to surface meshes are dis-
cussed in Section 4.

3. The Strategy

Our mesh improvement strategy is inspired by Maximal Poisson-
disk sampling (MPS): once a point p; is sampled, all future sam-
ples are constrained to lie outside a sphere of radius r at p;, which
guarantees an inter-sample distance at least . On the other hand, a
sampling is maximal if no more points can be sampled. Maximality
guarantees for each point in the domain, there exists a sample no
farther than r. Variants of MPS use different spatial constraints to
provide different quality bounds [MREB12, YW12,EMA*13]. Ob-
serve that MPS only uses spheres as sampling constraints. In this
work, we generalize this concept, tailoring new spatial constraints
to capture a larger class of quality objectives.

We start with a few definitions: bad elements are mesh faces that
fail to satisty all quality objectives, as well as any of their con-
stituent vertices and edges; a patch is a set of faces associated with
a chosen vertex or edge (e.g. triangle fan or two opposite triangles);
finally, a void Q is the hole created in the mesh by removing some
elements (e.g. vertices and associated faces) from a chosen patch.
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3.1. Algorithm Overview
Input: A mesh M and a set of quality objectives.
Steps:

1. Pick a patch where quality objectives are not satisfied. Delete
the elements of this patch, creating a void Q.

2. Map each quality objective into a set of spatial constraints C on
resampling over  (Section 3.2), using a collection of geometric
primitives (e.g., half-spaces and spheres) or their complements.
Define the feasibility region F =NC.

3. If Fis empty, restore the original patch. Otherwise, sample from
F (Section 3.3) and retriangulate €.

4. Iterate over all patches (sequentially or in parallel) until the ob-
jectives are satisfied or no further improvement is possible.

Output: An improved mesh M/, at least as good as M, since no
degradation in quality is allowed w.r.t. the specified objectives.

In step (1), the patch is chosen by iterating over all mesh vertices
or elements and testing the quality objective under consideration.
If the quality is not satisfied, the patch is processed. Note that if the
input mesh satisfies all objectives, we return the same input mesh.

3.2. From Quality Objectives to Spatial Constraints

The goal of mapping quality objectives into spatial constraints in
step (2) is to define the feasibility region F. Spatial constraints can
typically be classified into two types: inclusion and exclusion. The
inclusion region 7 is the intersection of geometric primitives that
must contain the new sample, while the exclusion region O is the
union of primitives where the sample is not allowed. Clearly, 7 =
Z\ O. We avoid an explicit construction of F, which can be quite
complex. Such feasibility regions JF are similar to the voids created
during the MPS process [EMP* 12], where a grid-based refinement
was employed to track F up to machine precision or consider it
empty.

P1 P2

(b) Zpi > Bmin.

(a) Nonobtuse. (¢) Both objectives.
Figure 2: Example primitives for resampling p3 to form Appap3:
inclusion regions (green), exclusion regions (black boundaries).

Figure 2 shows examples of mapping minimum and maximum
angle bounds into spatial constraints and Figure 3(a) illustrates
mapping the Delaunay property. In both figures, we connect one
new sample p3 to two fixed samples p; and p;. In general, our
algorithm has the flexibility to relocate, add, or remove multiple
vertices (Section 3.3). To preserve sizing functions, we bound min-
imum and maximum edge lengths. The minimum edge length is
controlled by the radii of inter-sample exclusion disks while the
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maximum edge length is achieved by ensuring that every domain
point is included in some (potentially larger) disk. Domain cover-
age can be achieved by ensuring that every intersection point of two
covering circles is covered by some third disk.

(b) Smooth curvature.

(a) Delaunay disk-free property.

Figure 3: Examples for resampling ps to (a) maintain the Delau-
nay disk-free property; p3 should be outside other Delaunay circles
(b) preserve a smooth boundary; (top) allowing a bounded devia-
tion on Zp3 and (bottom) similar bounded deviation on Zp, and

Zps

3.3. Resampling Operators

In this work, we employ five resampling operators for step (3), sum-
marized in Figure 4. This set of operators was previously used for
tuning the density of a sphere packing [ERA*16]. We extend the
operators to satisfy other constraints, allowing enough flexibility to
achieve more objectives in practice. We emphasize that our strategy
can accommodate additional operators as needed. The choice and
scheduling of a specific subset of operators depends on the set of
objectives required by the application at hand (Section 4.2).

1. Relocation: removes one vertex and fills the void by adding a
new vertex, which can be viewed as moving the original ver-
tex to a new location. Relocation represents the smoothing tech-
nique in our toolbox. This is the simplest operator; it is the least
invasive making it the least powerful. We use it whenever it suf-
fices to meet the objective locally. For example, it sometimes
succeeds in achieving non-obtuse angles, bounding minimum
angles and preserving the Delaunay property.

2. Ejection: removes two or three vertices and fills the void by
adding a new vertex, with at least one of the ejected vertices be-
ing part of a bad-quality element. Ejection helps create a sparser
patch where the mesh is locally dense.

3. Injection: destroys some bad elements by adding a new ver-
tex. To ensure the new vertex is not irregular, i.e., 3-valent or
4-valent, we include two more triangles into the void by propa-
gating through the edges of the bad triangle.

4. Attractor Ejection: ejects a vertex and relocates the vertices
bounding the void towards the ejected vertex closing the void,
i.e., a combination of ejection and relocation. When relocating
the neighbor vertices, we discard the triangles connected to the
ejected vertices and consider the quality of all surrounding trian-
gles. We use attractor ejection when simpler operators fail, e.g.,
when ejection alone is not enough as the void is too large to be
filled with a single vertex. This operator creates a denser patch,
where subsequent ejections are more likely to succeed.
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(b) Ejection

(d) Attractor Ejection (— blue <)

(¢) Injection

(e) Repeller Injection (< blue —)

Figure 4: Sampling operators: red disks are exclusion regions; light green disks/polygons are inclusion regions; dotted lines and dark red
vertices are the removed elements and vertices; thick dark lines and dark green vertices are the new elements and vertices; blue are the
neighbor vertices. (a) Relocation of a vertex from the exclusion region to the feasible region. (b) Ejection of two vertices, one of which is
associated with a bad element. (c) Injection of a new vertex. A low quality (red-ish) triangle is destroyed along with two other triangles such
that the new vertex is not irregular (3-valent/4-valent). (d) Attractor Ejection where the intersection of inclusion disks is empty; relocating
the neighbor vertices towards the ejected vertices to pack a feasible region. (e) Repeller Injection of new vertex where the exclusion disks
cover the void completely; relocating the neighbor vertices farther away from the void creates a feasible region.

5. Repeller Injection: destroys some bad elements, relocates the
bounding vertices away to create a larger void, then fills the
void by adding a new vertex. The neighbor vertices are relo-
cated while respecting the quality objectives of all surrounding
triangles/edges except those that will be destroyed by the newly
added vertex. This operator is useful when only removing ele-
ments creates too small of a void to inject a new vertex.

4. Implementation Details

To complement the high-level description of the strategy in Sec-
tion 3, we discuss some crucial aspects of our implementation.

4.1. Surface meshes

Many constraints for planar meshes can easily be extended to sur-
face meshes by replacing circles with spheres, and 2D half-spaces
with 3D ones. In addition, preserving smooth curvatures is crucial.
Smoothness is measured by the dihedral angle 8¢ between two
adjacent triangles. Dihedral angles can be bounded by constrain-
ing neighboring samples to lie within half-spaces through triangle
edges. This is analogous to the 2D example in Figure 3(b). In this
paper, we do not handle meshes with sharp features.

We opted to control the deviation of the evolving mesh in terms
of dihedral angles instead of explicitly checking Hausdorff errors.
While this approach does not guarantee a bound on Hausdorff er-
rors, which is a crucial measure in several applications, our results
show that the resulting meshes are reasonably close although other
methods can be superior in terms of Hausdorff errors. It is possible,
however, to incorporate a suitable overestimator of the Hausdorff
error committed by each potential update and reject the update if
the error exceeds a given threshold as in [HYB*16]. One caveat
is that bounding dihedral angles does not prevent the creation of
needle-like features. However, this is highly unlikely and was not
observed in any of our experiments on a variety of models. Note
that bounding smoothness is related to bounding the number of ver-
tices which is harder to control directly by a sampling approach.

4.2. Operator Scheduling

A schedule is a sequence of operators chosen from 3.3 according
to the application at hand. Our implementation works in iterations
till a stopping condition is met. In each iteration, the schedule starts
by applying the first operator to all bad elements before switching
to the next operator. Operators can be graded by the magnitude of
change they introduce with relocation being the lowest and repeller
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injection and attractor ejection the highest. We prefer to make as
little change as possible to achieve the desired objectives. With this
in mind, when sample count is not a primary objective, we start
with relocation. As relocation does not change the connectivity, it
has limited interaction beyond its local patch. This makes it a good
choice for constraints that can be achieved locally without adding
or removing vertices. However, many constraints, for instance non-
obtuse remeshing and maximizing short edges in Voronoi meshes,
can rarely be achieved by relocation only. Usually, we next turn
to ejection or injection, depending on whether we expect to add
or remove vertices. As a lighter mesh is typically preferred, ejec-
tion takes precedence. If both ejection and injection fail, e.g., due
to complex geometries or very dense or sparse patches, we use our
most aggressive operators; repeller injection or attractor ejection,
which change both the connectivity and the position of neighbor
vertices impacting a larger portion of the mesh. When sample den-
sity is an objective, as in mesh simplification or refinement, we start
with ejection or injection accordingly.

4.3. Sampling from the Feasible Regions

As mentioned earlier, we avoid an explicit construction of the fea-
sibility region . For planar surfaces, we use the Simple MPS ap-
proach [EMP*12]. We construct an implicit background grid of
quads enclosing F, determined by the bounding vertices and spa-
tial constraints. We choose a coarse initial grid (4 x 4 cells). Then,
we uniformly sample a point p from the grid cells and test it against
each constraint; if all are satisfied then p is added and we proceed to
another patch. Otherwise, p is rejected. After a number of failed at-
tempts proportional to the number of grid cells, we refine every cell
by dividing it into four subcells. Subcells completely outside F are
discarded. We recurse, sampling uniformly across the current pool
of cells. Because the hierarchy is always flat, the tree does not grow
too large, and neither memory nor runtime becomes an issue. This
process terminates when cell sizes reach machine precision or all
subcells are discarded suggesting F is empty.

On curved surfaces, the input tessellation plays the role of the
grid, similar to [CJW™09]. We pick a triangle # from the pool uni-
formly by area, sample a point p uniformly from ¢, then test p
against the spatial constraints. If p passes, it is accepted and the
patch is retriangulated. Otherwise, we continue as with the grid,
refining triangles isotropically into four subtriangles i.e., confor-
mal subdivision. When a sample p has a high probability of being
accepted i.e., most of the grid subcells are within the acceptable
region, this indicates a large feasible region. In such cases, we do
not accept the first feasible p, but instead attempt to generate sev-
eral, e.g., 10, and accept the best one. Here, “best” depends on the
objectives we want to optimize and the bounds we are content to
satisty. For example, we may bound the minimum angle and maxi-
mize edge length. We may also use the same metric, e.g., maximiz-
ing the edge length locally while bounding the minimum length
globally. In Delaunay Sifting, Mesh Simplification and Non-obtuse
Triangulation, we use this concept where we accept the sample p
with maximum minimum apex angle.

© 2017 The Author(s)
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5. Applications

To demonstrate the versatility of our strategy, we develop custom
algorithms for different problems. Each problem involves a distinct
combination of geometric constraints, which require a suitable se-
lection and scheduling of resampling operators. All experiments
were conducted on a PC with Intel® Xeon® CPU E3-1280 v5
@3.70 GHz with 32 GB RAM. For all curved surface results, we
used the popular Metro tool [CRS98] to estimate the Hausdorft dis-
tance between the original input surfaces and the improved ones.
We opt for approximating Hausdorff distances to avoid the high
cost of exact computations [BHEK10]; see [TLKO09] for recent re-
sults on interactive approximations.

5.1. Delaunay Sifting

The goal of Delaunay sifting is to reduce the number of Steiner
points from a given Delaunay mesh [AMEI14]. Steiner points are
the set of vertices inserted to refine mesh elements in order to
achieve the desired quality [EU09b]. Element quality is usually
based on angle, edge length or aspect ratio bounds. Delaunay sift-
ing preserves all quality metrics of input meshes along with the
Delaunay property, while reducing the number of vertices, unlike
standard mesh simplification. The sifting ratio o is the percentage
decrease in the number of vertices.

5.1.1. Geometric Constraints and Operators

Delaunay sifting only uses the ejection operator, alternating be-
tween two variants scheduled as two passes. During the first pass,
we iterate over all edges and attempt to eject the two end points
forming a void to be retriangulated by resampling a single vertex.
For the second pass, we iterate over all triangles attempting to eject
all three vertices and resample a single vertex. The intuition is that
the first pass helps bring down the density, which allows the more
aggressive second pass to achieve even higher reductions. A pass
terminates when no more vertices can be ejected.

The geometric constraints for this problem correspond to pre-
serving the following for each triangle affected by the local update:

1. Minimum and maximum angle for both the base edge on the
boundary of the void and the apex at the resampled vertex,

2. Delaunay property for both neighboring elements bounding the
void and newly formed elements retriangulating it,

3. Smoothness of surface meshes for 3D models, e.g., with o¢ >
170°, and boundary edges for 2D models.

For 2D models, we can either disallow sifting boundary elements
or restrict resampling to input edges and tolerate a bounded devi-
ation, hence offering more controllability over the regions to sift
(see Figure 5). When sifting near the boundary, if one or more of
the ejected vertices are on a boundary edge, we ensure that the new
vertex lies on the same edge within a margin (Figure 3(b)).

5.1.2. Results and Comparisons

We demonstrate the capability of our algorithm by sifting the
output of state-of-the-art 2D Delaunay meshing software: Trian-
gle [She96] and aCute [EU09b]. Our method was able to signifi-
cantly reduce the number of vertices generated by both packages.
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Method Model Input Mesh Sifting Interior Sifting Interior & Boundary
N A emin emux N A o emin emwc N A o emin emwc
Dolphin 3409 6482  35° 110° 836 1336 75%  35° 109° 466 766 86%  35° 109°
Lake 2056 3587  35° 110° 1066 1607 48%  35° 109° 801 1225  61%  35° 109°
Triangle Wavy 1164 2041 34° 109° 605 923 48%  34° 109° 242 378 79%  34° 109°
Batman 859 1505  35° 110° 405 597 52%  35° 109° 271 409 68%  35° 109°
Airfoil 839 1483  35° 109° 422 649 50%  35° 108° 168 275 80%  35° 108°
Spiky 715 1207  35° 110° 427 631 40%  35° 108° 265 396 62%  35° 109°
Dolphin 1125 1939  40° 100° 1033 1755 8% 40° 100° 856 1499 24%  40° 100°
aCute Batman 580 948 40° 99° 527 842 9% 40° 99° 417 690 28%  40° 99°
Spiky 552 881 40° 99° 494 765 11%  40° 99° 395 629 28%  40° 99°
Face 443 715 40° 100° 377 603 13%  40° 100° 272 451 37%  40° 100°

Table 1: Delaunay sifting of planar meshes: Quality metrics before and after sifting for meshes generated by Triangle and aCute, including
the number of samples N, number of triangles /\, sifting ratio o and angle bounds (0,in, Omax)-
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Figure 5: Delaunay sifting of planar meshes generated by Trian-
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Figure 6: Delaunay sifting of planar meshes generated by aCute
(sifting interiors and boundaries).

The meshes in Figure 5 were generated by Triangle for a minimum
angle bound of 35°. Being the smallest angle bound for which Tri-
angle is guaranteed to terminate, this forces Triangle to insert many
Steiner points that turn out to be unnecessary. On the other hand,
aCute produces locally optimal Steiner points which enables it to
produce high quality meshes with fewer vertices. Still, our tests

suggest there is still room for improvement, as shown in Figure 6
and summarized in Table 1. All angle bounds were preserved while
achieving sifting ratios of 8% — 13% for aCute and 40% — 75% for
Triangle when sifting only the interior, and 24% — 37% for aCute
and 61% — 86% for Triangle when sifting both the interior and
boundary. We note that due to selecting the next edge/triangle to
process at random and the sampling employed by our operators,
our strategy does not preserve the symmetries in the input meshes
as can be seen in the batman example (Figure 6).

Next, we apply our algorithm to surface meshes, as shown in
Figure 7 for meshes generated by MPS, Delaunay refinement (DR),
frontal Delaunay (FD) [EI16], and CVT. Quality metrics before and
after sifting are reported in Table 2. On average, we were able to
achieve o0 > 72% across different inputs while preserving all qual-

ity metrics including triangle quality Q [YW16] (Q = \[63—11), where

S is the area, A is the longest edge length and P is half the perime-
ter). To the best of our knowledge, there is no available software
for Steiner point removal from surface meshes while preserving
the Delaunay property, angle bounds and smoothness.

5.2. Mesh Simplification

In several graphics applications, the user may trade-off the smooth-
ness of a surface mesh, up to some threshold, for fewer vertices. In
this application, we allow smoothness of the surface patches to de-
grade, in contrast to Delaunay sifting, achieving higher reduction
ratios. Unlike standard mesh simplification, we require that other
bounds, e.g., minimum angles and edge lengths, are preserved. As
we discuss next, our current implementation does not explicitly pre-
serve sharp features.

5.2.1. Geometric Constraints and Operators

We use the same geometric constraints and resampling operators as
in Delaunay sifting, with a specified bound on 8. To demonstrate
how changing 87 results in different resolutions, we gradually de-
crease 67 over an MPS mesh on the sphere model shown in Fig-
ure 8. We emphasize that angle bounds and the Delaunay property
are preserved across the different resolutions. We use 8¢ as a pa-
rameter to control the trade-off between the number of vertices and
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Method Model v & Omin Omax Qmin O drms(x1072)  dy(x 101
Input  Output % Input Output % Input Output Input Output Input Output Input  Output
Bunny 11.5K 3.4K 71 23K 7K 71 30 30 116 116 0.5 0.5 180 180 0.14 0.09
Uniform MPS Fertility 8.5K 23K 73 17K 5K 73 30 30 116 115 0.5 0.5 180 180 0.18 0.12
Loop 10.7K 3.4K 68 22K 7K 67 30 30 117 117 0.49 0.49 178 175 0.22 0.15
Bimba 25.4K 6.3K 75 51K 13K 75 28 28 122 121 0.44 0.45 180 180 0.08 0.09
Delaunay Refinement Kiss 31.7K 8.5K 73 63K 17K 73 28 28 121 121 0.45 0.45 180 180 0.1 0.12
Rocker 10.8K 2.5K 76 21K 5K 76 30 30 118 117 0.47 0.48 180 179 0.15 0.14
Femur 4.1K 1.4K 66 8K 3K 66 30 30 118 116 0.48 0.49 180 177 0.15 0.12
Bimba 244K 6.1K 75 49K 12K 75 28 28 121 121 0.46 0.46 180 180 0.09 0.11
Frontal Delauny Kiss 30K 8K 74 61K 16K 74 29 29 121 120 0.45 0.46 180 180 0.11 0.16
Rocker 10.2K 2.7K 74 20K 5K 74 32 32 114 114 0.52 0.52 180 180 0.14 0.14
Femur 4.0K 1.3K 66 8K 3K 66 31 31 109 108 0.55 0.55 180 177 0.16 0.12
David Head 15.0K 49K 67 30K 9K 67 34 34 99 99 0.63 0.62 180 180 0.22 0.17
CVT Chine Dragon 30K 9.1K 70 60K 18K 70 39 39 103 103 0.59 0.59 180 180 0.14 0.15
Omotondo 20K 52K 74 40K 10K 74 28 28 110 110 0.54 0.53 180 180 0.1 0.09

Table 2: Delaunay sifting of surface meshes: Quality metrics before and after sifting, including the number of vertices v, number of triangles /\, angle

bounds (Omin, Omax ), minimum triangle quality (Qumin), maximum dihedral angle Gim, root mean square distance dgys and Hausdor(f distance dy (estimated

by Metro [CRS98] and normalized by the diameter of the bounding box).

Input Mesh
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{30°,116°,0.5} {28°,122°,0.45} {29°,120°,0.45} {35°,103°,0.6}

89.895s 151.75s 182.63s 194.863

Figure 7: Delaunay sifting of surface meshes from different sources
along with running times in seconds. {Omin,Omax,Omin} indicate
the minimum angle, maximum angle and minimum triangle quality.

the approximation error; low 8 achieves lower resolutions while
tolerating larger deviations in terms of the Hausdorff distance.

5.2.2. Results and Comparison

We apply the algorithm to several surface meshes generated
by different sources; see Figure 9 where different LoDs are
achievable by setting different values for 8¢. We compare
against the powerful mesh simplification technique; Quadratic
Error Metric (QEM) [GH97] and Delaunay mesh simplification
(DM) [LXFH15] which is built on top of QEM in order to simplify
Delaunay-based meshes. It is worth noting that the DM algorithm
preserves the intrinsic Delaunay property, in contrast to our algo-
rithm which preserves the restricted Delaunay property. Recall that
intrinsic Delaunay is based on the geodesic metric while restricted
Delaunay is based on the Euclidean metric. In Table 3, we compare
these three techniques. For this comparison, we run our algorithm
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until it converges with 8¢ = 0 and use the resulting vertex count as
an input for QEM and DM. For the same reduction ratio, the com-
parison shows the superior performance of our algorithm in terms
of preserving the quality metrics of the input mesh (e.g., 6,,ins and
Omin), With the exception of the Hausdorff distance. QEM achieves
a better Hausdorff distance since it maintains surface error approxi-
mations using the quadric-error metric [GH97]. Still, our algorithm
produces competitive results and the visual fidelity of the simplified
meshes is not hindered as shown in Figure 9 since all new vertices
are sampled from the original input surface.

The closest work to ours which achieves multiple objectives is
the recent work by K. Hu et al. [HYB*16]. In their work, the au-
thors use hard constraint over the Hausdorff distance while maxi-
mizing minimum angle and reducing the mesh size. However, set-
ting a large tolerance for the Hausdorff error, as required to achieve
lower resolutions by simplification, the method in [HYB*16] starts
producing self-intersections triangles [Hul7]. Additionally, since
there is no guarantees on convergence for a specified bound on the
minimum angle, a degradation in the minimum angle has been ob-
served with a few tested models. For instance, with the Loop model,
we used the default settings and specified a minimum angle equal to
the minimum angle in the input (30°) and the output produced had
4K vertices but 7 triangles had an angle less than 30°. Our algo-
rithm at least guarantees no degradation in quality while achieving
similar mesh complexity.

5.3. Non-Obtuse Triangulation

In a non-obtuse triangular mesh, no angle is greater than 90°.
This guarantees that triangle circumcenters lie within their ele-
ments which is a crucial property for some applications in com-
puter graphics [EDD*95, KS98] and scientific computing [(US02].
We show how our resampling strategy can be applied to obtain a
non-obtuse triangulation starting from given mesh of some model.
To further demonstrate the potential of our resampling strategy, we
consider applying the same approach to obtain acute triangulations
and report some preliminary results.
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Model Method v A Ormin Omax Omin [ [ drms(x1072)  d(x10~2)
Input  Output Input  Output Input Output Input Output Input Output Input Output Input  Output

DM 12 171 0.06 25 168 35 0.8
Bunny (MPS) QEM 115K =153 23k 302 30 6 116 165 0.5 0.11 79 54 180 163 1.7 0.5
Our 30 116 0.5 59 172 4.6 1.8
DM 4.5 155 0.12 6 178 L5 0.4
Fertility (MPS) QEM 8.5K =390 17k ~790 30 4 116 168 0.5 0.08 91 61 180 179 0.7 0.2
Our 30 116 0.5 55 179 4.86 0.9
DM 10 159 0.2 0.8 171 1 0.2
Loop (MPS) QEM 107K ~14K 22k ~3K 30 55 117 160 0.48 0.12 78 67 178 171 0.5 0.1
Our 30 117 0.17 20 172 2.9 0.4
DM 12 137 0.31 11 179 4.6 0.6
Bimba (DR) QEM 254K =180 51k =350 28 6 122 161 0.44 0.12 77 60 180 179 19 0.4
Our 28 122 0.47 76 165 4.7 1.5
DM 13 135 0.31 72 167 23 0.4
Rocker (DR) QEM 10.8K =240 21k =485 30 4 118 165 0.47 0.09 102 5 180 173 11 0.3
Our 30 114 0.5 55 169 4.9 1.3
DM 11 132 0.3 32 179 33 0.4
Bimba (FD) QEM 244K =270 49K ~535 28 5 121 167 0.46 0.08 61 19 180 171 0.8 0.3
Our 29 119 0.47 64 180 4.8 1.2
DM 9 130 0.24 69 177 1.9 0.4
Rocker (FD) QEM 102K ~260 205k =520 32 5 114 167 0.52 0.09 106 20 180 171 0.8 0.3
Our 32 112 0.52 50 179 4.9 1.1
DM 11 138 0.27 4 179 1.5 0.2
Chinese Dragon (CVT) QEM 30K =15K 60k  ~3.1K 34 3 103 174 0.6 0.04 72 13 180 179 0.7 0.1
Our 34 103 0.6 46 180 2.7 0.4
DM 8 151 0.2 12 180 1.1 0.2
David Head (CVT) QEM 15K 660 30k =1.3K 33 7 107 158 0.56 0.15 50 11 180 175 19 0.2
Our 33 107 0.56 50 180 4.9 0.9
DM 12 140 0.3 59 167 2.9 0.5
Omotondo (CVT) QEM 20K 260 40k ~530 28 7 110 142 0.54 0.18 90 48 180 171 11 0.3
Our 28 110 0.53 71 180 1.8 0.2

Table 3: Mesh simplification: Comparison against the Quadratic Error Metric (QEM) [GH97] and Delaunay mesh simplification (DM) [LXFHI15] across
different quality metrics including: the number of vertices v, number of triangles 1\, angle bounds (Omin,Omax), triangle quality Quin, dihedral angle bounds

d
emax

(8,

min>
The best result for each measure is shown in bold face.

36% 86% 93% 95%
170° 160° 150° 140°

Pz

97% 97.88% 98% 98.6% 99%
130° 120° 110° 100° 90°
, 4 ) '
Figure 8: Tuning the upper bound on dihedral angles 8% and the corre-

sponding reduction ratio for an MPS mesh on a sphere model (top left).

5.3.1. Geometric Constraints and Operators

We use the same geometric constraints as in Delaunay sifting, with
the addition of bounding angles by 90°. Each iteration uses all
five operators from 3.3 in the following order: relocation, ejection,
attractor ejection, injection, then repeller injection. For this appli-
cation, the relocation operator is applied to all mesh vertices as a
smoothing phase. Smoothing helps achieve convergence faster as it
locally improves the locations of all vertices. A more conservative
approach is to apply smoothing only to the neighborhoods of bad
triangles, but we do not consider tuning the size of these neighbor-

), root mean square distance dgys and Hausdorff distance dy (estimated by Metro [CRS98] and normalized by the diameter of the bounding box).

hoods in the experiments reported here and apply smoothing to all
mesh vertices. A patch is chosen by iterating over all triangles and
testing for obtuse angles. Relocation suffices to get rid of most ob-
tuse angles, while ejection and attractor ejection help create sparser
patches for subsequent relocation to succeed. For certain arrange-
ments, inserting a new vertex is needed for which we use injection
and, more aggressively, repeller injection. The algorithm terminates
when all obtuse triangles are eliminated.

5.3.2. Results and Comparison

We apply our algorithm to several planar meshes shown in Fig-
ure 10 and report the relevant quality metrics in Table 4. The
meshes in Figure 10 were generated by Triangle [She96] for a min-
imum angle bound in [34°,35°]. Being the smallest angle bound
for which Triangle is guaranteed to terminate, this is likely to result
in tight feasible regions making it challenging for a local approach.

Next, we apply our algorithm to surface meshes, as shown in
Figure 11 and report the relevant quality metrics in Table 5. For all
input models, our algorithm succeeds in eliminating all obtuse tri-
angles without degrading the minimum angle bound while improv-
ing the triangle quality and, as shown by our results, with marginal
change in terms of Hausdorff errors. To further demonstrate the
capability of our approach, we test our algorithm on the Gargoyle
model, deemed an “unsatisfactory example” in [YW16], where 143
obtuse angles were not eliminated. The method in [YW16] fails in
the presence of noise and rapid changes in density, since it is inher-
ently a smoothing technique. Our strategy successfully eliminated

© 2017 The Author(s)
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Figure 9: Mesh simplification of surface meshes from different
sources. The minimum dihedral angle 8¢ and the reduction ratio
o are reported between different simplification levels along with
running times in seconds.

Figure 10: Non-obtuse remeshing using our algorithm on planar
meshes dominated by obtuse triangles (red).

all obtuse angles while preserving all prominent features, as shown
in Figure 1, thanks to the flexibility in applying relocation, addition
or removal of vertices to achieve the desired objective. Addition-
ally, the same input model was used to compare against the recent
of work of A. G. M. Ahmed et al. [AGY™"16] where the density
function was computed based on the curvature for adaptive remesh-

© 2017 The Author(s)
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Input Mesh Output Mesh
Model v emin emax v em,',, emax
Airfoil 839 35° 109° 844 35° 90°

Batman 859 35° 109° 857 35° 90°
Dolphin 3409 35° 109° 3411 35° 90°
Spiky 715 35° 109° 720 35° 90°
Wavy 1164 34° 109° 1171 34° 90°

Table 4: Quality metrics of non-obtuse remeshing on planar
meshes. v indicates the number of vertices, 0, and Omax are the
lower and upper angle bounds respectively.

Uniform MPS

Non-Uniform MPS

Figure 11: Example models for eliminating obtuse triangles (red)
using our non-obtuse remeshing algorithm.

ing. However, due to rapid changes in the curvature between differ-
ent regions, their method could not converge [Guol17]. One might
consider using estimates of the local-feature size, instead of the
curvature, to estimate the density function to use with [AGY*16].
In that case, the method converged producing a non-obtuse trian-
gulation, but, as seen in Figure 12, some features were smoothed
out [Guol7].

5.3.3. Preliminary results for acute remeshing

In order to challenge our algorithm, we explore the possibility of
generating acute triangulation where all angles are strictly below
90°. We first re-run all the models listed in Table 5 with maxi-
mum angle bound of 85°. In this experiment, our algorithm was
able to converge without degrading the minimum angle bound and
within similar approximate error as shown in Table 5. However, this
comes at the cost of running the algorithm longer; it took at most
5 iterations to converge. With maximum angle bound of 80°, our
algorithm was not able to converge with any model; with marginal
improvement between different iterations.

5.4. Voronoi Meshing without Short Edges

In this application, we aim to produce a Voronoi mesh that has no
short edges as required in several applications utilizing explicit nu-
merical simulations. In such applications, short edges lead to small



198

A. Abdelkader et al. / A Constrained Resampling Strategy for Mesh Improvement

v A Dbt

Omax Onmin

Omin

Method Model drus(x1073)  dy(x1072)  Time(s)
Input  Output Input  Output Input  Output Input Output Input Output Input  Output

Bunny 11.5K 114K  23.1K 22.8K 3.5K 0 30.5 30.5 116.2 90 0.5 0.64 0.43 0.49 2.934
Uniform MPS Loop 10.7K 106K 21.6K 214K 3.1K 0 30.2 30.2 117.4 90 0.48 0.64 0.74 0.59 2.824
Fertility 8.4K 8.3K 16.9K 16.7K 2.5K 0 30.3 30.3 116.0 90 0.5 0.64 0.48 0.38 2.116

Non-uniform MPS Elephant] 127K 125K 254K  25.1K 4.2K 0 219 21.9 123.4 90 0.4 0.5 0.41 0.65 3.19
Homer 44K 43K 8.8K 8.7K 1.4K 0 21.4 214 126.1 90 0.4 0.5 0.84 0.83 1.108

Kiss 317K 313K 634K 627K 8.2K 0 285 285 121.6 90 0.45 0.6 0.26 0.21 7.907

Bimba 253K 249K 507K 49.9K 6.5K 0 285 285 122.1 90 0.44 0.6 0.23 0.29 6.33

Delauny Refinement Rocker 109K 107K 217K 214K 23K 0 30.0 30.0 118.7 90 0.47 0.63 0.41 0.39 2.592
Hip 6.4k 6.3K 128K 125K 1.5K 0 28.6 28.6 119.1 90 0.47 0.62 0.65 0.71 1.533

Elephant2  6.3K 6.2K 127K 125K 1.3k 0 304 304 118.1 90 0.48 0.64 0.67 0.756 1.528

Femur 4.1K 4.1K 8.3K 8.1K 1.0K 0 30.6 30.6 118.4 90 0.48 0.64 0.41 0.32 0.997

Kiss 303K 302K 60.7K  60.5K 2.7K 0 28.6 28.6 121.4 90 0.45 0.6 0.26 0.18 2.297

Bimba 244K 243K 48.8K  48.6K 2.1K 0 285 28.5 1209 90 0.46 0.6 0.22 0.30 1.81

Frontal Delauny Rocker 102K 102K 204K 204K 0.32K 0 31.6 31.6 113.7 90 0.52 0.65 0.41 0.38 0.69
Elephant2  6.0K 6.0K 120K 120K  0.32K 0 30.6 30.6 112.4 90 0.5 0.64 0.67 0.53 0.457

Femur 39K 39K 79K 79K 0.14K 0 31.1 31.1 109.2 90 0.55 0.65 0.36 0.21 0.267

Table 5: Non-obtuse remeshing on curved surfaces: Quality metrics include the number of vertices v, number of triangles /\, number of obtuse triangles

Do, angle bounds (Omin, Omax ), root mean square distance drys, Hausdorff distance dy (estimated by Metro [CRS98] and normalized by the diameter of the

bounding box), and running time in seconds.

Figure 12: Non-obtuse remeshing results for the Gargoyle model
(left). While [AGY* 16] (middle) caused important features to be
smoothed out, ours (right) preserved features satisfactorily.

time steps, significantly increasing the computational cost. Using
well-spaced sample points, either random or structured, as Voronoi
seeds to decompose the interior of a domain provides upper bounds
on the aspect ratio of the resulting cells. However, these cells typ-
ically have problematic short edges, whenever two Voronoi seeds
come too close to each other. We call an edge e short if it belongs
to a cell with a longer edge ey such that |e;|/|ea| < 10%. This
definition is particularly useful when the underlying domain ex-
hibits rapid variations in the sizing function. Our strategy provides
a principled approach to bound the minimum inter-seed distance
and eliminate short edges using more constraints on sampling.

5.4.1. Geometric Constraints and Operators

We alternate between two sampling operators: relocation and ejec-
tion. We only update seeds whose cells contain short edges. We use
relocation for the first pass before incorporating ejection. The rea-
son behind this sequence is that relocation suffices in most cases
while ejection helps expand the feasible regions where relocation
failed. The geometric constraints are defined in terms of the dual
Delaunay mesh to preserve: (1) Delaunay property for both neigh-
boring elements and newly created elements, (2) Minimum Delau-
nay edge length and (3) Sizing function.

We bound the minimum Delaunay edge length by an exclusion
sphere around each vertex. This prevents Voronoi seeds from get-
ting too close to one another which improves the aspect ratio of

Voronoi cells. In order to bias resampling to maximize the distance
between new Delaunay vertices, we sample 10 vertices and pick
the candidate that is farthest from all surrounding circumcircles.

5.4.2. Planar Results

The only work we know about that directly targets this problem
was presented in Sieger et al. [SAB10], where short edges were
defined by the ratio to the mean edge length and only edges in the
range 1% — 5% were considered. In contrast, our definition of short
edges has a better chance of producing longer short edges resulting
in better elements. Unfortunately, due to lack of a readily avail-
able implementation or data set, we do not include a comparison
against [SAB10].

We apply our algorithm on the 2D geometries in Figure 13, span-
ning different types of difficulties. Figure 1 shows an optimized
Voronoi diagram where the sizing function is implicitly defined by
a grayscale image. The process started by sampling the image and
using the intensity of the sampled pixel to infer the sizing function.
Using these samples as Voronoi seeds, the resulting tessellation had
14272 bad cells. The improved output has no bad cells while being
visually similar to the input, as sizing was preserved.

6. Guarantees and Limitations

Our proposed strategy uses local resampling in order to glob-
ally optimize the input mesh with respect to the declared qual-
ity objectives. In practice, solving global optimization problem on
meshes has a very high computational complexity [EppO1]. The
common approach to obtain faster solvers to such instances is sam-
pling [JPS93]. Consequently, we use constrained local resampling
from feasible regions to make faster progress towards an opti-
mal configuration. Thanks to the extra degrees of freedom pro-
vided by local resampling, our strategy terminates at local min-
ima which are typically better than other deterministic alterna-
tives [YW16, SAB10]. With these guarantees, our proposed strat-
egy strikes the right balance between a principled approach with
guarantees ensuring strict improvement and an efficient way to ex-
plore the solution space probabilistically by means of sampling.

© 2017 The Author(s)
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Figure 13: Elimination of short edges in planar Voronoi meshes.
From left to right: a jittered grid where most cells contain short
edges, totaling 98 bad elements; a dense mesh with a constant
sizing function and 1666 bad elements; two meshes with rapid
changes in grading with 139 and 541 bad elements, respectively.

We choose uniform sampling instead of deterministic rules (e.g.,
gradients) because such methods are likely to bias towards extreme
configurations with less degrees of freedom, get stuck sooner and
require costly evaluations. Unless this bias makes it easier to guar-
antee convergence into restricted families of meshes of higher qual-
ity, it is unclear how such regimes would be chosen over uniform
sampling which is able to reach larger classes of meshes achieving
very satisfactory results as shown in our experiments.

6.1. Guarantees

By construction, the algorithm in 3.1 is guaranteed to terminate
without degrading quality; patches are only remeshed if quality is
preserved with no degradation of neighbor quality. This is demon-
strated in practice by Table 2, Table 3, and Table 5. By requiring
strict improvement, say lexicographic minimum quality, we can
also guarantee termination and no repeating scenarios. Moreover,
a patch is never visited more than once unless its topology or ge-
ometry has changed towards improvement.

For curved surfaces, new samples are picked from the input trian-
gulation. This guarantees an upper bound on the Hausdorff distance
between the input and output meshes, depending on the resolution
of the input mesh, as shown in Table 2, Table 3, and Table 5.

6.2. Limitations

The main limitation is the potential of getting stuck in local min-
ima. For example, in Figure 14, we do not achieve a non-obtuse
triangulation. Our algorithm handled most of the obtuse angles in
the input mesh (a), except for two elements reaching a dead-end,
as shown in (b), where no operator can improve the red patch. The
mesh in this example allows little degrees of freedom as it is rather
coarse. This dead-end, however, is rare in practice; visiting patches
in a different order resolved this problem as in (c).

To determine the frequency of dead-ends, we test our non-obtuse
remesher on 10° points in a unit box. The random seed changes the
sequence of visited patches, and the resampled point locations. We
use an overly strict criterion and count a run as a failure if a non-
obtuse mesh was not obtained after three iterations. Only 5 runs out
of 30 failed, and each had only one obtuse triangle.

© 2017 The Author(s)
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(a) Input. (b) Dead-end. (¢) Success.
Figure 14: Limiting scenario for the non-obtuse triangulation of
a mesh (a). A rare dead-end (b) might be reached, and can be re-

solved (c) by changing the order of visiting mesh elements.

Hence, even though it is possible to get stuck, with such a high
success rate, and thanks to the low overhead of the approach, re-
running the algorithm a few times quickly produces a handful of
improved meshes to choose from.

7. Concluding Remarks

We introduced a versatile constrained resampling strategy for mesh
improvement. We started by deriving the spatial representation of
various quality objectives and developed a toolbox of local resam-
pling operators that strictly improve or preserve quality. Our resam-
pling approach levarages ideas from both smoothing and transfor-
mation methods and generalizes popular point insertion schemes
like Delaunay refinement and off-centers. We demonstrated the
successful application of our strategy to a number of important
problems on both planar and surface meshes, where we were able
to achieve multiple objectives simultaneously and outperform state-
of-the-art. Our tests on a collection of models of varying complex-
ity always achieved the required quality objectives. Failures are
rare, but possible. We presented a basic empirical quantification
of the failure rate, arguing that the speed of the proposed approach
compensates for any occasional failures.

To extend this work, more applications can be considered, e.g.,
improving the angle bounds of unstructured Delaunay and Voronoi
meshes. This application will likely require more sophisticated
sequences of sampling operators. Another direction is to handle
unstructured quadrilateral, fixed-topology and anisotropic meshes.
Regarding failure rates, a richer set of operators may allow stuck
patches to progress, possibly by resampling neighboring patches.
Our preliminary results on acute remeshing are promising and a
more comprehensive study of the power and limitations of the pro-
posed approach for this challenging problem would be very excit-
ing. Last but not least, our current implementation does not explic-
itly handle sharp features and may fail on challenging test cases.
As the preservation of triangle quality is in conflict with the preser-
vation of sharp features, it would be interesting to attempt a more
robust implementation and compare the achievable improvements
on more challenging models with what was reported here.
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